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Abstract: Dynamic security assessment of a large power system operating over a wide range of conditions requires an
intensive computation for evaluating the system’s transient stability against a large number of contingencies. In this
study, we investigate the application of multilabel learning for improving training and prediction time, along with the
prediction accuracy, of neural networks for online transient stability assessment of power systems. We introduce a new
multilabel learning method, which uses a contingency clustering step to learn similar contingencies together in the same
multilabel multilayer perceptron. Experimental results on two different power systems demonstrate improved accuracy,
as well as significant reduction in both training and testing time.
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1. Introduction
Dynamic security assessment (DSA) of large interconnected power systems is a challenging task, often requiring
an intensive computation power for both off-line and online studies. Besides being important in various steps
of power system planning, a fast, accurate, and extensive DSA of possible operating points has become vital
for planning operations as well as real-time operations. DSA also plays a decisive role in real-time security
assessment, especially when power systems are operated under stressed conditions.

Maintaining an acceptable dynamic performance (transient stability) associated with rotor angle dy-
namics under credible contingencies is one of the defining criteria for the dynamic security of power systems.
However, a reliable transient stability assessment (TSA) of an interconnected power system operating over a
wide range of conditions against a large number of contingencies could usually be complex or computationally
burdensome.

A number of different approaches have been proposed for the online TSA of power systems [1, 2].
Numerical integration algorithms for solving the differential equations associated with power system dynamics
are mostly used for off-line studies and are regarded as computationally intensive for online applications [3].
Alternatively, direct methods [4] using Lyapunov functions can be applied, but they become inefficient when
complex models need to be adopted. Pattern recognition methods, such as artificial neural networks (ANNs) and
decision trees, can also be used to predict the security status of the system, as they establish a mapping between
∗Correspondence: gencis@itu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
2661



BEYRANVAND et al./Turk J Elec Eng & Comp Sci

the operating points (OPs) and the security of the system operating at them [5]. Most of the computation
required for pattern recognition methods is done off-line for generating a proper dataset, and then training
a model for online predictions. In this study, we focus on the application of a multilayer perceptron (MLP)
model, a specific subclass of ANNs, which enables fast online prediction of the security status of a large power
system. This approach can effectively be used to predict the security of the system either operating at a single
OP for the assessment of the current status, or a large number of possible OPs for an assessment to be used in
developing preventive control actions.

Contrary to the traditional single-label learning paradigm, in multilabel learning problem setup, each
input instance is associated with multiple output variables [6]. Therefore, at the test time, the task is to predict
all these output variables from one input instance. An approach based on multiway decision tree was used to
assess power system operation security for multiple contingencies in [7]. Power system security assessment with
multiclass classification was performed using multiclass support vector machine in [8].

Depending on the time frame and operating condition(s) of the system within the time frame, a large
number of contingencies can be critical and therefore worth being monitored, as well as taken into consideration
for the actions for maintaining the security of the system. The security assessment of the system for a large
number of contingencies could also become inevitable due to the fact that any possible control action to be taken
for a set of contingencies could make some other credible contingencies critical. Therefore, whether the system
is considered as operating at a single OP or projected to be operating over a range of OPs within the time frame
of interest, it is important to be able to assess the system’s security for a batch of multiple contingencies.

In large power systems, dedicating one MLP for each credible contingency [9–12] imposes two difficulties:
the size of the dataset required to properly train all the MLPs and the required time to train multiple MLPs.
We propose to incorporate multilabel learning formulation into the design of the MLP-based TSA to address
these difficulties. To the best of our knowledge, there is no prior work on implementation of multilabel MLPs
(MLMLP) for TSA of power systems.

In the TSA problem of interest, each OP characterizes a prefault state of the power system, and the
dynamic security of the system operating at the OP is to be predicted for a number of contingencies. Especially
if contingencies are close to each other in the network, their security might be correlated. This fact can be
utilized to learn the security assessment for multiple contingencies at the same time and hence reduce the
number of MLPs required for prediction. In MLMLP [6], one MLP can be formulated such that it concurrently
learns the mapping between OPs and arbitrary number of outputs.

