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Abstract: The study of electrical distribution of primary networks design is oriented to reduce the construction costs
and the energy losses by transmission. The topology for the implementation of distribution networks may vary according
to the geographical characteristics of the final users and requires specialized optimization solutions with metaheuristics
to improve the energy performance of the electrical power systems. A parallel genetic algorithm (PGA) is proposed
to optimize a tree-based topology for large-scale electric power distribution networks. The proposed PGA uses the
dandelion code, which allows obtaining tree-feasible solutions within each iteration of the PGA. This cannot be achieved
with other metaheuristic approaches directly. Eight cores are used simultaneously. We achieve a 22.05% improvement
when compared to the tree-feasible solutions obtained with its sequential version. Moreover, the computational time
required by the PGA is on average 23 times lower than the sequential version. Finally, we find feasible solutions for

instances of the problem with up to 50,000 nodes.
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1. Introduction

Planning of the primary distribution of electric energy compromises the use of limited natural resources. For
this reason there is increasing scientific and economic interest in the optimal distribution of energy. According
to [1, 2], in countries like Chile, Spain, Sweden, and England the costs of power distribution companies are
established in accordance with reference network models, which consider average distribution losses of power
and energy; this comparison encourages the companies to deliver efficient service. The primary electric energy
distribution network starts from the substation, which receives the energy from the transmission line and
distributes it through the feeders and up to the transformers or consumption endpoints.

In this research, the problem is finding the layout of a network of electrical distribution in a radial form,
with the minimum expense in its construction and distribution of the electric energy. With large networks finding
an optimal solution is not possible; for this reason, metaheuristic techniques are used that find solutions close
to the optimum. In [3-5] optimization approaches were implemented that focus on different design topologies.
Additionally, the optimization of the network has to take into account other metrics in order to make the

whole distribution process of the network more efficient [6, 7]. These metrics are known as node-based and
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branching methods. Node-based methods include the Z-bus method [8], Newton-Raphson-based algorithms [9],
and fast decoupled power flow-based algorithms [10] while branching-based methods are the backward/forward
sweep-based methods [11] and loop impedance [12].

Commonly, the construction is installed in a geographical area where no previous network exists. This
process is known as Greenfield. Under this approach, the geographical location of the substations and the
consumption points, as well as the substation capacities and the energy requirements of the consumption
points, are already known [13]. Thus, the problem consists of finding a tree network configuration of minimum
construction costs and low total energy consumption.

The electric energy distribution from the substation to the consumption points can be represented using a
tree-graph representation. For this purpose, we assume that the substation is equivalent to the root node, while
the remaining nodes represent the consumers. Finally, the arcs of the network represent the feeders. There must
be a relation between the real model and the theoretical model. An n-node graph can be represented by means
of n ™2 different trees. Furthermore, the network uses connectors for the different sections, which introduce a
higher combinatorial degree in the problem [14, 15]. The main contribution of this paper is to propose a new
method, the parallel genetic algorithm (PGA), using dandelion code to solve the optimization problem. The
coding used allows us to explore the whole space of feasible solutions for optimal trees; this research improves
on previous works [16].

These types of problems have been solved using diverse optimization techniques. These are classical
methods such as mixed integer linear programming [17, 18], nonlinear dynamic programming [19, 20], and
metaheuristic approaches such as tabu search [21], particle swarm optimization [22], bacterial foraging [23],
simulated annealing [24], bee colony [25], and genetic algorithms (GA) [26, 27]. Others authors [28] studied
the effects of the indicators of complexity of industrial structures. In [26] the authors solved a similar problem,
but their study was mainly focused on the comparison between two separation techniques rather than solving
the problem directly. Also, in [26], a heuristic algorithm was proposed for solving a variant of this problem.
The algorithm selects the location of the transformers and builds a meshed network. This optimizes the
individual location of the transformers in a Greenfield area. However, the proposed algorithm does not take
into account the risk of falling into local optimal solutions. Finally, in [27] a probabilistic flow method was
proposed to optimize the location of the substations and radial connectors for another variant of the electric
power distribution problem. In a previous work [29] we dealt with the same problem of this paper by using a
sequential GA. However, in this paper, we further propose a PGA and compare it with the sequential GA [30].
For this purpose, we use 8 processors in our proposed PGA. In what follows we assume that the locations of the
substations and the location of the consumption points are known. Thus, the main goal in our problem is to find
a tree network topology that minimizes the construction and energy costs of the whole network. Considering
that difficulty grows as the size of the problem grows, obtaining the optimal solution in large networks becomes
difficult in computational terms.

