
Turk J Elec Eng & Comp Sci
(2018) 26: 2595 – 2604
© TÜBİTAK
doi:10.3906/elk-1712-374

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Incremental Banerjee test conditions committing for robust parallelization
framework

Aimad Eddine DEBBI1,2,∗ , Haddi BAKHTI1
1Department of Electronics, Faculty of Technology, Ferhat Abbas University, Setif, Algeria

2Department of Computer Science, Faculty of Mathematics and Informatics, Mohamed Boudhiaf University,
M’sila, Algeria

Received: 28.12.2017 • Accepted/Published Online: 30.05.2018 • Final Version: 28.09.2018

Abstract: This paper describes the design of an automatic parallelization framework. The kernel supplied at its
front end was suggested as an instrument for parallel potential assessment. It was used to measure the maximum
achievable speedups in the major set of the CHStone benchmark suite programs. In such framework, we suggested
the liberation of parallelism incrementally. We proposed a data dependency heuristic-based transformation method to
make true dependences dissociation. We generated an internal representation (IR2), where the Banerjee test conditions
are met. Two among three of Banerjee test conditions came to be committed. In shared memory many/multicore
platforms, the third condition could be satisfied by privatization. We would be able to choose the safe and the opportune
pairwise (mapping-privatization) scheme among a number of threads mapping scenarios that become available in the
IR2 structure. Instrumentation on a subset of CHStone benchmark was carried out as a validity proof of our proposal,
and the results confirmed that our framework kernel is robust.

Key words: Automatic parallelization, parallel programming, source-to-source compilation, data dependency profiling,
parallelism assessment, benchmarking

1. Introduction
Demands for parallelizing frameworks are expected to increase considerably in the near future for two rea-
sons. First, the popularity of multicore architectures is continuously growing, and second, the circuits have
approached the physical barriers that are imposed by the frequency wall. A wide range of applications [1–3]
have already been suggested within parallel implementations. Some parallelizations are carried out also using
the semiautomatic platforms and the annotations/directives oriented frameworks like CUDA and OpenMP [4–
7]. Although semiautomatic tools are often used for parallel implementation, they are not as easily applicable
as it appears [8].

Full automatic parallelization tools are supposed to be reliable instruments for parallel implementations.
However, their popularity is not at the desired level. It seems that they are not attractive enough. Thus, they
need to be notably improved. Generally, parallelization frameworks [9–12] are source-to-source compilers. They
involve mainly a number of modules to cover the generation of an Internal Representation (IR) after parsing,
modules for profiling, analysis engines, modules for transformation passes, and finally rolling-back parsing
modules to generate output sources. The most challenging tasks for parallelization tools are firstly, identifying
∗Correspondence: aimad_ne@yahoo.fr

This work is licensed under a Creative Commons Attribution 4.0 International License.
2595

https://orcid.org/0000-0002-4181-0419

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

the parallel sections, and secondly, mapping these sections to Parallel Execution Units (PEU). We use PEU
as a generic term. Nowadays, in shared memory many/multicore systems, PEU could simply be simultaneous
threads that run on separate cores. They could also be some personalized parallel hardware if parallelization is
targeting a high-level synthesis (HLS) for FPGA or if it targets specialized plate-forms.

Separation of parallel portions of programs is not an evident task since algorithms generally contain a lot
of complex dependencies. Data dependences need to be profiled adequately to make parallelization successful.
Several works [13–17] have already investigated data dependence profiling. In these works, data dependence
profiling has not been addressed exclusively for automatic parallelization purposes. It has been investigated
in a wide context of compilation optimizations. It has been addressed to deal with a number of optimizations
such as partial redundancy elimination (PRE), runtime code scheduling [14], and performance tuning [16].
Integration of such profilers in autoparallelization tools seems to be challenging since some of them, particularly
the dynamic data-dependence profilers [15–17], suffer from runtime overhead and memory overhead. Li et al.
[16] stated that runtime overhead may elongate the analysis for several hours. Usually, those profilers use binary
instrumentations and operate at the lower level of abstraction. In our opinion, this makes them not appropriate
for integration in autoparallelization frameworks.

Mapping is the second critical task in automatic parallelization. Most works [18–21] adopted the common
pairwise (threads, iterations-loops) mapping scheme for multicore architectures. Usually, they concentrate the
dealing on loops regions and make loops iterations spread over threads. Some proposed techniques for making
privatization successful [20–22], while others suggested threads speculations algorithms [18, 19, 23].

