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Abstract: Screen content video coding has become an emerging research topic with the spread of applications such
as cloud gaming, screen/desktop virtualization, and mobile or external display interfacing. Screen content videos
have different features compared to conventional camcorder-captured scenes. In this work, a novel low bit-depth
representation-based motion estimation approach is proposed to exploit screen content specific features to improve
coding efficiency. The proposed approach is based on an adaptive selection of Gray-coded bit-planes in order to generate
low bit-depth representation of original screen content frames. The experimental results show that the motion estimation
performance of the proposed approach is significantly better compared to the methods in the same category for screen
content videos.
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1. Introduction
Today, screen content coding (SCC) has become an inevitable part of video coding applications. SCC is
accepted as an extension for High Efficiency Video Coding (HEVC) [1]. Applications such as cloud gaming,
screen/desktop visualization, and wireless display are examples of screen content. There are many differences
between conventional camcorder-captured videos and screen content. For example, screen content is usually
noiseless and includes sharp edges [2]. These characteristic features of screen content might be used to improve
the video coding efficiency. The computational complexity of the algorithms used for SCC should be low for
real-time applications like screen/desktop visualization.

The prediction mechanism is the core part of video compression approaches currently used. Intra-
and interprediction techniques are used to benefit from spatial and temporal redundancy available in the
video, respectively. There are different approaches in the literature for screen content coding to exploit these
redundancies.

In [2], a nontransform coding scheme based on separating screen content into color and structure com-
ponents was proposed for screen content. A transform skipping mode for screen content coding in HEVC was
proposed in [3] since the intracoding stage performs well for screen content. A color table and index map-based
coding scheme was presented in [4], which improves intraprediction accuracy by up to 26%.

A fast intrablock copy search approach was proposed in [5] as a block matching technique for intracoding.
Block matching was used to remove redundancy from repeating patterns. In [6], an intraprediction method was
∗Correspondence: urhano@kocaeli.edu.tr
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proposed where intraprediction directions are selected according to edge positions and directions. A hash-based
block matching method for screen content was proposed in [7] where both intra- and interprediction approaches
are employed.

The motion estimation (ME) process for interprediction is performed by searching the nonoverlapped
blocks in a search window defined in the reference frame(s). In full search (FS)-based ME, each block in the
current frame is searched by controlling all possible candidate locations within the search range. In order to
measure block similarity, it is possible to utilize the sum of squared differences (SSD) criterion between the
original and candidate block as in Eq. (1).

SSD (m,n) =

N−1∑
i=0

N−1∑
j=0

{
It (i, j)− It−1 (i+m, j + n)

}2
, −s ≤ mn ≤ s (1)

Here, It and It−1 denote the current and reference frames. In this equation (m,n) ,s , andN represent the
candidate motion vector location, search range, and block size, respectively. It might be possible to employ the
sum of absolute differences (SAD) criterion to eliminate the computational burden of square operation. Even
though these matching criteria provide the best motion estimation accuracy when used in combination with the
FS scheme, they are not suitable for real-time applications because of their computational complexity.

In the literature, there are many studies aiming to reduce the computational complexity of the ME
process. Three-step search [8], diamond search [9], and hexagonal search [10] approaches aim to alleviate the
computational complexity of FS by making use of some specific locations instead of all candidates as in the
FS approach. An advanced form of these approaches called the test zone search [11] is adopted in the HEVC
reference software for fast ME.

Another group of ME approaches aim to reduce the computational complexity of matching criterion
computation employing a low bit-depth version of the original image frames for the block matching process. In
this case, matching computation can be carried out using simple Boolean operations efficiently compared to the
SSD computation in Eq. (1). Since the bit-depth of the input image is reduced, it might be possible to improve
parallelism to further speed up ME computations. These kinds of approaches initially convert full bit-depth
images to low bit-depth using a filtering or selection mechanism. Next, the motion estimation is carried out
using these low bit-depth resolution images at all candidate locations using the number of nonmatching points
(NNMP) criterion. The effectiveness of hardware implementation of these approaches is shown in the literature
compared to conventional SAD or SSD.

