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Abstract: This paper presents a new method for restoration of distribution networks after a fault occurrence. This
problem is solved from the viewpoint of the distribution system operator with the main goal of minimizing the operating
cost during the fault clearance period. The effects of distributed generation (DG) units and direct load control (DLC)
programs are considered in designing the proposed restoration procedure. Moreover, the uncertainties associated with
the predicted loads of different nodes and the availability of DG are modeled here. Robust optimization is used to model
the uncertainties of restoration problems and manage their associated risks. Finally, a robust reconfiguration plan is
obtained solving a bilevel problem using a genetic algorithm (GA). The upper-level problem is concerned with evaluating
the optimum configuration by GA and the lower-level problem obtains the optimum schedules of DG and DLC with an
AC optimal power flow. A 32-bus test system is used to demonstrate the applicability of the proposed method.
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1. Introduction
A distribution system is one of the most important parts of power systems, because it is the last part of servicing
customers. Numerous outages of power system loads are due to failures of distribution system components.
Hence, backup plans should be investigated to be quickly performed after contingencies occur in these systems.
This procedure, known as restoration, has been widely discussed in the literature [1–5]. Changing the network
configuration by an optimized switching procedure, the load points placed in the faulted areas can be restored
by connecting them to other feeders. For this purpose, the backup plan for every possible failure is evaluated.
The proposed method of this paper is designed to evaluate the offline restoration plans associated with the
failure of distribution elements.

Previous works have considered different objective functions for the associated optimization problem
of restoration problems. Minimization of energy not supplied [2], minimizing the switching actions [1], loss
reduction [3], reliability improvement [5], and a combination of these [5] are largely used as the objectives of
restoration problems. The objective function of the restoration problem is highly dependent on the organization
that performs it. For example, if the restoration problem is being solved from the perspective of the distribution
system operator (DSO), which is the concern of this paper, reconnecting the maximum amount of loads in the
out-of-service area can be introduced as the associated objective function.
∗Correspondence: fotuhi@sharif.edu
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The restoration problem is highly related to determining the binary variables associated with distribution
switches. On the other hand, DC power flow approximation cannot be used in the problems of distribution
systems since the distribution lines have a high level of resistance. Therefore, the restoration optimization
problem is faced with hard nonlinear terms of AC power flow equations and nonconvexity due to the existence of
binary variables in the model. In this way, pure mathematical programming is not proper for this optimization
problem [1,2]. Heuristic search algorithms [1,5–7], the minimal path and search technique [8], the branch
and bound method [9], dynamic programming [10], and multiagent systems [11] are examples of optimization
methods used in solving restoration problems. This paper implements a genetic algorithm (GA) to solve the
proposed restoration model.

Once a fault occurs it will be impossible to recover all of the disconnected loads. This is because of the flow
limits in the backup feeders. In order to increase the ability of recovering different loads during the restoration
process, various remedial solutions have been discussed in the literature such as distributed generation (DG)
[12] and direct load control (DLC) programs [13]. The authors in [7,8] and [12] discussed that the presence of
DG units in the restoration process can significantly improve the obtained results. DG units can supply some
part of disconnected loads and reduce the flow of backup feeders. Interruptible loads (ILs) can also play the
same role as DG during contingencies [13]. In this regard, the DSO can employ IL programs such as DLC
during a contingency and therefore reduce the tie lines’ current. Therefore, reconfiguration in the presence of
DG and ILs needs determining the optimum schedule for DG and ILs in addition to other variables.

On the other hand, this problem involves many uncertainties. For example, the predicted level of
demands and availability of DG are sources of uncertainty in this problem. Different methods are used in the
literature to model the uncertain parameters and control their related risks. Stochastic programming [14–17],
fuzzy methods [18], and interval-based optimization methods such as information gap decision theory [19,20]
and robust optimization [21–23] are examples of these methods. Among them, interval-based optimization
methods are appropriate for handling the high level of uncertain parameters [22–25]. Moreover, interval-based
optimization methods make no assumption on the probability density function (PDF) of uncertainties, which
makes them a good choice for uncertainties where their PDF could not be evaluated straightforwardly, such as
predicted nodal distributed demands or availability of DG. Therefore, robust optimization would be a suitable
choice in reconfiguration problems.

In this paper a new method is proposed for reconfiguration of the distribution network operated by a
DSO. It is supposed here that the DSO has the ability of controlling some of the loads directly. In addition to
DLC, DG is also assumed in the structure of this paper. A robust optimization method is used here to hedge
the risk of uncertain parameters, i.e. predicted levels of demand and the availability of DG. Thus, this paper
presents a conservative plan for reconfiguration of a distribution network in the presence of DG and DLC.