Unlike polyhedral tools [24], the parallelization compiler that we have built is not restricted to only
certain code regions satisfying some exigencies and conditions. It does not focus only on some portions and
constructs. The instrument we are suggesting allows the determination of parallel potential in all kinds of C
programs. There are no restrictions or conditions about loops or their nests or subscripts. There is no focus only
on particular regions. There are no prior suggestions or hypotheses about the code. The compiler we suggest
here allows discrimination of parallelism inside deeply nested structures even if the inherent parallel potential
is slight.

In privatization techniques, each thread maintains a copy of the privatized data. By such concept,
we may avoid the conflict access to the shared space. However, in the mainstream parallelization techniques
when we suggest the pairwise mapping, Thread–iteration-loop, the problem of privatizing data arises. Data
cannot be privatized if its definition (Def) may reach its Use in other iterations, i.e. Defs in some threads may
reach the corresponding Uses in other threads. Since we have commonly substantial loop-carried dependences
in programs, data that cannot be privatized are very frequent in the pairwise thread–iteration-loop mapping
scheme. Application of privatization in this case is too hard.

So, in this work, we suggested the liberation of parallelism incrementally in two steps. In the first step,
we proposed a particular transformation that mitigates the major difficulties encountered in other tools. We
obtained an appropriate structure notated IR2 where we do not have to worry about all kinds of dependencies;
instead, we have to deal with only the false dependences. False dependences alone do not raise serious problems
if the adequate privatization scheme is chosen. In the second step, we selected the opportune mapping scheme
among a number of mapping scenarios that become available thanks to this novel structure and we applied the
convenient privatization. In this work, we will do the following:

• We give a brief description of the front-end part of our parallelizer. We clarify how parallelization would
be made less hard using the concept of Incremental Conditions Committing (ICC).

2596

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

• We illustrate how the kernel could be used as a reliable tool for theoretical parallel potential assessment.
We instrument a subset of CHstone benchmark suite as a validity proof of our proposals and we expose
the results as approximate estimations of the theoretical speedups.

2. Framework description
2.1. Framework architecture
State-of-the-art parallelization compilers like those provided in [10, 12, 25, 26] operate transformations to grant
safety parallelization for a maximum possible number of loops. Results of transformations are either a set of
annotations or some semantic modifications using optimization techniques such as induction variable reduction,
reduction variable, constant folding, and dead code elimination. This makes loops less vulnerable to the conflicts
in the pairwise thread–iteration-loop mapping scheme.

Syntactic
and lexical

analyzer

Loops

unrolling

Use-def

chaining

Parser

Mapping

Transformation Sources

 *.c

Functions
inlining,…
….

IR1

 IR2
 Map

HLS FPGA HDL

*.v

Mapping

Privatization

Unparsing Sources

 *.c

Many/
multi

core

Figure 1. Framework architecture.

In the present investigation, we fundamentally used the simple concept of incremental conditions commit-
ting (ICC). We applied two transformations consecutively to get what we call “the Map”, where two among three
of Banerjee test conditions [27] are met. These two committed conditions are: first, the No flow dependence.
Flow dependence is also referred to as Read After Write (RAW) dependence. Second, the No output depen-
dence. Output dependence is also referred to as Write After Write (WAW) dependence. These two dependences
are considered to belong to what is called the true dependences class. The third condition of Banerjee test is No
Write After Read (WAR) or no antidependence. WAR is considered to belong to the false dependences class.
This third condition would be satisfied by combining the privatization technique with an appropriate mapping.
Privatization here would not be subject to the problems encountered in other frameworks since we performed
a particular mapping and not the classical pairwise mapping thread–iteration-loop.

Figure 1 summarizes the design logic of our compiler. After being parsed, the program is translated to an
Abstract Syntax Representation (ASR) also referred to as first internal representation IR1 . It then undergoes
a second particular transformation where a total data dependency resolution it is carried out. Only the false
dependences remain in the resultant structure. The outcome is a set of directed graphs which are considered

2597

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

the second internal representation IR2 and are called “the Map”.

2.2. Work-flow
The construction of the Map is guided mainly by the data dependency heuristic. We fundamentally used
the use-def chaining. A number of techniques, especially function in-lining, loops unrolling, aliasing, constant
and copy propagation among others, are imperatively needed. Other analysis and optimization techniques
commonly involved in other compilers were discarded because their effect would be neutralized in the suggested
transformation process. Use-def chaining is applied from the top to the bottom for each def in the whole sets
of program defs to carry out a reduced equivalent set. In this reduced set, there was not any true dependence
between any pair of defs. So, the two Banerjee test conditions [27] RAW and WAW were met. The Map is a
set of directed graphs that express the program outputs and the whole processing involved for their production.
It is also a representation of the equivalent set of defs previously produced by the use-def chaining. Figure 2
shows a partial result of the Map that was generated by the compiler on instrumenting Algorithm 1 as an input
program.