One-bit transform-based block motion estimation [12] (1BT), multiplication-free one-bit transform-based
block motion estimation [13] (MF-1BT), constrained one-bit transform-based block motion estimation (C-1BT)
[14], truncated Gray-coded bit-plane matching (T-GCBPM) [15], selective Gray-coded bit-plane matching-based
motion estimation (SGCME) [16], and fast binary motion estimation for screen content (FBMESC) [17] are
examples of this kind of approaches. To our knowledge, there is only one approach (i.e. [17]) that aims to
employ a low bit-depth representation-based method for SCC.

In this work, we present a novel low bit-depth representation-based ME method specifically designed for
screen content. The proposed approach employs Gray-coded bit-planes according to the level of details in the
planes and constructs only 1-bit depth images for matching computation. At the matching stage, bit-planes are
weighted according to their significance to improve the ME accuracy.

In the next section, conventional low-bit depth representation-based approaches are introduced. The
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details of the proposed approach are presented in Section 3. In Section 4, experimental results are provided,
and conclusions are given in Section 5.

2. Low bit-depth-based motion estimation approaches
In low bit-depth representation-based ME approaches, initially the full bit-depth original image frames are
converted to low bit-depth images using transforms such 1-BT [12] or MF-1BT [13]. For example, the 1BT-
based ME approach presented in [12] initially applies a multiband-pass filter to input frames. The filter kernel
is given in Eq. (2). Next, the binary image is constructed by comparing the original frame with the filtered
frame as in Eq. (3).

K (i, j) =

{
1
25 ← i, j ∈ [1, 4, 8, 12, 1]

0← i, j /∈ [1, 4, 8, 12, 16]
(2)

B(ij)

{
1← I(i, j) ≥ If (i, j)

0← I(i, j) < If (i, j)
(3)

Here, I and If denote original and filtered frames, respectively. A sample image from the “Big Bunny” sequence
with its filtered and binary versions are shown in Figures 1a, 1b, and 1c, respectively. After the binarization
operation, the current frame is divided into nonoverlapping blocks and each block is searched within a search
window in reference frame(s). Conventionally, NNMP is used as a matching criterion and is computed as follows.

(a) (b) (c)

Figure 1. a) Sample frame of the Big Bunny Sequence, b) filtered frame using the kernel in Eq. (3), c) obtained frame
using Eq. (4) (1BT).

NNMP (m,n) =

N−1∑
i=0

N−1∑
j=0

{
Bt (i, j)⊕Bt−1 (i+m, j + n)

}
(4)

Here, B and Bt−1 are the low bit-depth version of the current and reference frame. In Eq. (4), ⊕ denotes
Boolean EX-OR operation. This computation is performed at all candidate motion vectors positions in the
search window. The position providing the smallest NNMP is decided as the motion vector of the current block
[12–14].

One of the major drawbacks of 1BT and MF-1BT-based ME approaches is that pixels that have similar
intensity values might be assigned to different categories during the binarization process in Eq. (3). This
unwanted effect might reduce motion estimation accuracy. In order to alleviate this problem, a constraint mask
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was introduced in [14] where pixels close in value are discarded in the matching. For this purpose, a constraint
mask (CM) is generated as in Eq. (5) by making use of simple thresholding.

CM(ij)

{
1← |I(i, j) ≥ If (i, j)| ≥ T
0← |I(i, j) < If (i, j)| < T

(5)

In Eq. (5), T denotes a fixed threshold value. The matching criterion in C-1BT is constructed as in Eq. (6) to
exclude unreliable pixels from the computation by the help of CM.

CNNMP (m,n) =

N−1∑
i=0

N−1∑
j=0

{ [
CM t (i, j) ||CM t−1 (i+m, j + n)

]
· Bt (i, j)⊕Bt−1 (i+m, j + n)

] (6)

Here, || shows Boolean OR whereas · denotes Boolean AND operation.
In general, 1BT, MF-1BT, and C-1BT-based ME approaches require computationally complex filtering

operation for binarization. Thus, investigation of computationally lightweight binarization approaches is impor-
tant to fully benefit from the advantages of EX-OR-based matching criteria computations in the ME process.
The following approaches essentially aim to obtain the binary representation of the original image frames at
lower complexity.

