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Abstract: A new rank reduction (RARE)-based two-dimensional (2-D) direction of arrival (DOA) estimation algorithm
is proposed considering a mixture of circular and strictly noncircular sources. To enhance array aperture, a geometry of
three uniform linear arrays is considered and then treated as displaced arrays from a virtual array using a simple linear
transformation. The received data and the conjugated counterpart are combined together, exploiting the noncircular
property. Both sources can be estimated separately by designing and exploiting the distinctive nature of circular and
noncircular steering vectors. However, a 2-D spectrum search would lead to a high computational complexity burden.
To reduce this high computational complexity burden, a novel RARE-based method is proposed, which plays a vital role
by decomposing 2-D observation space into two successive 1-D peak search functions. The proposed method has some
distinctive advantages: it can enhance the array aperture utilization, it can provide better estimation accuracy when
mixed sources are greater than the number of sensors, it can estimate a larger number of mixed sources than the number
of sensors, and finally it can automatically pair 2-D DOAs without any complicated pairing formulation. Extensive
simulation results are provided to demonstrate the effectiveness of the proposed method.

Key words: Rank reduction, two-dimensional, direction of arrival, circular and strictly noncircular sources, uniform
linear arrays, underdetermined, array aperture utilization

1. Introduction
Direction of arrival (DOA) estimation in array signal processing is very important in order to pinpoint the
sources precisely. Accurate estimation of DOA is an indispensable part of many real-world applications like
radar, microphone array systems, sonar, and speech processing. Over the decades, a number of sophisticated
techniques have been developed like well-known multiple signal classification (MUSIC) [1, 2], estimation of
signal parameters via rotational invariance technique (ESPRIT) [3], and their variant algorithms[4–6]. These
techniques are known as subspace (SS) techniques. In past literature, the focus was to exploit the signal’s
spatial properties to solve DOA estimation problems. However, recently other properties have also been
exploited to solve this problem, like the noncircular property as in [7]. These types of properties not only
enhance the estimation accuracy but also give us an opportunity to resolve more sources than sensors. Hence,
such types of estimators are very helpful in wireless communications. Many methods have been proposed
considering different array geometries, like two-parallel uniform linear arrays (ULAs). In [8], Xia et al. proposed
∗Correspondence: yezf@ustc.edu.cn

This work is licensed under a Creative Commons Attribution 4.0 International License.
2234



SHABIR et al./Turk J Elec Eng & Comp Sci

decoupling of 2-D into two successive 1-D MUSIC techniques to estimate noncircular sources considering two
parallel ULAs. L-shaped ULAs [9] and ESPRIT-based DOA estimation [10, 11] were also explored. In [12],
a MUSIC-like estimation was developed for noncircular sources. whereas in [13] a 2-D based DOA estimation
of noncircular sources was designed using the simultaneous SVD technique. In [14], a joint elevation and
azimuth direction-finding algorithm was proposed considering an L-shaped array to remove pairing problems.
A more complex and real problem arises in real-time communications when there is a mixture of circular and
noncircular signals impinging on the array at once, like in adaptive modulation where one terminal transmits
circular signals (quadrature phase shift keying) and the other transmits noncircular signals (binary phase shift
keying) simultaneously. Several 2-D DOA estimation methods have been proposed to solve this problem. In
[15] an improved MUSIC-based algorithm was designed to estimate circular and noncircular sources exploiting
the noncircular property. However, its performance degraded severely when angle separation was small and
it could not discriminate both types of sources when DOAs of both sources coincided. In particular, in [16]
the authors developed a joint diagonalization 2-D method to estimate DOAs for a mixture of circular and
strictly noncircular sources, considering a uniform rectangular array (URA). In [17], a new reduced rank-based
method was designed considering three parallel ULAs considering only circular sources. In [18] an improved
algorithm was proposed which estimates both types of DOAs individually by exploiting differences between the
noncircular properties of signals. A sparse (ERARE)-based DOA estimation algorithm was designed in [19] to
estimate both sources separately. However, a rank reduction-based 2-D DOA estimation for a mixture of circular
and strictly noncircular sources considering three parallel ULAs has not been considered yet in the literature.
The remaining paper will be divided as follows: Section 2 will provide a basic structure of three parallel ULAs
along with signal model. The proposed method will be developed in Section 3 and then RARE-based DOA
estimation of both sources will be obtained separately after applying the MUSIC technique. Section 4 will
provide extensive simulation results to show the performance of our proposed method.