Algorithm Adaptive filtering kernel
(as an arbitrary algorithm example involving nested loops-carried dependencies)

a) The generic pseudo algorithm

1: for k = k0 : k0 + N
2: Yestimated = W top ∗Xinput

3: err = Yestimated − Ywanted

4: W = W + µm * err * Xinput

5: end for

b) Variant of adaptive filtering kernel explicitly in C

1: for(k = k0 + filter–order; k < k0 +N + filter–order; k ++)

2: {
3: for(i = 0; i < filter–order; i++)

4: Yestimated[k] = Yestimated[k] +W [i] ∗Xinput[i+ k − filter–order]
5: for(i = 0; i < filter–order; i++)

6: err[i] = Yestimated[i+ k − filter–order]− Ywanted[i]

7: for(i = 0; i < filter–order; i++)

8: W [i] = W [i] + µm * err[i] * Xinput[i+ k − filter–order]
9: }

It was chosen just to illustrate the effect of the transformation IR2 when we deal with the loop-carried
dependencies within nested loops. There are no restrictions about the code. Note that we can process all kinds
of algorithms even if they contain highly complex structures.

Given that k0 has been set to 4 (k0 = 4) and filter-order set to 3, we obtain the two outputs Yestimated[4]

2598

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

3

finl

Yest

 =

 4

 +

Xin

 =

3

W

 =

 2

Yest

 =

 4

 *

2

finl

Yest

 =

 4

W

 =

 1

1

finl

Xin

 =

 2

Xin

 =

1

1

finl

W

 =

 0

2

finl

2

finl

Xin

finl

 +

W

 =

 2

Yest

 =

 5

*

*

Yest

 =

 5

Ywtd

 =

 2

1

finl

Yest

 =

 2
Yest

 =

1

1

finl

Ywtd

 =

 1

2

finl

2

finl

Yest

 =

 5

Yest

finl

*

*

Xin

 =

W

 =

 1

err

 =

 2

um

finl

Xin

 =

 3

Yest

finl

3

finl

*

*

 -

*

3

finl

Xin

 =

Yest

 =

 3

W

 =

 0

Ywtd

 =

 3

Xin

 =

 2

um

finl

Yest

finl

3

finl

3

finl

*

*

um

finl

1

finl
Xin

 =

 1

2

finl

Figure 2. Partial Map generated by processing Algorithm 1 in the proposed compiler.

and Yestimated[5] and their DFGs in Figure 2. We can now globally assess the parallel potential of the target
program. Accordingly to Amdhal’s law, the theoretical maximum achievable speedup Smax is limited by the
inherent sequential fraction: “fs” and given as:

Smax ≃ 1/fs, (1)

where fs can be expressed as follows:

fs =
cost(workload enchained by true dependence)

cost(total workload)
(2)

The Map expresses the outputs program by their total enchained defs. Nodes that are aligned orthogonally
form a depth level in the DFG from left to right as indicated in Figure 2.
Thus, Speedup may be evaluated as follows:

Smax ≃ total workload

Number of depth levels
. (3)

2599

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

3. Instrumentation in the CHStone benchmark
It is important to know how much parallelism there is in the applications that are considered for parallelization.
Unfortunately, to our knowledge, this issue has almost never been considered before in any parallelization tool.
In other words, it has not been inspected concretely. The present parallelization framework acts as well as an
instrument allowing the assessment of the intrinsic parallel potential and the theoretical speedups. Quantifying
the intrinsic parallel potential accurately helps to deal with the resources management more rigorously, avoids
overallocations, expands the parallel benchmarking options, and more importantly, it may assist to drive the
adequate decisions in some parallelization scenarios. False dependences are still scrambled in the Map. False
dependence expresses just the use of the memory location. It does not penalize the parallelization if data were
privatized or renamed. So, the measures carried out here indicate the maximum achievable speedups for SMT
in many/multicore systems if privatization is done properly in conjunction with an adequate mapping.

Table 1. Expectations of the maximum achievable speedups in a subset of CHStone benchmark.