In [15], the T-GCBPM approach was presented. After converting binary values to Gray-coded values
via simple EX-OR based operations a truncation is performed to use a few of the most significant bits. The
matching criterion for this approach is computed as follows.

MC (m,n) =

N−1∑
i=0

N−1∑
j=0

K−1∑
p=NTB

2k−NTB×
{
GCt

p (i, j)⊕GCt−1
p (i+m, j + n)

}
(7)

Here, GC is the Gray-coded frame, p is the bit-plane number, K is the total number of bit-planes, and NTB is
the number of truncated bit-planes. For example, if NTB is set to 5, this means that only the most significant
3 bit-planes will be used in matching criterion computation. In [18], a single bit-plane was generated using four
bit-planes by placing them in regular order and NNMP was utilized as the matching criterion for this method.
This approach was designed for global motion estimation and is not suitable for local motion estimation.

In [16], a combination of the methods proposed in [15] and [18] was presented where the most significant
three bit-planes are placed as in Figure 2 to construct the binary image. In this way, strong parts of these
approaches are used together to improve ME accuracy and reduce computational complexity. It is important to
note that during the NNMP computation in [16] and [18], the same selection approach is applied to all candidate
locations independently.

Recently, a novel approach to applying low bit-depth representation-based ME methods to screen content
videos was presented in [17]. This method aims to choose a single bit-plane for each reference block according
to the level of details in that bit-plane using natural binary codes. For this purpose, initially, edge maps are
generated for each bit-plane starting from higher bit-planes. If there is not enough detail in the current bit-plane,
then the next bit-plane is investigated. The edge maps are constructed as follows.

Mp (i, j) =

{
1← ∃ (m,n) ∈ {(±1, 0) , (±1, 0)} , BCp(i, j)⊕BCp(i+m, j + n)

0← otherwise
(8)
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Figure 2. Bit-plane selection approach for a 16 × 16 block presented in [16].

Here, BC is the binarily coded frame, M is the edge map, and p is the bit-plane number. If the number
of 1s in M is higher than a fixed threshold then this bit-plane is considered as reliable enough for matching
computation. Otherwise, the same procedure is repeated for subsequent bit-planes until the number of 1s in
that bit-plane is higher than the threshold. In Figure 3 a sample frame is provided from the “Big Bunny”
sequence (Figure 3a) together with the constructed binary version of this frame (Figure 3b) and an illustration
that shows which bit-plane is selected (Figure 3c) according to the edge map-based approach in [17]. As seen
from this figure, lower bit-planes are chosen when the block is homogeneous, which in the end may reduce ME
performance since these bit-planes generally contain noisy data.

(a) (b) (c)

Figure 3. a) Sample frame of the Big Bunny sequence, b) constructed frame with selected bit-planes of blocks using
the method in [17], c) selected bit-planes for blocks.

3. Proposed binarization approach
The proposed approach introduces the following novelties: adaptive selection of Gray-coded bit-planes for
matching according to the edge map generated from the 7th Gray-coded bit-plane and weighted utilization of
each Gray-coded bit-plane in matching computation. These novelties not only improve ME accuracy compared
to the methods in [16] and [17], but also significantly reduce the computation load of the method in [17].

The method in [16] combines one of the three most significant Gray-coded bit-planes as in Figure 2
for each pixel position to generate a single binary image for matching criterion computation. Next, NNMP
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computation is carried out to decide motion vectors. On the other hand, the binarization approach presented
in [17] aims to improve ME accuracy of previous low bit-depth-based ME approaches by separately selecting a
single binary coded bit-plane for each block. However, our experiments show that this block-based binarization
approach is not able to decide the correct bit-plane in some circumstances. Thus, its performance may be
degraded because of the incorrect selection of bit-planes.

In this work, we aim to benefit from strong parts of the methods presented in [16] and [17] and improve
them in a novel way. The advantage of using Gray-coded bit-planes compared to natural binarily coded ones
was discussed in [15,16,19]. In general, Gray codes have a single digit change in successive pixel intensity values
and thus they are more suitable for matching computation. Hence, we prefer to utilize Gray-coded bit-planes
in our method.