1.1. Symbols and abbreviations

We use lowercase (uppercase) bold characters to denote vectors (matrices). In particular, (.)
∗ implies complex

conjugation, whereas (.)
T and (.)

H respectively denote the transpose and conjugate transpose of a matrix or
vector, diag (.)denotes a diagonal matrix, and E (.) is the statistical expectation operator.

2. Data model
Consider an array geometry consisting of three parallel ULAs placed along the x-y plane as shown in Figure 1.
Each subarray consists of M sensors and hence the total number of sensors is M ′ = 3M . Interspacing between
each sensor and each ULA is considered as half wavelength. ConsiderK (previously known) uncorrelated, narrow-
band, 2-D, far-field sources impinging on this geometry, with angles θk and φk k = 1, 2, ...,K . Furthermore,
these K sources are considered as a mixture of two types of sources: circular Kc and strictly noncircular
Kn sources such that K = Kn +Kc . A signal is circular if its second-order elliptic covariance is E[ss] = 0 ;

otherwise, it is noncircular. Therefore, the output at each subarray at the tth snapshot can be written as

x1 (t) = As (t) + w1 (t) ,

x2 (t) = A �
2 s (t) + w2 (t) ,

x3 (t) = A �
3 s (t) + w3 (t) , (1)
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where A = [a(θ1, φ1), ...,a(θKn
, φKn

),a(θKn +1, φKn +1, ...,a(θK , φK)] is a mixed steering matrix with steering
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Figure 1. Geometry of three planar parallel ULAs.

vector a(θk, φk) =
[
1, ..., ej

2πd
λ (M−1) sin θk sin φk

]T
. Similarly, �

2 = diag
[
ej

2πd
λ sin θ1 sin φ1 , ..., ej

2πd
λ sin θK sin φK

]
,

�
3 = diag

[
ej

4πd
λ sin θ1 sin φ1 , ..., ej

2πd
λ sin θK sin φK

]
, and s (t) = [b1 s1 (t) , ..., bk sKn

(t) , sKn +1 (t) , ..., sK (t)]
T are

the steering element matrices and the transmitted mixture of circular signals vector and strictly noncircular
signals vector with bk = ηk e

j ϕk having k th source noncircularity rate and phase shift, respectively. The
circularity rate actually defines the type of signal, like η = 0 means a circular signal and similarly 0 < η ≤ 1

means the signal is noncircular with a special case when η = 1 represents a strictly noncircular signal. Similarly,
noise vectors w1 (t) ,w2 (t) , and w3 (t)are considered Gaussian and circular with zero mean and σ2 variance,
respectively.

3. Proposed method
In this section, the 2-D DOA estimation algorithm will be described in detail considering a mixture of circular
and strictly noncircular sources exploiting the noncircular property by stacking original data with the conjugated
part. First, the data can be concatenated as

z (t) =

 x1 (t)
x2 (t)
x3 (t)

 =

 A
A �

2

A �
3

 s (t) +

 w1 (t)
w2 (t)
w3 (t)

 (2)

= Cs (t) + w (t) , (3)

where C =
[
AT (A �

2)
T

(A �
3)

T
]T

∈ CM ′×K , s (t) ∈ CK×1 , and w (t) ∈ CM ′×1 . C is the extended

steering matrix consisting of Kc circular and Kn noncircular number of column vectors. Hence, C can be
represented as

C =
[

Cn Cc

]
∈ C

M ′×(Kn +Kc.) (4)
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The three parallel ULAs can be translated along the y-axis in such a way that they give us M ′ longer virtual
elements [20]. In order to achieve a longer displaced array, consider cosαk = sin θk sinφk, αk ∈ [0, π] and
cosβk = sin θk cosφk, βk ∈ [0, π] . Then the steering vector of the longer virtual array can be expressed as

c (αk) =
[
1, ..., ej

2πd
λ (3M−1) cos αk

]
∈ CM ′×1 . Hence, the relationship between translated and nontranslated

steering vectors can be written as

c (αk, βk) = c (θk, φk) = diag [c (αk)]Tq (αk, βk, ) (5)