Program ADPCM AES GSM BLOWFISH
Number of functions 15 11 12 6
Test vector length 100 16 160 120
Workload order Θ(35500) Θ(6500) Θ(32300) Θ(79700)
Cost(Dependence-enchained- 256 206 440 2245workload)
Speedup 138× 31× 73× 35×

3.1. CHStone benchmark
CHStone benchmark [28] consists of 12 programs with self-contained test vectors. Programs are selected from
various application domains such as arithmetic, media processing, security, and microprocessor. A large variety
of benchmark tests have been proposed in the literature. They are designed and tuned continuously to assess
specific capabilities of systems and frameworks. The NASA Advanced Supercomputing (NAS) Parallel Bench-
marks (NPB) are a small set of programs designed to help evaluate the performance of parallel supercomputers.
They are derived from computational fluid dynamics (CFD) applications and consist of five kernels and three
pseudoapplications. All three pseudoapplications included in this set relate to linear systems solving. SPEC’s
benchmarks were developed to evaluate the performance and energy efficiency of the newest generation of com-
puting systems. Large sets of tests in SPEC’s benchmarks were devoted to a variety of computing branches
including Cloud, CPU, graphics/workstation, and also the high performance computing (HPC). The older re-
leases SPEC CPU2000 and SPEC HPC2002 were devoted respectively to CPU and HPC branches tests. The
integer component of SPEC CPU2000 consists of a dozen of applications that include specifically among others
the well-known applications: gzip, vpr for FPGA placement and routing, gcc, parse and twolf for place and
route simulation. SPEC HPC2002 consists of the SPECCHEM 2002 benchmark which is based on a quantum
chemistry application, SPECENV 2002 benchmark which is based on a weather research, and the SPECSEIS
2002 benchmark which represents an industrial application that performs time and depth migrations used to
locate gas and oil deposits. We privileged the use of CHStone tests. Kernels included in CHStone benchmark
have equilibrate sizes, they have a good reputation and are given explicitly in C with a large syntax diversity
and extensive inside-merged dependencies. For the context of the present investigation, it may constitute an

2600

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

acceptable choice for the validation proof. The programs included in the chosen set are AES, ADPCM, GSM,
and BLOWFISH.

Table 2. Expectations of the maximum achievable speedups in a subset of GSM functions.

Program GSM

Function Autocorrelation() Reflection_ Quantization_
coefficients() and_coding()

Input vector length 160 8(LARc) 8(LARc)
Workload order Θ(23900) Θ(6300) Θ(1600)
Cost(enchained workload) 351 86 41
Speedup 68× 73× 39×

Table 3. Maximum achievable speedups in a subset of AES functions.

Program AES
Function KeySchedule() MixColumn_AddRoundKey()
Input vector length 16 16
Workload order Θ(3100) Θ(800)
Cost(enchained workload) 202 16
Speedup 15.3× 50×

3.2. Results and discussions
The measures exposed in Table 1 indicate the approximate limits of the maximum achievable speedups. In the
context of SMT for many/multicore systems, these limits could be reached only if the parallelization framework
implements the optimal solution available in the mapping–privatization schemes offered by the IR2 structure.
In other words, they are the maximum achievable speedups without considering the penalties occasioned by the
false dependencies. The speedups are calculated according to Eq. (3). The workload of each program is also
evaluated by the instrumentation within the tool.

In Tables 2–4, the inherent parallel potential of the most significant functions in the kernels GSM, AES,
and BLOWFISH are given as well. They are instrumented individually. It is known that in cryptography, kernels
data are highly correlated, which restricts the parallel potential as we can see it particularly in KeySchedule()
and BF_set_key() functions. These functions belong respectively to the AES and BLOWFISH kernels. In
GSM and ADPCM kernels, data are also somewhat correlated; however, it was revealed by instrumentation
that parallel potential in these programs is relatively good.

A number of mapping–privatization schemes become available in the structure IR2 already generated.
They are not discussed in this paper, but in these schemes, the parallelization will be made less hard because
we have to worry about only the false dependences. In counterpart, in the most of the state-of-art compilers
[9–11], where the conventional thread–iteration-loop mapping scheme is used, all kinds of dependences (true
dependences and antidependences) still merged among threads, which makes parallelization difficult. The
pairwise mapping scheme that we call thread–final-def is one of the simplest schemes we can apply here without
difficulties. Without further details, the overall concept of this mapping is that we have to assign each tree (or

2601

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

Table 4. Maximum achievable speedups in BLOWFISH BF_set_key() function

Program BLOWFISH
Function BF_set_key()
Input vector length 18
Workload order O(11700)
Cost(enchained workload) 350
Speedup 33×

graph) from the Map to one thread. In conjunction, we should apply data privatization. In these novel schemes
of mapping, privatization is safe to make.