It is important to decide to the number of bit-planes that will be included in matching computation. The
method in [16] employs only the most significant three bit-planes, as in Figure 2, whereas in [17] it is possible to
employ one of the available bit-planes according to the edge map. Figures 4a–4h show all Gray-coded bit-planes
for “Big Bug Bunny” and “Google Maps” sequences. As seen from Figure 4a and Figure 4e, the most significant
bit-planes may not contain reliable information for matching by themselves, especially for the flat image regions
where neighbor pixels have the same binary values and thus there is not any discriminating structure for block
matching in higher bit-planes, whereas lower bit-planes may include some noise like binarization effect in certain
regions, as in Figure 4d. However, as shown in [15], the most significant four bit-planes generally provide enough
information for form matching.

(a) GC7  (b) GC6  (c) CG5  (d) CG4  

(e) GC7  (f) GC6  (g) GC5  (h) GC4  

Figure 4. Gray-coded bit-planes of the sample frames of Big Bunny. GC7, GC6, GC5, GC4 of a) - d) “Big Bug Bunny”
and e) - h) “Google Maps” sequences.

In this paper, we propose to select the Gray-coded bit-planes to be included in matching criterion
computation by simply checking the edge map at the most significant bit-plane only. If the number of 1s
in the edge map’s 7th Gray-coded bit-plane is higher than a fixed threshold (called Case-A), we decide to utilize
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only the most significant three bit-planes since the amount of details would be enough for matching in this case.
Otherwise, we include the 4th bit-plane in the generation of binary frames (Case-B) as shown in Figure 5 to
include more details in the constructed 1-bit depth image.

Figure 5. Bit-plane selection approach for a 16 × 16 block in the case of low amount of details in 7th Gray-coded
bit-plane.

Figure 6a shows the distribution of Case-A and Case-B for a sample image frame from the “Big Bunny”
sequences. As seen from Figure 6a, the proposed approach generally employs three bit-planes for textured
regions, whereas four bit-planes are utilized for smooth areas as expected. The constructed binary image of
Figure 3a by the proposed method is shown in Figure 6b. As seen from Figure 6b, the proposed approach is
able to capture all useful details for matching. The proposed method significantly reduces the computational
complexity originating from the edge map computations of the method in [17]. Note that the method in [17]
continues the edge map computation until it finds enough details at the evaluated bit-plane, which results in
higher computational complexity. Table 1 shows the utilization of bit-planes in the edge-map computation for
five different image sequences. As seen from this table, the proposed approach is able to reduce the computational
load at this stage by up to 82% and the average reduction in computational complexity is about 70%.

After the original image frame is converted into a binary image as in Figure 6b, the next step is to

Table 1. Number of edge map calculated blocks.

Selected plane Seq. BB Seq. ED Seq. CS Seq. PES Seq. GM Average
7 51,360 7134 33,255 82,837 4745 35,866
6 20,270 6388 22,004 10,929 7399 13,398
5 13,850 4222 18,420 13,398 25,930 15,164
4 8037 3110 4186 120,906 1919 27,632
3 1511 8215 1256 11,930 1346 4851
2 1583 10,561 63 0 1110 2663
1 985 14,649 13 0 292 3187
0 1404 44,771 3 0 36,459 16,527
Total 199,374 565,397 156,037 688,163 375,656 396,913
Proposed 99,000 99,000 79,200 240,000 79,200 119,288
Gain (%) 50.34 82.49 49.24 65.12 78.91 69.94
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(a) (b)

Figure 6. a) Case selection for a sample frame from the “Big Bunny” sequence, b) constructed binary form of Figure
3a by the proposed method.

compute matching between the blocks in the current frame and reference frames. In this paper, we propose
to utilize a novel matching criterion by weighting the Gray-coded bit-planes in single bit-depth binary images.
The proposed measure is called the weighted selective Gray-coded bit-plane matching criterion (WSGC-MC)
and is formulated as follows.

WSGC −MC (m,n) =

N−1∑
i=0

N−1∑
j=0

2p−s ×
{
SGt

p (i, j)⊕ SGt−1
p (i+m, j + n)

}
(9)

Here, SG is the constructed binary image frame by the proposed Gray-coded bit-plane selection mechanism
and 2p−s is the bit-plane-dependent weighting factor. Note that s is set to 4 or 5 according to our selection
mechanism. Our experiments reveal that weighting higher bit-planes results in better ME accuracy.