T =

 11×M 01×M 01×M

01×M 11×M 01×M

01×M 01×M 11×M

T

, (6)

where q (αk, βk) =
[
1, e−j 2πdM

λ cos αk ej
4πd
λ

cos βk
, e−j

2πd(2M)
λ cos αk ej

4πd
λ

cos βk
]T

∈ C3×1 represents a phase shift

vector. Then, considering the noncircular property, a translated extended data vector can be designed by
stacking original data and the conjugated counterpart as

ẑ =

[
z
z∗

]
=

[
Cs

C∗ s∗
]
+

[
w
w∗

]
= Ĉŝ + ŵ, (7)

Ĉ = [ĉn,1, ..., ĉn,Kn
, ĉc,1, ..., ĉn,Kc

] . (8)

After putting Eq. (5) into Eq. (8), we can get

ĉn,k =

[
bn,k c (αk, βk)

bn,k
∗ c (αk, βk)

∗

]
∈ C

2M ′×1, k = 1, ...,Kn, (9)

and similarly

Ĉc,k =

[
c (αk, βk) 0M ′×1

0M ′×1 c (αk, βk)
∗

]
∈ C

2(M ′×1), k = 1, ...,Kc (10)

with
ŝ = [sn,1, ..., sn,Kn

, sc,1, sc,1∗, ..., sc,Kc
, sc,Kc

∗] ∈ C
K′×1 (11)

is a K ′ × 1 vector at the k th snapshot, where K ′ = Kn +Kc Hence, the covariance matrix of ẑ can be
expressed as

ŵ =

[
w
w∗

]
∈ C2M ′×1, (12)

R = E
[
ẑ ẑH

]
= Ĉ Rs Ĉ

H
+σ2

n I2M ′ , (13)

where Rs is the source covariance matrix for ŝ . However, practically we only have finite samples of observed
data. Therefore, practically the covariance matrix can be written as

R̂ ∼= Es
�
s Es

H +En
�
n En

H . (14)

Exploiting the orthogonality between En andĈ , we can design estimators to estimate 2-D DOAs for both types
of sources separately using the rank reduction method.
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3.1. 2-D DOA estimation of strictly noncircular sources
Since noise subspace and signal subspace are orthogonal to each other, exploiting this orthogonality we can
design an estimator that can be used to estimate noncircular sources. Since

En
H ĉn,k = 0, (15)

instead of estimating the 2-D spectrum search, we can divide the 2-D search into two 1-D search functions using
the RARE method [20] to reduce complexity.

En
H

[
bn,k c (αk, βk)

bn,k
∗ c (αk, βk)

∗

]
= En

H

[
bn,k {diag [c (αk)]Tq (αk, βk)}
bn,k

∗ {diag [c (αk)]Tq (αk, βk)}
∗

]
,

En
H

[
diag [c (αk)]Tq

diag
[
c (αk)

∗]T∗ q∗

] [
bn,k
bn,k

∗

]
= 0,

[
diag [c (αk)] 0

0 diag
[
c (αk)

∗] ] [
q 0
0 q∗

] [
T 0
0 T∗

] [
bn,k
bn,k

∗

]
= cext Text Qext b′

n,k, (16)

where cext = blkdiag
[
diag [c (αk)] , diag

[
c (αk)

∗]] ∈ C
2(M ′×3) ,Qext = blkdiag [q,q∗] ∈ C6×2 , Text =

blkdiag [T,T∗] ∈ C
2(M ′×3) , and b′

n,k =

[
bn,k
bn,k

∗

]
∈ C2×1 . Now the MUSIC cost function for noncircular

sources can be designed as

fn (αk, βk) = Qext
H Text

H cext
H En

H En cext Text Qext

= Qext
H Bn (αk)Qext, (17)

where Bn (αk) = Text
H cext

H En
H En cext Text only contains information of parameter αk, k = 1, ...,K . Hence,

we have separated 2-D DOAs into two consecutive 1-D parts. Therefore, the MUSIC cost function to calculate
αk can be designed as

fn (αk) =
1

det {Bn (αk)}
. (18)

fn (αk) equals zero only when Bn (αk) drops rank means acting as reduced rank. Hence, using the above
equation, the K largest peaks can be found for k = 1,…,K . After that, values of βk can be estimated using
the RARE technique having prior knowledge of ⌣

αk s as

fn (βk) =
1

det
{

Qext
H Bn

(
⌣
αk

)
Qext.