In [31] a distribution problem in a large geographical area was developed with an improved GA. The
algorithm finds the location and optimal size of the high and medium voltage substations, as well as the
location of feeders between the medium and high voltage substations. The strategy used in the algorithm is
to make a forecast of the long-term power consumption, dividing the geographic area into smaller blocks; this
allows GA to simplify the model, leaving the network with 90 nodes and also reducing the amount of power

lines.
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In general, with the use of GAs to resolve the distribution system Greenfield planning (DSGP) that
consists of planning a new network in a place where one did not exist before, the systems fail because of the new
solutions obtained with the operators of the GA. They lead to nonfeasible solutions, which must be penalized
so that the objective function does not consider them in the solution of the problem.

Therefore, the feasible solution space is not easily explored. Most of the models that solve variants of
this type of problem focus on the optimization of the GA operators. This technique only presents solutions
for models of small magnitude. Reality-tuned network models for midsize cities involve approximately 50,000
consumption points, implying that the coding mechanism can affect GA performance. An appropriate encoding
method can represent the problem more clearly, help to explore the space of feasible solutions, and make it
more efficient [32].

In order to encode the tree, in this paper the dandelion code is used. The dandelion code was initially
proposed by Picciotto [33] in his doctoral thesis. The code establishes a bijective function between an array of
integers and a tree digraph. Furthermore, it complies with an effective representation of coverage trees, such as
locality (similar coding corresponds to similar trees), feasibility (the operators, who manage the coding, have
to produce just coverage trees), and efficiency (the operations have to be computationally efficient) [34]. This
code has also been used for multiobjective optimization design of data network topologies [35].

In order to propose a PGA with the dandelion strategy we model the DSGP using a graph G = (U, A)
where U represents the substation set and the consumption nodes, while the set A represents a set of directed
arcs that connect all consumption nodes among them and with the corresponding substations. There is a
subset G called I', where I' represents all tree graphs that can connect all network nodes in A. In this paper,
it is considered that each node can connect to any other node within the system. In order to start running
the proposed PGA, an initial population is necessary. We generate this initial population by using the Prims
algorithm [36]. Each of the solutions of the initial population is represented with dandelion code.

This paper is organized as follows. In Section 2, we give a brief description of the solution of the problem,
the mathematical formulation of the problem is presented, and the PGA algorithm is explained. In section 3,
we conduct computational numerical experiments in order to compare our PGA with its sequential version, and

finally the main conclusions of the paper are given in section 4.

2. Materials and methods

In order to represent an electrical distribution tree of N nodes, with M substations and N - M consumption
nodes, we will construct the array C), with n natural numbers. All nodes are represented with natural numbers
between 1 and n and this corresponds to the dandelion code C,.

Moreover, an artificial station labeled with the number 0 is considered to form the tree from the array.
Furthermore, to node 0, or the root node, is assigned the first M numbers of the array. Now we form the array
A, with the elements 1, 2, ..., n-1. Then the dandelion code is applied.

To clarify the tree representation, an example is shown. For a given electrical distribution tree with 3
distribution substations and 13 consumption nodes, it can be represented with an array of 16 elements, which
are equivalent to natural numbers between 1 and 16. The artificial node is a fictional substation, which is
equivalent to the root node. The substations of this electrical distribution tree are derived from the artificial
substation. After the tree has been built, substation 0 is eliminated; therefore, the array is only formed by
natural numbers. The array is given as C14=1341211110974579 105 2, in which 0 is imposed from its

position to position 3, and then this array is placed just below an array of A, with 15 positions. The functional
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relationship is established between the elements of the first row to which corresponds one element of the second
row in Table 1. Each time an item in A, is associated, it is removed from the first array and it is characterized
by the function ¢ (). With this function we have that ¢(1)— 0. Element 1 is removed from the first array,
@(2)— 0, 2 is removed from the first array, ¢(3)— 0, and 3 is removed from the first array, ensuring that M
substations are connected to the root node, in this case node 0. Then it continues with the consumption nodes
as follows: ¢(4)— 12, 4 is removed from the first array, ¢(12)— 7, 12 is removed from the first array, and the

algorithm is finished when the first array is empty.