4. Experimental results

The accuracy of motion estimation approaches is often measured in terms of the peak signal to noise ratio
(PSNR) between the original and predicted frames. This approach is called as open-loop scheme and is generally
adopted in the comparison of ME methods. We employ five different screen content-type image sequences in
the experiments. These sequences are Big Bunny (BB - 250 frames) (352 × 288), Elephants Dream (ED - 250
frames) (352 × 288), Counter Strike (CS - 200 frames) (352 × 288), Pro Evolution Soccer 2013 (PES - 200
frames) (640 × 480), and Google Maps (GM - 200 frames) (352 × 288). Note that the CS, PES, and GM
sequences are generated by us in this work and all these sequences are available on the supplementary website
located at http://kule.kocaeli.edu.tr/ScreenContentSequences.

The Big Bunny sequence is generated from 3200th–3450th frames of the computer-generated “Big Buck
Bunny” computer-animated comedy film, where only small to medium local motions exist. The Elephants
Dream sequence is generated from the 6000th–6250th frames of the same-named computer-generated short film
and contains big local motions and truck right camera movement. The Counter Strike sequence is captured from
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a video game and includes dolly-in movement and thus substantial global motion effect. The Pro Evolution
Soccer 2013 sequence contains some significant camera movements together with the many small local motion
effects caused by players in the field. The Google Maps sequence is generated from the Google’s web map
service. This sequence contains truck, boom, and significant amounts of zoom effects.

The PSNR results of the 1BT [12], C-1BT [14], T-GCBPM [15], SGCME [16], and FBMESC [17] methods
together with the proposed method are given in Table 2. As seen from this table, the proposed method is not
only able to outperform existing 1-bit depth representation-based methods such as 1BT [12], SGCME [16], and
FBMESC [17] but also two-bit depth representation-based methods such as C-1BT [4] and T-GCBPM [15]
(NTB = 6). It is also important to note that the proposed method provides similar ME accuracy compared
to the NTB = 5 case where three separate bit-planes are used for matching at significantly higher complexity
compared to the proposed method. NTB = 4 gives the best overall ME accuracy since it employs four different
bit-planes in matching at the expense of higher computation load.

Table 2. PSNR performance (in dB) of different ME methods in open loop scheme.

Method Seq. BB Seq. ED Seq. CS Seq. PES Seq. GM Average
1BT [12] 34.63 29.00 24.37 29.83 30.29 29.62
C-1BT [14] 34.97 29.36 24.83 30.15 30.42 29.95
T-GCBPM [15] (NTB = 6) 35.59 30.78 25.10 29.81 27.50 29.76
T-GCBPM [15] (NTB = 5) 36.00 30.93 25.85 30.63 32.11 31.10
T-GCBPM [15] (NTB = 4) 36.00 30.90 25.91 31.33 32.60 31.35
SGCME [16] 35.69 30.56 25.55 30.47 31.47 30.75
FBMESC [17] 34.39 28.76 24.30 29.31 31.12 29.58
Proposed method 35.80 30.69 25.70 30.92 32.14 31.05

In order to evaluate the performance improvement achieved by the proposed method, we examine the
effect of both different bit-plane selection schemes on the SGCME approach and weighting mechanisms. Table
3 shows the PSNR performance of SGCME-based methods for different configurations. As seen from this table,
the inclusion of the 4th bit-plane in the SGCME-based method does not provide a constant performance gain
for the different types of image sequences. For example, when the 4th bit-plane is taken into account, ME
accuracy increases by about 0.3 dB for the Big Buck Bunny sequence, whereas it decreases by about 0.4 dB
for the Google Maps sequence. Based on these observations, it is clear that the inclusion of the 4th bit-plane
in the ME process has to be adaptive for the best possible ME performance. It is also clear from Table 3 that
the weighting mechanism improves the ME performance of both bit selection approaches. However, similar to
our previous observations, inclusion of the 4th bit-plane in the ME procedure for the weighted approach has
varying effects on different sequences. For example, the performance of the WSGCME (5-6-7) configuration
is better for Elephants Dream, whereas the WSGCME (4-5-6-7) configuration has better accuracy for Google
Maps. When we evaluate the effectiveness of the proposed adaptive bit-plane selection mechanism according to
the PSNR results in Table 3, it is clear that the proposed method is able to choose the appropriate bit-plane
combination for matching.