Success of multilabel learning is affected by the degree of correlation between the labels [13]. In order to
investigate the effect of label correlations on MLMLP, we first clustered contingencies using various clustering
methods. We investigated the effect of using an MLMLP for each cluster instead of one MLMLP for all the
labels. We measured the effect of clustering on training and prediction time, along with prediction accuracy. By
employing MLMLPs and cluster of contingencies, we managed to improve the accuracy of prediction, without
increasing the size of the dataset. In addition, we reduced the training and prediction time considerably.

To summarize, the novel contributions of this paper are as follows: (a) the use of multilabel MLPs for the
TSA problem, (b) comparison of both training and testing time and accuracy performance of MLMLP to an
MLP for each label, (c) instead of a single MLMLP for all labels or a single MLP for each label, using multiple
MLMLPs on adaptively determined clusters of correlated labels.

The rest of the paper is organized as follows: In Section 2, we review the multilabel learning and clustering
methods and introduce the notation used in the paper. Section 3 introduces the method we developed for the
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use of MLMLPs for the TSA problem. Section 4 contains the experimental methodology and results, and the
conclusions are given in Section 5.

2. Background

2.1. Multilabel learning

Let X = Rd denote the d-dimensional space of OPs. For the single-label learning problem setup, each input
instance xi ∈ X is associated with a single output yi ∈ Y , where Y = R(orZ) . The dataset containing N

instances is defined as {(xi, yi)|1 ≤ i ≤ N} . In the multilabel problem setup the output space is defined as
(Y 1,…, Y K) ∈ RK , where K is the number of contingencies for which we predict the security state. An N

instance dataset for the multilabel problem is defined as {(xi, (y
1
i ,…, yKi ))|1 ≤ i ≤ N} . Clearly, the single-label

learning problem is a subclass of multilabel learning, where K = 1 .
Multilabel formulation allows exploitation of the correlation (or statistical dependency) of output variables

(y11 ,…, yK1 ) to facilitate the learning process [13]. This property has been noted and utilized by researchers in
domains such as web mining, information retrieval, text categorization, and bioinformatics [13].

Multilabel learning approaches can be categorized into problem transformation methods and algorithm
adaptation methods [13]. The former category of approaches transforms the multilabel learning problem into
simpler learning algorithms, transforming it into binary relevance task [14], binary classification task [15], label
ranking task [16], and multiclass classification task. The second category of approaches that we employed in
this study adapt the popular learning algorithms for the multilabel task. Multilabel KNN [17], multilabel
decision trees [18], and rank-SVM [19] are examples of such approaches. In this study, we adopted the MLMLP
algorithms proposed in [6] for predicting power system security.

An MLP is a general function estimator with the form ŷ = f(W,x) , where x is the vector of inputs, ŷ is
the prediction that the MLP produces for input instances, and W represents the parameters of the MLP that
should be adapted to the dataset to minimize the discrepancy between y and ŷ . We used a single-hidden-layer
MLP estimator in this study, so the parameters of the MLP function can be shown as W = (W Input,WHidden) ,
where W Input is the matrix of weights connecting the input layer and hidden layer, and WHidden is the matrix
of weights connecting the hidden layer and output layer. Figure 1 shows the diagram of an MLMLP. Note that
when the output layer predicts only one of the yi ’s, the MLP and the learning problem will have a single label.

The critical step in learning multiple labels concurrently using an MLMLP is to correctly formulate a
loss function to include the prediction error of multiple labels. In training MLPs, the weights of the network,
W, are modified by back-propagation method [20] so that the loss function is minimized. Therefore, when the
loss function includes errors of multiple labels, the weights of the MLMLP will adapt to minimize the prediction
error of all the labels. We propose to use a loss function of the form,

E =

K∑
l=1

Ek, (1)

where Ek is the prediction error for yk . Ek can be defined as cross-entropy error for classification task and
square error for regression task. Since we are dealing with the security classification task, we use cross-entropy
error,

2663



BEYRANVAND et al./Turk J Elec Eng & Comp Sci

Input 
Layer 

Hidden 
Layer 

Output  
Layer 

X
 

y 1 
y K 

Figure 1. Multilabel MLP architecture.