} (19)

3.2. 2-D DOA estimation of circular sources

Similarly, circular sources can also be estimated exploiting the orthogonality between Ĉc,k and En as

En
H Ĉc,k = En

H

[
c (αk, βk) 0M ′×1

0M ′×1 c (αk, βk)
∗

]
= 0. (20)
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Similarly, it can be deduced from Eq. (21) that

En
H

[
c (αk, βk)

0M ′×1

]
= 0 (21)

and

En
H

[
0M ′×1

c (αk, βk)
∗

]
= 0. (22)

Furthermore, En can be partitioned into two equally sized submatrices like En =
[
En1

T ,En2
T
]T .

Hence,
c (αk, βk)

H En1 En1
H c (αk, βk) = 0, (23)

c (αk, βk)
T En2 En2

H c (αk, βk)
∗
= 0. (24)

It can be easily shown that Eqs. (23) and (24) both are equal, as shown in the Appendix.
Since

c (αk, βk) = diag [c (αk)]Tq (αk, βk) , (25)

then
[diag [c (αk)]Tq (αk, βk)]

H En1 En1
H diag [c (αk)]Tq (αk, βk) = 0, (26)

qH TH diag [c (αk)]
H En1 En1

H diag [c (αk)]Tq = 0, (27)

qH Bc (αk)q = 0, (28)

where Bc (αk) = diag [c (αk)]
H En1 En1

H diag [c (αk)] only contains information (circular sources) of αk, k =

1, ...,Kc . Therefore, the MUSIC cost function can be designed to calculate αk as

fc (αk) =
1

det {Bc (αk).}
(29)

fc (αk) equals zero only when Bc (αk)) drops rank means acting as reduced rank. Hence, using the above
equation, the Kc largest peaks can be found for k = 1, ...,Kc . Similarly, values of βk can also be estimated
using the RARE technique having prior knowledge of α̂k s as

fc (βk) =
1

det {qH Bc (α̂k)q.} (30)

The relationship between αk, βk and θk, φk can be defined using ℵk = cosβk +j cosαk . From this, estimated
2-D angles can be calculated as

θ̂k = angle(ℵk), (31)

φ̂k = sin−1 (amp (ℵk)) . (32)

Note that estimators in Eqs. (18) and (19) estimate 2-D DOAs of both circular and noncircular sources, whereas
estimators in Eqs. (29) and (30) only estimate 2-D DOAs of circular sources. Hence, using information from
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Eqs. (18) and (19) and from Eqs. (29) and (30), one can identify each type of source separately from a mixture
of incident signals. One of the important observations is that both estimators in Eqs. (19) and (30) are also
designed based on the RARE principle; however, the difference is mainly the design of noise subspace. In the
latter, noise subspace is half that compared to the former. A summary of the proposed algorithm is provided
in the Table.

Table. Summary of the proposed algorithm.

Given: R̂, Kc, Kn, T, Text, q, and Qext.
Output: θ̂ and φ̂.
Step 1. Design an extended received vector using Eq. (7) exploiting noncircularity.
Step 2. Design covariance matrix R̂ from step 1.
Step 3. Perform EVD on R̂ and get noise subspace En.
Step 4. Use Eqs. (18) and (19) to estimate α and β to estimate K number of sources.
Step 5. Get En1 from En.
Step 6. Use Eqs. (29) and (30) to estimate only Kc circular sources.
Step 7. Identify 2-D angles of only noncircular sources using step 4 and step 6.
Step 8. Finally get original estimated θ̂ and φ̂ of both sources with the help of Eqs. (31) and (32).