Table 1. Array for function.

4 5 6 7 8 9 10 11 12 13 14 15

Ac 12 11 1 10 9 7 4 5 7 9 10 15

|1 2 3
0 0 0

In this relation, the cycle ¢ (4) — 12, ¢(12)— 7, ¢(7) — 10, ¢(10)— 4 and the cycle ¢(5)— 11, ¢(11)—

5 are produced. These cycles are left in a set of cycles £, in this case £ = {(4, 12, 7, 10), (5, 11)}. In order to
build the tree associated with this array we proceed as follows: Step 1. Connect the cycles of the set £ to each
substation alternately; this is a subtree. Then connect the element n to the last element of the last cycle, in the
example 16 to 11. Step 2. Connect all elements according to function ¢ (). For this specific example, Figure la
depicts the geographical distribution of the fictional substation, substations, and consumption nodes. Figure 1b
depicts the electrical distribution tree that corresponds to array Cig. In order to generate a balanced network,
the first cycle is connected to the first substation, the second cycle to the second substation, and so on until all

of the cycles are connected and the last node is connected to the last cycle.

2.1. Mathematical formulation
Furthermore, the model must comply with the restrictions imposed on the problem. These restrictions are given
in [18], and the following notation is applied:
Parameters
G= (U, A); U={r} UMU N,
r : Artificial node,
M : Set of substations,
N : Set of consumption nodes,
W : Set of conductors,
A; ¢ Set of arcs incoming from node 7,
A;7 ¢ Set of arcs outgoing from node 1,
BC A;B={a;a=(r,m),j={1,2, .., M}}
R, : Electrical resistance of type w conductor,
d; : Power required by consumer node j,
a, B : Adjustment parameters.

Variables
z, : Power flow in arc a,

Yo = 1 : If arc a is part of a tree, and y, = 0 otherwise,

Zaw = 1 : If a conductor type w is assigned to arc a,
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\6) \I;/ 16

A : Substation

( ) : Consumer node

‘ : Artificial node

Figure 1. (a) Geographical distribution of the fictional substation, substations, and consumption nodes; (b) electric
distribution tree corresponding to array Cis.

zaw = 0 : If a conductor type w is not assigned to arc a,
V. : Voltage at the beginning of arc a.

The mathematical formulation is as follows:

Ty 2
%) Yo+ B8 CwZawla, (1)

V_
a a€A

min f(z) = « Z Ry zaw(

acA

where the first addend is the electric energy cost and the second addend is the network construction cost

function. The function is subject to the following restrictions:

Z TalYa — Z TalYa = dj vVjieU (2>

a€A; a€cAf
o 2 |M|+|N|
a
Z szaw(%) Ya = Z La — Z dj (3)
a€A; @ a€A; j=1
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S o = [M] +|N] 4)
acA
Z Zaw = 1 Va € A (5)
weW
Za < kuZawla VYa € A (6)
Tq >0 Yae A (7)
Vi=0>0 VYacA (8)
Yo =0V1 Vae A (9)
Zaw =0V 1 Yae A,weW (10)

Eq. (2) ensures the energy of each node and Eq. (3) generates the balance of network. The condition
of Eq. (4) represents the tree topology of network. The condition of Eq. (5) guarantees that one conductor is
assigned to each arc and Eq. (6) guarantees the satisfaction of the capacity of each arc. Egs. (7), (8), (9), and
(10) guarantee a valid range for each variable.

The construction cost between nodes is proportional to the Euclidean distance measured from the arc
that is between the nodes, multiplied by the cost of the feeder. Moreover, the cost of the losses is proportional
to the square of the current flowing through each stretch, and it is determined using a power flow algorithm

[37]. The method used in the investigation is described in the flow chart provided in Figure 2.

Identification of substations and consumption points with integer numbers; random assignment of the
characteristic parameters of an electrical network (active power, reactive power and position of nodes).

<_>

The electrical distribution network is represented by an arrangement with N+M elements.

<_>

The Dandelion code is used to ensure the radial shape of the electrical network.

<_>

The PGA is applied to the objective function and the constraints of the problem.

==

Meets term conditions.

<

The model obtains an electric network close to the optimum in construction cost and energy expenditure.

>

Figure 2. Flowchart for PGA.

