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Abstract: Arterial blood pressure (ABP) is one of the most vital signs in the prophylaxis and treatment of blood
pressure-related diseases because raised blood pressure is the most significant cause of death and the second major
cause of disability in the world. Higher ABP yields greater strain on arteries and these extra strains turn arteries into
thicker, less flexible, and more narrow structures. This increases the possibility of having an artery busting or artery
occlusion, which are the primary reasons for heart attacks, kidney disease, or strokes. In addition to its importance
in monitoring cardiovascular homeostasis, measurement of ABP is imperative in surgical operations. In this study, a
simple and effective approach was proposed to estimate ABP from electrocardiogram (ECG) and photoplethysmograph
(PPG) signals by an extreme learning machine (ELM) and statistical properties of the ECG and/or PPG signals in the
time-frequency domain. To evaluate and apply the proposed approach, the Cuffless Blood Pressure Estimation Dataset,
which was published and shared by UCI, was employed. First, the statistical properties were extracted from ECG and
PPG signals that were in the time-frequency domain. Later, extracted features were employed to estimate cuffless ABP
for each subject by the ELM and some popular machine learning methods. Achieved results and reported results in the
literature showed that the proposed approach can be successfully employed for estimating cuffless blood pressure (BP)
from ECGs and/or PPGs. Additionally, with the proposed approach, the systolic BP, mean BP, and diastolic BP can
be calculated simultaneously.

Key words: Cuffless artificial blood pressure, extreme learning machine, time-frequency analysis, statistical variables,
electrocardiogram, photoplethysmograph

1. Introduction
Blood pressure (BP) shows the pressure of blood in the arteries. High BP (generally higher than 140/90 mmHg),
which is also called hypertension, greatly increases the risk of heart problems and some other illness [1]. It was
reported that it is not only the largest cause of mortality but also the biggest risk factor for coronary heart
disease and disabilities [2]. This risk can be reduced by simply changing lifestyle, going on a diet, or being the
right weight for height. Although it is an essential parameter in human health, for more than a century, it has
been generally measured by mercury sphygmomanometer around the arm or leg based on auscultation and a
manometer. Some indirect BP measurement methods have been proposed and employed successfully, but it
was reported that utilizing the mercury sphygmomanometer still showed higher accuracy than these indirect
measurement methods [2].
∗Correspondence: necmettin.sezgin@batman.edu.tr
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Although measuring BP by mercury sphygmomanometer is more accurate, it is time-consuming and also
hard or impossible to measure continuously [3]. For some cases, for example, in surgical operations or dur-
ing exercises, measuring BP continuously by a mercury sphygmomanometer is impractical or impossible [4].
Therefore, some methods have been proposed to estimate BP by electrocardiogram (ECG) and/or photoplethys-
mograph (PPG) [4–7]. Pulse transit time (PTT), pulse arrival time (PAT), and heart rate (HR) are generally
employed methods in the estimation of BP [4,5,8].

Although PTT was successfully employed in the literature [9–12], it has many drawbacks. Since PTT
shows the time interval between the peak of the R-wave of an ECG and a characteristic point of a PPG, to
obtain a PTT signal both ECG and PPG signals are required [6,13,14]. Additionally, it is not a subject-free
method and it is based on individual physiological properties of the subject. Therefore, it requires calibration
for each subject [15,16]. Furthermore, it was reported that PTT can successfully track the variations of high-
frequency components of BP that are caused by activities [13], but it does not show the same ability in tracking
low-frequency variations.

To overcome these drawbacks, in this study a novel and a simple approach is proposed. Although
PTT shows the time interval between specific peaks, it can be said that it has a link with the time-frequency
representation of the signal [17–19], because the peaks cause a specific component in the frequency domain
and both the times at which the peaks occurred can be observed in the time-frequency domain. Although the
extreme learning machine (ELM) is a training method in single hidden layer artificial neural networks, it has an
extremely fast training stage with a high generalization capacity [20–24]. Therefore, the statistical properties
of ECG and PPG signals in the time-frequency domain were analyzed by ELM to estimate each of the systolic
BP (SBP), mean BP (MBP), and diastolic BP (DBP). The rest of the paper is organized as follows. Section 2
presents the utilized dataset and the employed methodology is given in Section 3. Results and discussion are
presented in Section 4 and Section 5 concludes the outcomes of this study.