We also present the computational complexity of the compared ME methods in Table 4 with their
optimized software implementations. Note that the computational complexity of the FBMESC in [17] and the
proposed method is content-dependent. As seen from this table, the proposed method has significantly lower
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Table 3. PSNR performance (in dB) of different ME methods in open loop scheme.

Method Seq. BB Seq. ED Seq. CS Seq. PES Seq. GM Average
SGCME (5-6-7) [16] 35.69 30.56 25.55 30.47 31.47 30.75
SGCME (4-5-6-7) 35.40 30.30 25.38 30.91 31.86 30.77
WSGCME (5-6-7) 35.74 30.72 25.65 30.39 31.61 30.82
WSGCME (4-5-6-7) 35.76 30.59 25.66 30.93 32.11 31.01
Proposed method 35.80 30.69 25.70 30.92 32.14 31.05

transform stage (binarization) complexity compared to 1BT [12], C-1BT [14], and FBMESC [17] approaches.
In the matching stage, the proposed method has comparable computational complexity with the ME methods
with C-1BT [14] and SGCME [16] and significantly lower complexity compared to T-GCBPM [15].

Table 4. Average computational complexity of different ME methods (per pixel).

Method
Transform Matching

Add. Div. Shift Sub. Comp. Boolean Memory Boolean Shift Add. Comp. Memory
Op. access Op. access

1BT [12] 25 1 - - 1 - 28 1 - 1 - 2
C-1BT [14] 16 - 1 1 3 - 22 3 - 1 - 4
T-GCBPM [15]
(NTB = 5) - - 3 - - 3.666 6 3 2 3 - 6

SGCME [16] 1 - 1 2.666 1.666 3 1 - 1 2.666 2
FBMESC [17] 3.327 - 3.327 - 0.013 26.62 23.30 1 - 1 - 2
Proposed method 1 - 1 - 3.118 1.723 3.062 1 0.725 1 3.117 2

In general, when the ME performance of the proposed method given in Table 2 is assessed together with
the computational complexity given in Table 4, the efficiency of the proposed method becomes clear. Only the
T-GCBPM-based ME method in [15] with NTB = 5 and NTB = 4 has better PSNR performance compared to
the proposed method. However, the computational load is significantly higher in the matching stage.

In order to evaluate ME performance against the computational time of the ME methods, we implement
all ME methods in C++ at a similar optimization level. Next, we compute the total computational time taking
only the transform and matching times into consideration. Figure 7 illustrates average frame PSNR for five
test sequences used versus computational time required to perform transform and the matching part of motion
vector computation for a 16 × 16 block on a PC with Core i7 2.2 GHz processor and 16 GB of RAM. In this
graphic, the best method is expected to be located in the upper left corner, providing maximum ME accuracy
in the lowest computation time. As seen from Figure 7, even though the 1BT-based [12] ME approach has
the smallest computation time, its ME performance is the worst. On the other hand, T-GCBPM in [15] has
the best ME performance while having the worst computation time. The proposed method has a good balance
between ME accuracy and computation time, as seen in Figure 7.

Additionally, it is important to note that memory access requirements of the methods in [12,14,17] are
at least seven times higher compared to the proposed approach, which might be a vital disadvantage when
hardware implementation of these methods is considered.
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Figure 7. ME performance versus computational time.

5. Conclusions
In this work, a novel low bit-depth representation-based ME approach is presented for screen content coding. An
edge map is generated from the most significant Gray-coded bit-plane, which is used to decide the Gray-coded
bit-planes to be included in the matching criterion computation. Additionally, the proposed weighted selective
Gray-coded bit-plane matching criterion enables better ME accuracy compared to the existing methods in the
literature in terms of PSNR by providing lower computational complexity. It is important to note that the
proposed approach can be implemented efficiently in single instruction multiple data (SIMD) infrastructures
and possible hardware implementations and thus might enable real-time processing.
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