2653



SABATTIN et al./Turk J Elec Eng & Comp Sci

The PGA operates in a genotype and phenotype mode. For the genotype, a string of integers is used,
which corresponds to the dandelion code, while for the phenotype a tree-type network topology is used, and the
progress of the populations is made using classical selection, crossover, and mutation operators, as depicted in

the algorithm. The operators used are detailed below:

1. The selection operator used is a tournament of five individuals [38].

2. The crossover operator uses a crossing of two points [38]. The mutation operator is generational. However,

in each generation the best current parents (elitism) replace 10% of the worst individuals generated.
3. The evaluation function is represented in Eq. (1).

4. These GAs can be very demanding in terms of computational load and memory. In order to improve
the computation time of complex problems, parallel processing is used. There are several techniques for
parallel processing. In this work, the master-slave model is used, and a scheme of it is shown in Figure 3.
In this model the computational processing is performed on multiple processors, each of which evaluates
the objective function. One processor is responsible for organizing and distributing new populations until

a stopping criterion stops Algorithm 1.

5. In most of the problems solved using the PGA, the parallel processors evaluate the objective function

because that is where the highest computational complexity and time consumption occurs [39].
E (b)

/J\\

\ \

~

Figure 3. Master-slave for PGA.

3. Results and discussion
The used hardware was a computer cluster with 2.10 GHz AMD Opteron 6272 Processors with 64 cores (8 per
experiment were used) and 128 GB RAM. The cluster used GNU/Linux as the operating system with CentOS
6.2 distribution. The software used to obtain the simulation was C++, and the open MP library was used [39]
to achieve parallel processing.

The set of instances to solve and those that will be used for calibration have to be defined in the numerical
experiment. The determining factor in the generation of instances is the representatives compared to reality.

For example, in a city like Santiago, Chile, there are about 30 substations and over 50,000 consumption points;
therefore, these numbers have provided a general idea regarding instance size, which must be generated to get
representative results. In this paper, four large instances have been generated: 35,000 nodes, 40,000 nodes,
45,000 nodes, and 50,000 nodes, labeled as follows: C35, C40, C45, and C50, respectively.
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Algorithm 1: Parallel genetic algorithm

Result: Multiple cores solutions

1 Initial generation();
2 Generation < 1;
3 while Generation < Maxzimum number generations do
4 do interchange;
5 evaluation of new individual;
6 enddo interchange;
7 for t + 0 to Numberindividuals do
8 Selection ();
9 Crossover ();
10 Mutation ();
11 end
12 Generating new population ();
13 Generation < Generation + 1;
14 end

The simulations have the following input data: active power P and reactive power @ and (z, y), which
have the position of the nodes in the geographical space. The proof instances consider 500 points corresponding
to the consumption nodes and 20 points equivalent to the substation. For each node, P is randomly generated,
with values between 0 and 1. However, @ is generated to fulfill electric power relationships, satisfying the
condition @ = P tan(@), where 6 is generated to satisfy the condition tan(6) < 0.8. The active power and the
reactive power of the substations are generated in the same way. Besides, the total power of the substations
must be greater than the sum of the power of the consumption nodes, including the losses.

In order to simulate the geographical location of the nodes, positions in the (z, y) axes are randomly

generated normalized values between 0 and 1. The type of conductor used in the simulations appears in Table 2.

Table 2. Type of conductor.

Conduetor | s 1075 | o *dam * 10-8 | Cent (A) | goii oy
1 1.0 1.6 0.08429 8
2 1.0 0.8 0.12644 9
3 0.9 0.5 0.14232 10
4 0.8 0.4 0.180721 12
5 0.8 0.8 0.21073 13
6 0.7 0.4 0.24624 17

In this paper, the calibration of the parameters is done based on the type of problem to be solved, not on
the size of the instance used to solve it. Therefore, the calibration of the parameters is made considering only
one instance of the problem. The calibration parameters that will be used throughout the rest of the paper are
given in Table 3.

The following parameters are initially studied: 30 to 50 individuals are used to characterize the population
size, while a crossover probability between 0.90 and 0.95 and a mutation probability between 0.01 and 0.22 are

used. The study results of the mutation are shown in Table 4. The tests indicate that the best mutation
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Table 3. Calibration parameters.