2. Cuffless Blood Pressure Estimation Dataset

In this study the utilized Cuffless Blood Pressure Estimation Dataset was created in [15] from the Multipa-
rameter Intelligent Monitoring in Intensive Care (MIMIC) waveform database of physionet.org and published
by UCI [25]. This dataset consists of clean and validated ECG, PPG, and arterial BP (ABP) signals for 4254
different records, and a part from a signal with a length of 10 s is illustrated in Figure 1.

As seen in Figure 1, ABP is a dynamic parameter that is changing with each heartbeat [13]. Additionally,
PPG and ECG signals in this dataset are from the fingertip and channel II, respectively. The sampling frequency
of all signals is 125 Hz. An ABP sample is given in Figure 2. As seen in this figure, the ABP varies between
the SBP and DBP [15].

3. Applied methodology

The employed methodology is summarized in Figure 3. The proposed methods in estimation of BP (SBP, MBP,
and DBP) in the literature focused on feature extraction methods in PPG and/or ECG signals. While the
proposed methods in the literature were generally utilized for both PPG and ECG signals together, in this
study, ECG and PPG signals were employed separately and/or together.
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Figure 1. A sample from the employed dataset.
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Figure 2. A sample from the employed ABP signal.
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Figure 3. Employed methodology.

3.1. Feature extraction
The frequency content of many biological signals can change with time swiftly. The traditional Fourier transform
techniques are not sufficient to analyze the spectral content of these signals that vary with time. By mapping a
single direction time or frequency function, the time-frequency representation of a signal can localize the energy
of the signal both in the frequency and time directions [26,27]. Many biomedical signals are nonstationary, so
the time-frequency analysis of them has been more advantageous than using only time or frequency analysis [28].
The time-frequency energy distribution of biomedical signals exhibits some distinct patterns during abnormality
phases, which may be used for event characterization.

Since PPG, ABP, and ECG signals are nonstationary signals, time-frequency analysis was performed to
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extract the features in them. To process the data, the spectrogram, which is the magnitude squared of the short
time Fourier transform (STFT) of a signal, was employed [29]. In the continuous case, the STFT of a signal,
such as x(t), can be defined as:

STFT {x (t)} (τ, ω) = X (τ, ω) =

+∞∫
−∞

x (t)w(t− τ)e−jωtdt (1)

where w(t) is the window function that slides along the time axis, resulting in the two-dimensional representation
of a signal so that one dimension is time (τ) and the other is frequency (ω) . In this paper, the Blackman window
with different width sizes was used. The following equation defines the Blackman window of length N [30]:

w (n) = 0.42− 0.5 cos
(

2πn

N − 1

)
+ 0.08 cos

(
4πn

N − 1

)
, 0 ≤ n ≤ M − 1, (2)

where N shows the length of the Blackman window and M = N/2 if N is even and M = (N+1)/2 if N is odd.
The employed Blackman window and two of the other popular windows (the Hamming and Hanning windows)
in both time and frequency domains (window sizes: N = 64) are given in Figure 4.
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Figure 4. Some popular window types in (a) time and (b) frequency domains.

As seen in Figure 4, the Blackman window provides a narrower window in the time domain and a wider
window in the frequency domain compared with the Hamming and Hanning windows [30]. The chosen window
widths are 0.25 s, 0.50 s, 0.75 s, 1.00 s, 1.50 s, 2 s, 2.50 s, and 5 s. The number of overlapped points was chosen
as 20% of the window width. As expressed in Section 2, the lengths of the employed signals in the dataset are
10 s. Therefore, the window lengths are chosen accordingly to have 1/40 (0.25 s) to 1/2 (5 s) of the lengths of
the signals. In this way, the acceptable window length of the signals was assessed. The ECG signal was also
expanded by zero padding to have 1000 points per second in order to extract features for narrow frequency
bands of the ECG signal. The magnitude squared of the STFT gives the spectrogram of the signal x(t), defined
as [31]:

spectrogram {x (t)} (τ, ω) = |X (τ, ω)|2 (3)
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After signal processing, some features, which are the minimum, maximum, mean, and standard deviation for
each windowed signal, were extracted and used as input for the ELM. These extracted features were employed
to estimate SBP, MBP, and DBP by ELM.