Remark 1 If the incident signals are all noncircular, the proposed method is converted into Liu’s [21] method
and performance of the proposed method will also become similar to Liu’s method.
Remark 2 Here we will give a computational complexity analysis of the proposed method in term of complex
multiplications. This complexity can be divided into three parts: construction complexity of R̂ , EVD complexity

of R̂ , and spectral searching complexity. The construction complexity of R̂ is O
(
(2M ′)

2
L
)

. The EVD

complexity is O
(
(2M ′)

3
)

and the spectral search complexity can be written in terms of several 1-D spatial

spectrum searches as our proposed method decomposes the 2-D spectral search into several 1-D search functions.

Hence, the total spatial spectrum search complexity is O
(

π
θ (2M ′)

2
+K π

φ (2M ′)
2
+ π

θ (M ′)
2
+Kc

π
φ (M ′)

2
)

.

Remark 3 : Decomposing 2-D DOAs into several 1-D DOAs provides another benefit: it can automatically
pair 2-D DOAs without any additional complexity. Hence, there is no additional complexity needed to pair 2-D
DOAs.
Remark 4 : The proposed method can estimate a larger number of sources as compared to the number of
sensors and it can also provide better estimation accuracy under the limit of high-resolution methods.
Remark 5 : Xia’s method can estimate Kn +Kc = 2(M − 1) sources, whereas our proposed method can
estimate Kn +2Kc = 6(M − 1) and Liu’s method can estimate only Kn = 6(M − 1) sources, respectively.
Hence, overall, our method can estimate more mixed sources as compared to Xia’s and Liu’s methods.

4. Simulation results
In this section, the performance of the proposed method is validated by various simulations. In all enumerated
simulations, the number of sensors in our proposed method and Xia’s method are equal to twelve in such a
way that in our proposed method each subarray consist of four sensors, whereas in Xia’s method each subarray
consist of six sensors. All circular (η = 0) and strictly noncircular (η = 1) signals are considered to have equal
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power. However, this algorithm is equally applicable for any arbitrary noncircular source. BPSK signals (η = 1)
are generated as noncircular signals and QPSK signals (η = 0) are generated as circular signals. The SNR can

be defined as 10 log10
(
σs

2/
σn

2

)
, where σs

2 and σn
2 are the signal and noise covariance, respectively. Root

mean square error (RMSE ) is used as a performance measuring tool to calculate estimation performance of
different methods considered in this paper, defined as

RMSE =

√√√√ K∑
k=1

MC∑
m=1

[
(ν̄k,m − νk,m)

2
]
, (33)

where K is the number of the mixture of circular and noncircular sources, MC stands for Monte Carlo simulations,
ν̄k,m is the estimated DOA of either θ or φ , and νk,m represents the original 2-D angles. Xia’s and Liu’s methods
are considered for a comparison with our proposed method.

4.1. RMSE performance against SNR

In this simulation, our objective is to show the RMSE performance of the proposed method and compare it
with Xia’s previously proposed method. In order to show the effectiveness of the proposed method we consider
five uncorrelated signals coming from directions (54.52,37.87), (22.55,26.91), (45.0,10.0), (11.20,–63.34), and
(38.99,–114.28). Furthermore, we consider three cases where case I, case II, and case III contain one, two, and
three BPSK signals and the rest of them are QPSK sources, respectively. The number of snapshots is 1000,
averaged over 200 MC simulations with SNR changing from 0 dB to 30 dB. Figures ??a and 2b show the RMSE
performance of the proposed method along with Xia’s method considering different cases. The proposed method
outperforms Xia’s method in all cases, especially in case III, where our method completely outperform Xia’s
method in terms of both the estimated angles. One of the important observations is that the performance of
the proposed method starts improving from case I to case III, since the noise subspace dimension increases as
the number of BPSK signals increases.
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Figure 2. RMSE versus SNR at 1000 snapshots: (a) θ (b) φ .
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4.2. RMSE performance against angle separation