4. Conclusion
Most of today’s parallelization compilers and semiautomatic tools usually implement the thread–iteration-loop
mapping scheme. They have to recognize either the loops that are occasionally easy to schedule or the loops
that can be slightly modified to fit in the thread–iteration-loop mapping scheme. Consequently, not all loops
and not all regions are expected to be treated even if sometimes they hold a great parallel potential. In such
autoparallelization frameworks, since they usually preserve the loops constructs and semantics, substantial
dependencies of all kinds (true and false dependences) are expected to still keep among the loops iterations
in the annotated/modified code. So, in order to beneficially apply this conventional thread–iteration-loop
mapping scheme, one has to deal with the threads speculations, threads synchronizations, threads squashes,
the questions of inter-threads results committing and/or the policies of the data privatization properly. All
these concerns considerably constrain the parallelization task and make it difficult. We have proposed the
incremental conditions committing approach. In the IR2 representation, we have to worry about only the false
dependences, which enables us to apply privatization with less difficulties. In this structure, several mapping
schemes are offered and not just the conventional thread–iteration-loop scheme. We would be able to choose
the most appropriate one to use with a safe privatization. We also have the choice to apply the proposed
approach selectively on code portions: either on separate loops regions, on code segments, or also individually
to functions.

References

[1] Li J, Sun J, Song Y, Zhao J. Accelerating MRI reconstruction via three-dimensional dual-dictionary learning using
CUDA. J Supercomput 2015; 71: 2381-2396.

[2] Glowacz A, Pietron M. Implementation of digital watermarking algorithms in parallel hardware accelerators. Int J
Parallel Prog 2017; 45: 1108-1127.

[3] Hidalgo-Pniagua A, Vega-Rodriguez MA, Pavon N, Ferruz J. A comparative study of parallel RANSAC implemen-
tation in 3D space. Int J Parallel Prog 2015; 43: 703-720.

[4] Okuyan E, Güdükbay U. Direct volume rendering of unstructured tetrahedral meshes using CUDA and OpenMP.
J Supercomput 2014; 67: 324-344.

[5] Dagum L, Menon R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput Sci Eng
1998; 5: 46-55.

2602

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

[6] Ayguade E, Copty N, Duran A, Hoeflinger J, Lin Y, Massaioli F, Teruel X, Unnikrishnan P, Zhang G. The design
of OpenMP tasks. IEEE Trans Parallel Distrib Syst 2009; 20: 404-418.

[7] Wang CK, Chen PS. Automatic scoping of task clauses for the OpenMP tasking model. J Supercomput 2015; 71:
808-823.

[8] Gonçalves R, Amaris M, Okada T, Bruel P, Goldman A. OpenMP is not as easy as it appears. In: IEEE 2016
System Sciences 49th Hawaii International Conference; 5–8 Jan 2016; Koloa, HI, USA. New York, NY, USA: IEEE.
pp. 5742-5751.

[9] Blume W, Doallo R, Eigenmann R, Grout J, Hoeflinger J, Lawrence T, Lee J, Padua D, Paek Y, Pottenger B et
al. Parallel programming with Polaris. Computer 1996; 29: 78-82.

[10] Bae H, Mustafa D, Lee JW, Aurangzeb, Lin H, Dave C, Eigenmann R, Midkiff SP. The Cetus source-to-source
compiler infrastructure: overview and evaluation. Int J Parallel Prog 2013; 41: 753-767.

[11] Campanoni S, Jones TM, Holloway G, Wei GY, Brooks D. Helix: making the extraction of thread-level parallelism
mainstream. IEEE Micro 2012; 32: 8-18.

[12] Liao C, Quinlan D, Panas T, de Supinski BR. A ROSE-based OpenMP 3.0 research compiler supporting mul-
tiple runtime libraries. In: International Workshop on OpenMP (IWOMP); 14–16 June 2010; Tsukuba, Japan.
Heidelberg, Berlin: Springer. pp. 15-28.

[13] Zhang X, Navabi A, Jagannathan S. Alchemist: a transparent dependence distance profiling infrastructure. In:
IEEE/ACM 2009 the 7th annual International Symposium on Code Generation and Optimization; 22–25 March
2009; Seattle, WA, USA. New York, NY, USA: IEEE. pp. 47-58.