Ek = − 1

N

N∑
i=1

ŷki ln yki + (1− yki ) ln(1− ŷki ). (2)

We expect the information gathered from all outputs in the loss function to help with the generalization of the
learned mapping on unseen OPs at the test time, because having multiple related output variables to predict
may help to reveal the underlying structure of the data and the input-output relationship faster. This can be
investigated by comparing the correlations between labels as well as the prediction errors of contingencies of a
single-label MLP with the errors of the approaches using MLMLP.

In addition, when one MLP is used for each contingency, the input to hidden unit weights W Input will
need to be learned for each label separately. On the other hand, in the MLMLP setting, especially if labels are
correlated, parts of the learned W Input could be shared between labels, reducing the training and testing time
of the MLMLP.

2.2. Clustering

The improvement of prediction accuracy when using a single MLMLP for all contingencies, instead of one
MLP per contingency, raises the question of whether there is an intermediate number of MLMLPs, more than
one and less than the number of contingencies, which yields the best prediction accuracy. To the best of our
knowledge, there is no prior investigation of this hypothesis. Therefore, here we employed clustering methods to
form subsets of contingencies, and then we trained an MLMLP for each subset. In other words, we determined
the most similar contingencies based on a similarity measure, and used them as outputs of one MLMLP. We
experimented with different similarity measures and investigated the quality of prediction using the resulting
clusters.

Clustering algorithms aim to form coherent groups of input patterns. In this study, we used agglomerative
hierarchical clustering [21] method to form subsets of similar contingencies. Hierarchical clustering groups data
points that are most similar to each other in an incremental manner. Initially, we assign each contingency to
a separate cluster, thus, we have as many clusters as the number of labels. Then, incrementally, each pair of
clusters that are most similar are merged into a single cluster. If the cluster has more than one contingency,
the average similarity (average linkage) between corresponding two cluster members is used as the similarity
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measure [22]. The merge operation continues until a stopping criterion, such as a certain number of clusters, or
a level of average within cluster similarity measure is met. Here, we stop when the desired number of clusters
have been formed.

The similarity measure used impacts the quality of the clusters obtained. Here, we utilized two widely used
similarity measures: symmetric uncertainty (SU) and Pearson correlation coefficient (PCC). Pearson correlation
coefficient is a measure of the strength of linear correlation of two variables [23]. Let Ck = (yk1 ,…, ykN ) represent

the column vector of all observed values of contingency k in the dataset. Let yk = 1
N

∑N
i=1 y

k
i denote the

average of all observed values for contingency k. For two different contingencies k1 and k2 , and a dataset of
size N , the PCC between k1 and k2 is defined as

PCC(Ck1 , Ck2) =

∑N
i=1(y

k1
i − ȳk1)(yk2

i − ȳk2)√∑N
i=1(y

k1
i − ȳk1)2

√∑N
i=1(y

k2
i − ȳk2)2

. (3)

PCC takes values in the range [−1, 1] . Although it can capture the linear relationships between variables, it
cannot capture the nonlinear dependencies between them.

Unlike PCC, symmetric uncertainty can capture the nonlinear correlations between two variables [24]
and therefore could be a more useful measure of similarity when nonlinear dependencies exist in the dataset.
Symmetric uncertainty between two contingencies k1 and k2 is defined as

SU(Ck1 , Ck2) = 2
MI(Ck1 , Ck2)

H(Ck1) +H(Ck2)
, (4)

where mutual information, MI, is defined as MI = H(Ck1) +H(Ck2)−H(Ck1 , Ck2) , and H(.) is the entropy
function [24]. The use of marginal and joint probability distributions of variables, as opposed to just the
divergence from the mean as in the case of the PCC, allows MI to capture nonlinear relationships between
variables. In Eq. (4), normalization by the entropy of both variables allows the comparison of similarities
between different pairs of contingencies.