From a practical point of view, most distribution systems still operate in the traditional way and use
offline plans for their restoration programs. The main aim of this paper is to provide a practical restoration
plan for recovering loads after a fault occurrence. Thus, an offline restoration program is chosen in this paper.
The uncertain parameters and their effects on the offline restoration program are still questionable in power
system studies. This paper tries to find a proper way to model and control the effect of uncertain parameters
on the offline restoration plan evaluation. The uncertainties involved in this problem are the predicted demand
and the unavailability of DG. From a practical perspective, the PDF of distribution loads cannot be evaluated
node by node, because of the lack of measured data in many distribution systems. The problem associated
with the lack of measured data is common in traditional distribution systems. To solve this problem, robust
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optimization is implemented here. Robust optimization does not need the PDF of uncertain parameters and it
could be a good choice for this purpose.

The rest of this paper is organized as follows. The problem structures and the assumptions are presented
in Section 2. The risk-neutral and the robust formulations are proposed in Section 3 and Section 4, respectively.
The numerical results are provided in Section 5 followed, by the conclusion in Section 6.

2. Problem structure
Two kinds of decision variables should be defined in the restoration problem. The first category of decision
variables is the set of switches whose statuses should be changed during the restoration process. These variables
are binary and they should be defined in such a way as to create a new radial configuration serving a maximum
level of disconnected loads. After determining the optimum configuration, the optimum schedule of DG and
DLC should be evaluated as the second category of decision variables.

Based on the above explanation, the reconfiguration problem of this paper is modeled as a bilevel
optimization problem. As depicted in Figure 1, the first level is concerned with determining the optimum
radial configuration of the distribution network. This is followed by setting the status of switches. The lower
level evaluates the optimum schedule of DG and DLC related to the evaluated configuration obtained from the
upper-level optimization problem. In this level, an AC optimal power flow (OPF) should be implemented to
ensure that the determined structure and schedules meet the operational constraints of the network, i.e. the
maximum flow of feeders and limitations on bus voltages.

Upper Level

Determine: Best Radial

Configuration

Start

End

Lower Level

Determine: Optimal Schedule of

DGs and DLCs (AC OPF)

Radial

Configuration Operation Cost

Figure 1. Flowchart of the reconfiguration problem.

As can be seen from the flowchart presented in Figure 1, the problem is solved iteratively. The heuristic
algorithms are a proper option for solving this bilevel nonlinear nonconvex optimization model. In this paper,
a GA is used due to its ability of handling binary variables [26]. In this way, the process of solving a bilevel
optimization problem would be as follows:
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1. Generating random radial configurations as the first generation of chromosomes.

2. Evaluating the optimum schedule of DG and DLC for the created configurations in the lower level.

3. Calculating the operating cost associated with the proposed radial structures evaluated by the upper level
optimization (GA).

4. Generating the next generation by applying mutation and crossover operators considering the fitness value
of the first generation, i.e. operating costs of chromosomes.

5. Checking the convergence criterion; if the procedure has not converged, go to step 2.

For more clarification about the bilevel optimization problem of this paper, each level is described in the
following section.

3. Risk-neutral formulation
After specifying the problem structure, the optimization formulation and modeling is presented in this section.
First the formulation of the restoration problem ignoring the uncertainties is introduced and then the uncer-
tainties will be involved in the formulation in order to manage the risk level of the decision-making problem.

3.1. Upper level optimization problem

The upper level optimization problem can be simply explained by Eqs. (1) and (2).

min
SW

OP (PDG, PUP , UDG, UDLC) (1)

NewConfigurationRadiality (2)

Here, SW is the set of switches whose statuses should be changed in order to reach a new radial configuration.
OP (PDG, PUP , UDG, UDLC) is the operating cost of the distribution system during the repair time of the
element, which is a function of other decision variables, i.e. scheduled power of DG PDG , purchased power
from upstream node PUP , and binary variables UDG, UDLC that represent the commitment status of DG and
ILs, respectively.

This optimization problem is constrained to the radiality constraint, which guarantees the radiality of
the new configuration introduced for the distribution networks. A GA is used here to solve this problem. For
this purpose, a binary chromosome is used in which each switch is associated with a bit of chromosome. The
value of Eq. (1) indicates that the related switch should be closed and vice versa. The radiality of the created
chromosome is checked in this step using a lookup table. For this purpose, by implementing a preanalysis process,
all of the possible radial configurations are recognized and saved in a lookup table. Once a GA generates a
chromosome, its feasibility is checked by this lookup table. If it is recognized as a nonradial configuration, it
will be removed from the optimization process. In this way, all of the structures provided by the upper level
would be radial.