The sole objective of this simulation is to show the performance of the proposed method considering different
angle separations. The angle separation ∆ is varying from 5 to 25 degrees. The number of snapshots is
1200 while fixing SNR at 20 dB. Four uncorrelated 2-D sources having DOAs from directions (61.03, 28.88),
((61.03+∆),(28.88+∆)), (18.16,–33.85), and ((18.16+∆), (–33.85+∆)) are impinging on the proposed array.
Additionally, to show the efficient effectiveness of the proposed method, these sources are distributed into
different cases like case I, case II, and case III where one, two, and three BPSK signals are present and the
remaining sources are QPSK sources alternatively. Again, our proposed method outperforms Xia’s method in
all cases as shown in Figures 3a and 3b, especially in case III, and its performance increases with the angle
separation, which is an obvious factor. One of the important observations is that our proposed method in case
III not only outperforms Xia’s method in terms of all three cases but our method’s RMSE performance is better
as compared to previous case I and case II. This shows that with the increase of BPSK (noncircular) sources
the overall performance of the system is also improved.
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Figure 3. RMSE versus angle separation with snapshots at 1200 and at SNR = 20 dB: (a) θ (b) φ .

4.3. RMSE performance against snapshots

In this simulation, the performance is studied considering different numbers of snapshots varying from 100 to
800. All the other conditions remain similar as supposed in Subsection 4.1 at fixed SNR = 15 dB. Again, it
can be concluded that the performance of the proposed method increases as the number of snapshots starts
increasing, as shown in Figures 4a and 4b. Moreover, the proposed method outperforms Xia’s method in all
scenarios, which shows the effectiveness of the proposed method. Our method not only outperform Xia’s method
in all cases but also outperforms case I and case II itself, which shows the effectiveness of the proposed method
when we use a greater number of noncircular sources.
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Figure 4. RMSE versus snapshots with SNR = 15: (a) θ (b) φ .

4.4. CRB performance against SNR for noncircular sources

In this section, the objective is to compare our proposed method with deterministic CRB considering only strictly
noncircular sources, which we call case IV. All the simulation parameters remain similar as in Subsection 4.1
except snapshots and the total number of sensors in Liu’s method is also equal to our proposed method. The
RMSE performance is shown in Figures 5a and 5b against SNR from –5 dB to 20 dB. The figure shows that our
results are in accordance with the analysis mentioned in [22]. One of the interesting features of our method’s
case IV is that the RMSE performance of our method exactly became like that of Liu’s method, because in this
case all sources are noncircular sources and so our performance is similar. However, our method’s performance
is better than that of Xia’s method.
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Figure 5. RMSE of CRB versus SNR at snapshots = 1200: (a) θ (b) φ .
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5. Conclusion
A novel RARE-based 2-D DOA estimation algorithm has been proposed for a mixture of circular and strictly
noncircular sources considering three parallel ULAs. The distinctive steering vectors have been designed to
estimate both sources separately. Then RARE-based estimators have been proposed to reduce the computational
complexity dramatically by converting 2-D search space into two 1-D search spaces subsequently. The algorithm
has some distinctive advantages as it can utilize and can enhance the array aperture efficiently, can estimate
greater numbers of sources than sensors, and can provide more accurate estimation as compared to previously
proposed methods and additionally there is no need to pair 2-D DOAs as this algorithm can automatically pair
2-D DOAs without any additional complexity and therefore enjoys lower computational complexity.
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Appendix

Here, the objective is to prove that Eqs. (23) and (24) are alike. Examining carefully, the basic difference
between the equations is only the difference of noise subspace. Hence, focusing on only noise subspace, our
objective is to show that

En1 En1
H =

(
En2 En2

H
)∗

. (34)

Proof: En can be partitioned into two equal submatrices En . Therefore,

P = En En
H = �En

�En
H , (35)

En En
H =

[
En1

En2

] [
En1

H En2
H

]
, (36)

=

[
En1 En1

H En1 En2
H

En2 En1
H En2 En2

H

]
. (37)

Taking the conjugate on both sides,

�En
�En

H =

[ �En2
∗

�En1
∗

] [
En2

T En1
T

]
(38)

=

[ �En2
∗ �En2

T �En2
∗ �En1

T

�En1
∗ �En2

T �En1
∗ �En1

T

]
=

[ (
En2 En2

H
)∗ (

En1 En2
H
)∗(

En1 En1
H
)∗ (

En1 En1
H
)∗ ]

. (39)

Therefore, comparing Eqs. (37) and (39),

En1 En1
H =

( �En2
�En2

H
)∗
, (40)

and using Eq. (35) it can be simply written:

En1 En1
H =

(
En2 En2

H
)∗

. (41)

Hence, the proof is completed.
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