3. Methodology

The method of multilabel learning for online TSA, which is the main contribution of this paper, can be
suggested as an integral part of an inclusive methodology covering the tasks of both security assessment and
enhancement for transient stability, see Figure 2. In this methodology, the power system is monitored through
the measurements and a state estimator to characterize the current steady state of the system evolving in time,
t . The security of the current OP is to be predicted by means of a number of neural networks (ANNs in general,
and MLPs and MLMLPs in particular). When the time for periodical update of the ANNs is reached, e.g.,
T = 1 hour, or if an unexpected change, e.g., tripping of a critical line or generator occurs in the system, the
whole process of building or updating the TSA tool is performed.

In order to perform ANN training and testing, a dataset covering all the OPs that are realizable in
the next period of time, T , needs to be created. A contingency scan together with a series of time-domain
simulations are performed to identify the critical contingencies and the security of the system operating at
the OPs against these contingencies. Thus, a dataset is formed to train and test the ANNs. Followed by the
generation of the dataset, the procedure of building or updating the ANNs, which are multilabel multilayer
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Figure 2. A general framework for TSA and enhancement, including Multilabel MLPs (processes studied in this paper
are shaded).

perceptrons, is performed. The ANNs are updated periodically if the previously built ones perform poorly for
the recently generated dataset, or if some other new contingencies become critical.

Once the neural networks are built, they can be used to predict the security of an operating point against
any critical contingency. The operating point at which the system’s security is predicted can either represent
the current state of the system or a candidate solution of an optimization algorithm. Thus, the classification
of the security of the current OP can be done for a real-time TSA, while the same ANNs can also be used for
predicting the security of the candidate solutions of the optimization algorithms in which a fast online or off-line
TSA for a large number of OPs is required.
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The steps of the experiment pipeline include generating the dataset, clustering the contingencies into a
predefined number of clusters, lmax , training the predictor, and finally evaluating the prediction performance.
Each step is described in the following subsections.

3.1. TSA dataset generation

An important step in data-driven TSA is to collect enough instances in a dataset so that the general behavior of
the power system is properly represented. The generated dataset should include the whole space of OPs at which
the system could be operated in the time frame of interest for TSA. Considering the framework in Figure 2,
if the security assessment of the continuously changing OP is to be performed, then the dataset could involve
only the projected conditions that are shaped by optimal power flows. If, however, the security assessment of
the candidate OPs that are produced by some optimization algorithms for preventive or corrective controls is
required, then the dataset must also cover all other feasible OPs that are not optimal.

In this study, for a given power system, we created a large set of steady-state OPs, using power
flow solutions, for different settings of generation schedule and distributions of load demand. Thus, the
generated dataset covers all the realizable OPs that can be suggested by a preventive control, such as generation
rescheduling or load curtailment. A contingency scan was performed to identify the critical contingencies
resulting in transient instabilities when the system is operated over the range of OPs considered in the dataset.
Time-domain simulations were carried out under credible contingencies to distinguish the critical ones, against
which the system is insecure while it is operated at any of the OPs, and to determine the security of the system
operating at all OPs against any of the critical contingencies.

The problem of TSA can be formulated as either a regression or a classification problem. Here, we opt
for the latter formulation. In the classification task, each OP included in the dataset is associated with the
system’s security against all of the critical contingencies.

The security of the system operating at an OP against a critical contingency is translated into a
{secure,insecure} set as the following angle stability index η is calculated,

η =
360− δmax

360 + δmax
× 100, (5)

where δmax is the maximum postcontingency separation angle, in degrees, of any two generators. We label the
corresponding OP as secure if and only if η is positive and as insecure otherwise. Although in this paper we
work on a classification problem, we also computed and stored the critical clearing time values in order to use
them for label similarity computation, as explained in Section 3.2.