3.2. Lower level optimization problem
In this step, the configuration of the network is defined by the upper level and sent to the lower-level optimization
problem. In the lower-level optimization, the operating cost associated with the generated configuration provided
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by the GA-based upper level is defined. The lower-level optimization problem level is explained as follows.

min
PDG

i ,UDG
i

PUP ,UDLC
i

OP =

(
λUPPUP +

∑
i∈D

ai(P
DG
i )2 + biP

DG
i + ciU

DG
i +

∑
i∈L

UDLC
i λDLC

i +
∑
i∈I

λInt
i

)
(3)

|Il| ≤ Imax
l ∀l ∈ F (4)

V min
i ≤ Vi ≤ V max

i ∀i (5)

(PDG
i )2 + (QDG

i )2 ≤ (Smax
i )2 ∀i ∈ D (6)

UDG
i Pmin

i ≤ PDG
i ≤ UDG

i Pmax
i ∀i ∈ D (7)

UDG
i Qmin

i ≤ QDG
i ≤ UDG

i Qmax
i ∀i ∈ D (8)

PDG
i − UDLC

i PDLC
i − PD

i =
∑
k

ViVkYik cos(θi − θk) ∀i (9)

QDG
i − UDLC

i QDLC
i −QD

i =
∑
k

ViVkYik sin(θi − θk) ∀i (10)

The lower-level optimization is an AC OPF in which the operating cost is minimized with respect to the set
of decision variables, i.e. PDG

i , UDG
i , UDLC

i , PUP . In Eq. (3), the operating cost has four terms. In other
words, the DSO has four sources to feed the distribution system’s load during contingency events. The first
term distinguishes the cost of purchasing power from the upstream network, i.e. λUPPUP , in which λUP is the
average price of energy. The next source is installed DG whose operating cost is modeled through the second
term of the objective function of Eq. (3), i.e.

∑
i∈D

ai(P
DG
i )2 + biP

DG
i + ciU

DG
i αi(P

DG
i )2 + βiP

DG
i + γiU

DG
i .

The set of buses including DG is denoted by D. The other option of the DSO to operate the network after
the contingency is utilizing the DLC sources with the cost of

∑
i∈L

UDLC
i λDLC

i . L is the set of nodes with DLC

capacity. The cost of activating DLC of node i is considered to be λDLC
i . Finally, the last choice of the DSO is

interrupting the loads with cost of
∑
i∈I

λInt
i , in which i is the set of load points interrupted during contingency

operation.
This optimization problem is constrained to some physical constraints. In Eq. (4), the current limit

of feeder l is enforced to the problem. Voltage limitation constraints explained by Eq. (5) and maximum
and minimum generation capacity of active and reactive power of DG are also defined by Eqs. (7) and (8),
respectively. The nominal power of the DG located at bus i is defined by Eq. (6). The other well-known AC
power flow constraints are enforced for the problem by Eqs. (9) and (10).

By solving this bilevel optimization problem, the optimum configuration during contingency will be
described as well as the optimum schedule power of DG and DLC.

4. Robust optimization formulation
The reconfiguration problem is faced with uncertain parameters. Some parameters are forecasted for this
problem, such as demand of the load points. In addition, the behavior of some parameters is not well known
for the decision maker, such as the availability of DG during a contingency. These uncertainties introduce some
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level of risk to the problem. In order to model the uncertainties and control the related risk of them, robust
optimization is utilized here [22,23,27].

Robust optimization is an interval-based optimization method considering an interval around the fore-
casted parameter. During the optimization process, the worst case of uncertainty occurrence in the assumed
interval will be defined. In other words, this method tries to set the decision variables by considering the worst
case of uncertain parameters. Therefore, the upper level will not change in robust format but the lower-level
robust optimization formulation would be as follows:

min
PDG

i ,UDG
i

PUP ,UDLC
i

max
∆PDG

i ,∆QDG
i

∆PD
i ,∆QD

i
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− αDPD
i ≤ ∆PD

i ≤ αDPD
i ) ∀i (18)

− αDQD
i ≤ ∆PD

i ≤ αDQD
i ) ∀i (19)

(4)− (6)

As can be seen in Eqs. (11)–(19), the objective of the lower-level optimization problem of Eq. (11) is presented
as a min–max optimization problem. The operating cost is minimized with respect to the main decision variables
of the problem, i.e. PDG

i , UDG
i , PUP , UDLC

i , and it is maximized with respect to the uncertain variables, which
are ∆PDG

i ,∆QDG
i ,∆PD

i ,∆QD
i . ∆PDG

i ,∆QDG
i are the deviation from the maximum active and reactive power

of DG i . In other words, the availability of DG is modeled probabilistically. In the same way, the deviation
from predicted levels of demands (PD

i , QD
i ) is modeled as∆PD

i ,∆QD
i .