[14] Chen T, Lin J, Dai X, Hsu WC, Yew PC. Data dependence profiling for speculative optimizations. In: International
Conference on Compiler Construction; 29 March–2 April 2004; Barcelona, Spain. Heidelberg, Berlin: Springer. pp.
57-72.

[15] Kim M, Kim H, Luk CK. SD3: A scalable approach to dynamic data-dependence profiling. In: IEEE/ACM 2010
43rd Annual International symposium on micro-architecture; 4–8 December 2010; Atlanta, GA, USA. New York,
NY, USA: IEEE. pp. 535-546.

[16] Li Z, Jannesari A, Wolf F. An efficient data-dependence profiler for sequential and parallel programs. In: IEEE
2015 International Parallel and Distributed Processing Symposium; 25–29 May 2015; Hyderabad, India. New York,
NY, USA: IEEE. pp. 484-493.

[17] Sato Y, Inoguchi Y, Nakamura T. Whole program data dependence profiling to unveil parallel regions in the dynamic
execution. In: IEEE 2012 International Symposium on Workload Characterization; 4–6 November 2012; La Jolla,
CA, USA. New York, NY, USA: IEEE. pp. 69-80.

[18] Tian C, Feng M, Nagarajan V. Gupta R. Speculative parallelization of sequential loops on multicores. Int J Parallel
Prog 2009; 37: 508-535.

[19] Campanoni S, Jones TM, Holloway G, JanapaReddi V, Wei GY, Brooks D. Helix: automatic parallelization of
irregular programs for chip multiprocessing. In: ACM 2012 Proceedings of the tenth international symposium on
code generation and optimization; 31 March–4 April 2012; San Jose, California, USA. New York, NY, USA: ACM.
pp. 84-93.

[20] Johnson NP, Kim H, Prabhu P, Zaks A, August DI. Speculative separation for privatization and reductions. In: ACM
2012 Proceedings of the 33rd ACM SIGPLAN Conference on Programming Languages Design and Implementation;
11–16 June 2012; Beijing, China. New York, NY, USA: ACM. pp. 359-370.

[21] Tu P, Padua D. Automatic array privatization. In: International Workshop on Languages and Compilers for Parallel
Computing; 12–14 August 1993; Oregon, USA. Heidelberg, Berlin: Springer. pp. 500-521.

[22] Li Z. Array privatization for parallel execution of loops. In: ACM 1992 Proceedings of the 6th International
Conference on Supercomputing; 19–24 July 1992; Washington D. C., USA. New York, NY, USA: ACM. pp. 313-
322.

2603

DEBBI and BAKHTI/Turk J Elec Eng & Comp Sci

[23] Li M, Zhao Y, Tao Y. Dynamically spawning speculative threads to improve speculative path execution. In:
International Conference on Algorithms and Architecture for Parallel Processing; 24–27 August 2014; Dalian,
China. Heidelberg, Berlin: Springer. pp. 192-206.

[24] Amini M, Creusillet B, Even S, Keryell R, Goubier O, Guelton S, Mcmahon JO, Pasquier FX, Péan G, Villalon P.
Par4All: from convex array regions to heterogeneous computing. In: IMPACT 2012 2nd International workshop on
polyhedral compilation techniques; Jan 2012; Paris, France.

[25] Blume W, Eigenmann R, Faigin K, Grout J, Hoeflinger J, Padua D, Petersen P, Pottenger W, Rauchwerger L, Tu
P et al. Polaris: Improving the effectiveness of parallelizing compilers. In: International workshop on languages and
compilers for parallel computing; 8–10 August 1994; Ithaca, NY, USA. Heidelberg, Berlin: Springer. pp. 141-154.

[26] Dave C, Bae H, Min SJ, Lee S, Eigenmann R, Midkiff S. Cetus: a source-to-source compiler infrastructure for
multicores. Computer 2009; 42: 36-42.

[27] Psarris K, Klappholz D, Kong X. On the accuracy of the Banerjee test. J Parallel Distrib Comput 1991; 12: 152-157.

[28] Hara Y, Tomiyama H, Honda S, Takada H, Ishii H. CHStone: A benchmark program suite for practical C-based
high-level synthesis. In: IEEE 2008 International Symposium on Circuits and Systems; 18–21 May 2008; Seattle,
WA, USA. New York, NY, USA: IEEE. pp. 1192-1195.

2604

	Introduction
	Framework description
	Framework architecture
	Work-flow

	Instrumentation in the CHStone benchmark
	CHStone benchmark
	Results and discussions

	Conclusion