Each operating point i can be represented by an input vector xi which contains the steady state values
from the power system. On the other hand, the output vector yi represents the contingencies whose security
status is calculated.

3.2. Contingency (label) clustering

We used agglomerative clustering to group similar contingencies. We used three different methods for cluster
assignment.The first cluster assignment was done by using Pearson correlation coefficient (PCC) as the similarity
measure. As mentioned before, the dataset contains the continuous values for contingencies, which we map to
{secure,insecure} set. However, for calculating the PCC values, we used the continuous critical clearing time
values.
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The second clustering assignment was performed using the symmetric uncertainty (SU) similarity. We
calculated the similarity of contingencies using symmetric uncertainty and performed cluster assignment for
each contingency and cluster size.

The final cluster assignment was done randomly. We randomly assigned cluster labels to each instance
of dataset such that the number of contingencies in each cluster stays roughly the same. The random cluster
assignment serves the purpose of a control experiment. By comparing the final results of different clustering as-
signment with random assignment, we can isolate accidental improvements and make sure that the performance
improvements are, in fact, the result of proper cluster assignment.

The result of the clustering step is a cluster label for each contingency. We define each cluster as
bl = {yk|k ≤ K} for l ≤ lmax . Note that any contingency can only be a member of a single cluster. In other

words, bl ’s are mutually exclusive,
∪lmax

l=1 bl = (Y 1,…, Y K)and
∩lmax

l=1 bl = ∅ .
Our purpose was to compare the performance of multilabel learning with that of the single-label learning.

First, we chose lmax equal to the number of contingencies, where each cluster contains one contingency, and
created the single-label learning setup. Then, we decreased lmax until lmax = 1 , which corresponds to multilabel
learning on all the labels.

3.3. Training the MLMLP
The general architecture of the MLMLP that we implemented in our experiments is presented in Figure 1. We
performed experiments for different values of lmax . Concretely, at each step of experiment, we trained lmax for
different neural networks and for each of them the set of output variables to predict is given by bl . If bl contains
one contingency, the neural network is a simple MLP, and for bl containing more than one contingency, it is an
MLMLP. Note that all of the neural networks, either MLP or MLMLP, use the whole set of N instances in the
dataset for training, predicting only the subset of contingencies that is specified by bl .

We limited the structure of the neural network to have only one hidden layer and used the loss specified
in Eq. (1) augmented with regularization to train the network. Using regularization is a common practice to
avoid overfitting in neural networks. The resulting loss function can be expressed as

loss = E + λ ||W ||22, (6)

where λ is the regularization parameter. For training the neural network, we applied Nesterov’s accelerated
gradient method [25] to adapt weights of the neural network. The procedure of training includes calculating the
prediction of the network output ŷ for all instances, calculating the prediction loss using Eq. (6), calculating
the gradient loss with respect to weights W by back-propagation, and finally updating the weights using the
calculated gradient and Nesterov’s accelerated gradient method.

4. Simulations and results
4.1. Test systems
In order to demonstrate the effectiveness of the proposed methodology, two different test systems operating at
stressed conditions leading to a large number of critical contingencies are chosen: (a) the U.S. Northeastern and
Ontario 16-generator-68-bus system [26], (b) the WSCC 37–generator-127-bus system [27], see Figures 3 and 4.

For the two test systems, first, we started with generating the datasets covering a range of 1600 operating
points at which the systems could be operated, as the feasible power (real and reactive) injections by the
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Figure 3. U.S. Northeastern and Ontario 16-generator-68-bus system.

generators and loads are randomly changed and their respective power flow solutions are obtained. A contingency
scan was also performed for each system operating over the range of OPs considered. The credible contingencies
include all the possible three-phase bus faults cleared by tripping of a connected line or a transformer in the
network. Among them, we distinguished the critical contingencies resulting in unstable rotor angle deviations
when the systems are operated over the range of OPs projected. For the 68-bus test system, 48 different
contingencies were found critical, whereas 58 contingencies were found critical for the 127-bus system.