In this way, the optimization problem of the lower level tries to find the worst case of the uncertain
parameters in the confidence gap in Eqs. (16)–(19). In Eqs. (16)–(19) αDG is the robustness parameter of the
DG’s uncertainty, which is an input parameter defining the length of the confidence gap. αD is the robustness
parameter of demand uncertainty.

In order to solve this min–max problem, it should be noted that the problem is linear with respect to
the uncertain variables, i.e. ∆PDG

i ,∆QDG
i ,∆PD

i ,∆QD
i . Thus, the inner maximization is a linear optimization

problem and the worst case associated with these uncertainties happens on one of the bounds. As can be seen
in Eqs. (12) and (13), ∆PDG

i ,∆QDG
i appeared with positive signs and hence their worst bounds are their

lower bounds. By the same logic, the worst case of ∆PD
i ,∆QD

i will be their upper bounds. Therefore, the
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maximization part of the min–max problem can be removed by replacing the worst bounds instead of uncertain
variables. The final format of the robust lower level would be as follows:

min
PDG
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i
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Based on this modeling procedure, the robust reconfiguration problem can be solved by implementing the GA
on the upper-level problem of Eqs. (1) and (2). The lower-level problem can be easily solved by the mat power
functions [28] in MATLAB to determine the operating cost of each radial configuration.

5. Numerical results
The applicability of the proposed method is investigated on the network initially presented by Baran and Wu
[29]. It is assumed that DG is located at buses 7 and 16. Additionally, it is supposed that the load points of buses
6 and 31 have an interruption contract with the DSO. Based on this contract, the DSO can disconnect these
loads during contingencies by billing them $0.35/kWh and $1/kWh, respectively. Moreover, the coefficients of
generation cost of DG and their generation limits are provided in Table 1.

Table 1. Operation data of DG.

a ($/(kW)2h) b ($/kWh) c ($/h) Pmax (pu) Pmin (pu) Qmax (pu) Qmin (pu)
DG1 (bus 16) 0.01 0.35 0 3 0 2 -2
DG2 (bus 7) 0.01 0.4 0 2 0 1 -1

It has been assumed that a fault occurs at bus 3. After isolating the fault, subfeeders 2–3 and 3–4 will
be out of service until the faulted element is repaired. In order to solve this reconfiguration problem, the GA
is used with a population size of 100. The maximum generation number is also set to 100 and the stopping
criterion is the maximum number of iterations in such a way that the tolerance of the objective is reduced to $1.
This condition is checked after the 70th generation. During the simulation process, the GA converged before
reaching the maximum generation limit.

The effect of uncertainties on the operating cost is presented in Figure 2. In this figure, the operating
cost is plotted versus the length of the robust gap of DG availability and demand prediction errors. As can be
seen, the operating cost is increased by increasing the level of uncertainties. In addition, the uncertainties in
demand prediction have more effect on the operating cost during reconfiguration. This figure also presents the
relationship between the robust gap of uncertainties and the guaranteed level of operating cost.
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In order to investigate the ability of the robust optimization method, an after-the-fact analysis is presented
here. For this purpose, the risk-neutral reconfiguration is compared with the robust reconfiguration in after-
the-fact analysis. For the robust-based reconfiguration, the point of αDG = 0.2, αD = 0.2 is chosen, which is
related to the guaranteed level of $6417. The expected operating cost of the risk-neutral model is obtained as
$5097. Three artificial scenarios are generated as after-the-fact scenarios. In the first scenario, the actual level of
demand is generated by adding a 20% random error to the forecasted level. In a same way, the actual level of DG
availability is generated by 20% error from the predicted level. In the second scenario, the error of the forecasted
parameters is set to 30%, both for the demand and DG availability. Finally, in the last scenario, the prediction
errors are increased to 40%. Figure 3 presents the operating cost of each scenario for the robust and risk-neutral
restoration plans. Observe that the operating cost of the robust reconfiguration plan is less than the operating
cost of the risk-neutral plan in all scenarios. Moreover, the ability of robust optimization in guaranteeing a
prespecified level of cost can be seen in Figure 3. In the first scenario, the uncertain parameters, i.e. forecasted
demand and the prediction of DG availability, surpass 20%, which is in the range of the robust plan. As can
be seen the after-the-fact operating cost is below the guaranteed level. In the second scenario, however, the
guaranteed condition is not met but it is still below the guaranteed level. This means that the robustness gap
can be violated in the actual occurrence of uncertainties because the worst-case scenario is considered in the
robust-based method. Finally, in the last scenario, the uncertainties’ violation is 40%, resulting in the increase
of operating cost higher than the guaranteed level.
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Figure 2. The impact of uncertainties on the operating
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Figure 3. Comparing the operating cost of robust-based
and risk-neutral reconfiguration methods for different lev-
els of prediction errors (demand error, error of DG avail-
ability).