Parameters Value
Base energy (KVA) 1000

Available energy (KVA) | 21,000
Energy required (KVA) | 17,000

Operation time (years) | 10
Base voltage (KV) 12
Number of consumers 500
Numbers of substations | 20

performance is 0.16. In the final criterion, the number of generations is used, which is 500 in this case. For each
instance of the input data, the following was considered: 20 substations, base equal to 1000 KV, and operation
time of about 10 years. Figure 4 shows that the PGA starts with a good initial solution; then it moves away
from the initial solution and finally it converges to a good quality solution. The good initial solution is explained

because the initial population is generated with the Prim algorithm, which only considers construction costs.

Table 4. Results of the mutation.

Averages for mutation (dollars) | 0.01 0.02 0.04 0.06
Installation 167,895 169,553 187,395 170,235
Losses 39,757,425 | 18,641,845 | 6,069,982 | 189,316
Total 139,925,320 | 18,811,398 | 6,257,377 | 359,551
Averages for mutation (dollars) | 0.08 0.10 0.12 0.14
Installation 171,649 161,885 160,996 166,902
Losses 519,619 1,462,243 | 1,570,343 | 157,148
Total 691,268 1,624,128 | 1,731,339 | 324,050
Averages for mutation (dollars) | 0.16 0.18 0.2 0.22
Installation 157,098 166,722 157,471 156,557
Losses 121,282 2,839,201 | 215,340 | 1,684,931
Total 278,381 3,005,024 | 372,810 | 1,841,488

In order to validate the results obtained with the PGA, these results are compared with the lower bound.
The lower bound is obtained by applying the Prim algorithm to the construction costs of the network. Table 5
and Table 6 show the PGA parameters used in all instances, and Table 7 shows the comparison of the PGA
with the GA.

Table 5. Parameters of PGA.

Values for

(C35, C40, C45, C50)
Substation 20

% Crossover | 0.9

% Mutation | 0.16

Population 50

Generations | 500

Cores 8

Instance
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2250000k Variable
— C35000
—— C40000
C45000
2000000 + — C50000
1750000 -
1500000 Mm
0 100 200 300 400 500
Iterations
Figure 4. PGA trend in all instances.
Table 6. Results of PGA.
GKA - instance C35 C40 C45 C50
Consumers 35,000 40,000 45,000 50,000
Lower bound 970,306 1,035,929 | 1,098,224 | 1,160,860
Crosses 22,536 22,448 22,400 22,530
Mutations 15,106 15,074 15,224 15,166
Time (s) 13,558 16,798 23,955 28,630
Average solution cost $ | 1,456,958 | 1,500,802 | 1,544,645 | 16,978,444

The PGA scheme gets better solutions than the GA. In all instances, these improvements go from the
range 10.53% to 22.05%. However, the time used by the PGA is 23.75 times less than the GA.

Table 7. Comparison of PGA with GA.

Instance C35 C40 C45 C50
PGA result (dollars) | 1,456,958 | 1,500,802 | 1,544,645 | 1,697,844
GA result (dollars) 1,610,336 | 1,824,886 | 1,885,239 | 1,961,640

PGA vs. GA % 10.53 21.59 22.05 15.57
PGA time (h) 3.7 467 6.65 7.95
GA time (h) 87.28 110.90 | 127.00 | 142.23
PGA vs. GA 23.15 23.75 19.10 17.89

Parada et al. [17] used the Simulated Annealing Procedure tool in a network of 30,000 nodes, obtaining
an average solution cost of 1,648,478, while the same authors using the Tabu Search Procedure for the same

number of nodes obtained an average cost of 1,451,307. In this work with the PGA tool for the instance of
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35,000 nodes, an average solution cost of 1,456,958 is obtained, a value that is within the expected solution
range.

4. Conclusions

In this work, a PGA scheme is proposed in order to find the topology with the lowest transmission power and
the lowest construction cost of a large electric distribution network. The networks uses thousands nodes and
arcs, which generate a higher combinatorial problem with millions of feasible solutions. These combinatorial
problems have been solved using diverse metaheuristic techniques like bacterial foraging, simulated annealing,
bee colony, and genetic algorithms. Further, a new coding scheme is used for the PGA, which finds a solution at
22.05% lower cost than the same optimization used with the sequential GA. However, a considerable decrease is
noticeable in computational time. The proposed model shows that the code is efficient using the PGA; besides,

this model allows finding good solutions to large problems in relatively short processing times.
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