Thus, the datasets that are composed of the OPs and the systems’ security against each of the critical
contingency were generated for the two test systems. They were obtained by first solving the power flow solution
for each OP, and then performing time-domain simulation for each contingency to determine the security of the
system using a power systems simulation software, DSATools [28]. The instances in the dataset cover a range
of OPs, each of which is represented by the prefault bus voltages (magnitudes and angles), power (real and
reactive) injections, and power (real and reactive) flows through the branches of the network.

2669



BEYRANVAND et al./Turk J Elec Eng & Comp Sci

2

8

5

3

1

26

9

12

19

20

28

93

91

33

29

27

22

53
56

52

50

41

48

55

54

40
38

37

39

36

35

34

30

42

45

43

44 47 46

3132

18

16

14

21
13

15

25

11

10

7

24

6 4

23

96 95

92

94

97

99

98

100

101

90

102

89

86
85

87
83

88

17

123
126

119

124 125

12782

121
65

84

77

68

78

71
69

72

73

74

66

67
70

63

64

80
81

79

103

75 76

104

122

118117

120

116

115

114

113
112

110

111

109108

106

107

105

61 62

57

58

59 60

51

G

G

G

G G

G

G

G

G

G G G

G
G

G
G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

Figure 4. WSCC 37–generator-127-bus system.

4.2. Training and evaluation

The datasets we generated, Dataset-A including 4800 instances and Dataset-B including 1600 instances, are
based on the 68-bus system and the 127-bus system, respectively. 20 percent of the instances was reserved for
final performance evaluation and was used in any step of training. We used the remaining 80 percent of the
data for training and 5-fold cross-validation. In order to avoid overfitting while training the neural network,
we used early stopping on cross-validation error. We repeated the experiments for 1, 5, 10, 20, 30, and 40
clusters/MLPs.

We considered three main performance measures to compare multilabel and single-label learning paradigms,
i.e., prediction error, training time, and testing time. Training/testing error can be calculated as tc

Nc
, where

tc is the number of incorrectly predicted instances and Nc is the number of all instances being considered. In
a multilabel setting, the error for each label is computed separately, and then the average is calculated and
reported as the training/test error. Training and testing time, on the other hand, are recorded directly.

In order to set hyperparameters, regularization parameter λ and the number of hidden units of the neural
network, we used grid search and 5-fold cross-validation. We randomly split the training samples into 5 folds of
the same size. Afterwards, we used 4 subsets to train the neural network, either MLMLP or MLP, on different
values of λ and number of hidden units. We repeated the same process for each fold and finally chose the
combination of the λ and number of hidden units that yielded the lowest average error across all 5 folds. The
final reported performance of the predictor was computed by using the whole training set for training the neural
network, with the chosen hyperparameters, and measuring the prediction on the hold-out test set.

Figure 5 shows the test results for both datasets. In these figures, the dashed line shows the average
error achieved by training only one MLMLP for predicting all contingencies concurrently. The solid line shows
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the average error when training an MLP for each contingency. The horizontal axis shows the number of
clusters/MLPs used.
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Figure 5. Test errors for Dataset-A(left) and Dataset-B(right).

The first observation for both datasets is that, using one MLMLP for prediction, the average error
has reduced across all contingencies. The advantage of the MLMLP approach has been more significant for
Dataset-A.

In Figure 5, the test errors are reduced in general, as smaller number of clusters (and hence more labels
together in each MLMLP) are used. Clustering contingencies and then using MLMLPs for these clusters results
in smaller test error than using a single MLMLP for both datasets. Using 5 or 10 MLMLPs for Dataset-A and
using 5 to 20 MLMLPs for Dataset-B is better than using a single MLMLP, or as many MLPs as the number
of contingencies. In both cases, as long as the number of clusters is small enough, even random clustering
of contingencies results in better performance than MLPs. Among the clustering methods, SU is better than
PCC for small number of clusters. Based on the average test error over all contingencies, we can conclude that
any sort of MLMLP, as long as the number of contingency clusters is within a certain range, will result in an
improved test error.