To better illustrate the effect of uncertainties on the reconfiguration plans, Figure 4 presents the optimum
configuration of the restored network for different level of uncertainties, i.e. αDG = 0, αD = 0 in Figure 4a;
αDG = 0.2, αD = 0.2 in Figure 4b; and αDG = 0.5, αD = 0.5 in Figure 4c. Moreover, the optimum schedules
of DG and DLC are also presented in Table 2. As can be seen, in Figure 4 the uncertain parameters have
no significant effect on optimum structure. In other words, as the amount of uncertainties increases from
αDG = 0, αD = 0 in Figure 4a to αDG = 0.2, αD = 0.2 in Figure 4b, only the opened connection of 13–
14 changes to the opened connection of 14–15, which is close to the previous one, and the other connections
remain the same as before. The same thing happens when the uncertainties increase from αDG = 0.2, αD = 0.2

in Figure 4b to αDG = 0.5, αD = 0.5 in Figure 4c. The reason for this (uncertainties have no significant
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Figure 4. Restored network’s configuration for the presented scenarios: a) αDG = 0, αD = 0 ; b)αDG = 0.2, αD = 0.2 ;
c)αDG = 0.5, αD = 0.5 .

effect on the optimum reconfiguration plan) is better explained by Table 2. As illustrated in this table, the
optimum schedules of DG and DLC are largely changed by increasing the level of uncertain parameters. Hence,
the uncertain parameters’ effect better shows itself in the optimum schedule of DG and DLC rather than the
optimum configuration of the network. In other words, implementing DG and DLC in the distribution network

2684



ASADI and FOTUHI-FIRUZABAD/Turk J Elec Eng & Comp Sci

makes the system flexible. Hence, the DG and DLC of the network makes reconfiguration problem robust
against the uncertain parameters.

Table 2. Optimum schedule plan of DG and DLC for different levels of uncertainties.

αDG = 0

αD = 0

αDG = 0.2

αD = 0.2

αDG = 0.5

αD = 0.5

DG1 (bus 16) P 0 0 0
Q 0.6 0.75 0.5

DG1 (bus 7) P 0 0.15 1.35
Q 0.67 0.86 1

DLC (Bus 6) P 0.24 0.19 0.12
Q 0.12 0.1 0.06

DLC (Bus 31) P 0.25 0.2 0.13
Q 0.12 0.1 0.06

Upstream node P 3.23 3.97 4
Q 0.81 1.01 1.86

6. Conclusion
A new method for reconfiguration of distribution systems was presented in this work. This paper modeled this
problem with a bilevel optimization method. In the upper level, the best configuration of the faulted system
was obtained through a GA and the optimum operating cost associated with the upper level was determined
via the lower-level optimization problem. The AC optimal power flow of the second-level problem guaranteed
the technical feasibility of the reconfiguration plan. In the numerical results, the effect of uncertain parameters
was compared and it was shown that the forecasting error of distribution loads had a significant effect on the
operating cost. Moreover, the capability of robust optimization in guaranteeing a prespecified level of operating
cost was demonstrated through an after-the-fact analysis. In this analysis, it was shown that the operating
cost of the faulted system was lower than the robust cost provided by the robust-based method of this paper,
provided that the uncertain parameters fall into the prespecified robust gap or near it. Finally, it was shown that
the proposed reconfiguration structure is significantly robust against uncertain parameters. This means that
the optimum decided reconfiguration plan is not changed by changing the level of the uncertain parameters.
The development of the proposed method for the purpose of implementation in the restructured systems or
smart distribution systems can be considered as future work in line with this paper.
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