Figures 6 and 7 show the individual contingencies’ error analysis for random and SU-based clustering for
Datasets A and B. In both cases of clustering, the best error observed for each contingency tends to appear
in smaller number of clusters, and mostly, as expected, on the exact number of clusters that yields the best
average error for the dataset. When the best cluster numbers for random and SU-based contingency clustering
are considered, in general, SU-based clustering of contingencies results in smaller test error for smaller number
of clusters. SU can identify nonlinear dependencies and bring similar contingencies together, hence they can
learn from each other’s labels when they are included in the same MLMLP.

The training and testing time is one of the most important factors in online TSA. In addition to prediction
error improvement, using multilabel learning also improves the time for training and testing. Figure 8 compares
test and training time for multilabel and single-label learning cases for Dataset-A. Each point on the figure
shows one of the 5 experiments performed on the dataset. By decreasing the number of clusters, training time
was reduced by 9 and 8 folds for Datasets A and B, respectively. Similarly, the testing time was also reduced
by approximately 30 times.
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Figure 6. The number of the best (circle) and the worst (triangle) clusters for Dataset-A.
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Figure 7. The number of the best (circle) and the worst (triangle) clusters for Dataset-B.

The results of our experiments showed that incorporating multilabel learning paradigm for online TSA
leads to both improvement of prediction error and reduction of the time needed for training and testing. Our
experiments also showed that grouping contingencies by means of contingency clustering, and then training
an MLMLP on each contingency cluster results in even better test errors than using one MLMLP for all
contingencies.

2672



BEYRANVAND et al./Turk J Elec Eng & Comp Sci

0 10 20 30 40 50
Number of MLPs

a b

0

5

10

15

20

25

30

35

Sp
ee

d
 u

p
 o

f 
te

st
 p

h
as

e

Testing time vs number of MLPs, shades of grey represents the test error

Test Error %
1.95

2.10

2.25

2.40

2.55

2.70

2.85

3.00

0 10 20 30 40 50
Number of MLPs

0

2

4

6

8

10

Sp
p

ed
 u

p
 o

f 
tr

ai
n

in
g 

p
h

as
e

Training time vs number of MLPs, shades of grey represents the test error

Test Error %
1.95

2.10

2.25

2.40

2.55

2.70

2.85

3.00

Figure 8. Training and testing time for Dataset-A.
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Figure 9. Training and testing time for Dataset-B.

5. Conclusion and future work
For the online TSA using pattern recognition methods, both prediction success and the time needed to train and
test the predictors can become limiting factors, especially when the task gets complicated by a large number of
contingencies. In this study, we developed a method that uses multilabel artificial neural networks (MLMLP)
for predicting concurrently the system security against multiple contingencies and demonstrated its success in
the TSA of two test systems. Using only one MLMLP for all contingencies, we achieved better performance in
terms of test error and training and test time, compared to a set of single-label MLPs, each of which is assigned
to only one contingency. We conclude that multilabel learning paradigm can leverage the underlying structure
and dependencies of contingencies to simplify the learning process. This observation provides multitude of
opportunities for online security assessment of power systems. We also performed additional analysis using
contingency clustering to investigate the possibility of further performance improvement. Based on their
similarity according to Pearson correlation coefficient and symmetric uncertainty, we grouped contingencies
into clusters. We found out that instead of using a single MLMLP on all contingencies, using an MLMLP for
contingencies in the same cluster, the test errors could be further decreased. Therefore, in order to achieve
better performances in online or off-line TSA under multiple contingencies, the application of MLMLPs using
clustered contingencies is promising. Further work could concentrate on the use of similarity measures other than
symmetric uncertainty and Pearson correlation coefficient to compute the similarities between contingencies.
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Using different contingency clustering methods and training MLMLPs on these clusters and then using classifier
combination methods such as voting or stacking to decide on the final contingency label prediction is another
research area. In our work, we have only used a single-layer MLMLP, whereas the use of multilabel deep neural
networks [29] for DSA is another research direction.
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