3.2. Extreme learning machines (ELMs)

Th ELM is a training method for a single hidden layer feedforward neural network (SLFN) and the output of
an SLFN can be calculated as follows [32]:

y =

m∑
j=1

βjg

(
n∑

i=1

wi,jxi + bj

)
(4)

where y , xi , and n stand for the output and inputs of the network and the number of features in the input,
respectively. In an ELM, the weights in the input layer (wi,j) and biases of the neurons in the hidden layer
(bj) are assigned arbitrarily and the activation function (g(.)) and the number of neurons in the hidden layer

(m) are user-defined parameters. By using inputs and outputs in the training dataset, each g(
n∑

i=1

wi,jxi + bj)

value is known since some of them are arbitrarily assigned and the others are user-defined parameters. Then
the only unknown weights in the output layer (βj) are calculated analytically in the training stage based on
achieving the minimum approximation error by linear algebra:

Hβ = y (5)

where H , which is also called the hidden matrix, is calculated by

H (wi,j , bj , xi) =

 g(w1,1x1 + b1) · · · g(w1,mxm + bm)
... . . . ...

g(wn,1xn + b1) · · · g(wn,mxm + bm)

 (6)

The weights in the output layer can be calculated by using the inverse of the H matrix by the Moore–Penrose
generalized inverse method (H+) as follows [33]:

β̂ = H+y (7)

As can be seen from Eq. (7), the optimal weights in the hidden layer can be calculated analytically with
an extremely high speed. Additionally, presented papers showed that the ELM also has high generalization
capacity [32,34–36].

3.3. Validation metrics
Obtained results by ELM were compared with some popular machine learning methods such as the linear
regression (LR), generalized regression neural network (GRNN), k nearest neighbor regression (kNNR), ridge
regression (Ridger), least absolute shrinkage and selection operator regression (LASSOR), partial least squares
regression (PLSR), and Gaussian process regression (GPR) methods in terms of both accuracy and process time
(training and testing time) [37]. The mean absolute relative error (MARE), mean absolute error (MAE), root

2264



ERTUĞRUL and SEZGİN/Turk J Elec Eng & Comp Sci

mean square error (RMSE), and mean absolute percentage error (MAPE) can be calculated as follows:

MARE =
1

n

n∑
i=1

∣∣∣∣fi − yi
yi

∣∣∣∣ (8)

MAE =
1

n

n∑
i=1

|fi − yi| (9)

RMSE =

√√√√ 1

n

n∑
i=1

(fi − yi)
2 (10)

MAPE =
100

n

n∑
i=1

∣∣∣∣fi − yi
yi

∣∣∣∣ (11)

where f , y , n , and E are forecasted (estimated) value, true (observed) value, number of samples, and expected
value, respectively. Furthermore, each test was performed by MATLAB according to 12-fold cross-validation in
order to achieve fairer results, which are less dependent on the order of the samples.

4. Results and discussion
In the validation stage, first the structure of the single hidden neural network was optimized. Later, the
proposed approach was assessed from many perspectives and finally results achieved by the proposed approach
were compared with the results of some other machine learning methods and results reported in the literature.

4.1. Optimization stage
In a single hidden layer neural network, both the activation function and number of neurons in the hidden
layer must be optimized in order to achieve higher accuracies. Generally, optimization is done by trials. In
this study the optimal number of neurons in the hidden layer was chosen as 5, 10, 15, 20, 25, and 30, while
the optimal activation function was tested for the sigmoid, sine, radial basis, hard limit, symmetric hard
limit, symmetric saturating linear, hyperbolic tangent sigmoid, triangular basis, positive linear, and pure linear
activation functions. This optimization was done for determining the optimal network structure for estimating
SBP, MBP, and DBP in each dataset (PPG, ECG, and PPG + ECG). For instance, the optimization of network
parameters in the PPG dataset for estimating SBP is illustrated in Figure 5. The number of neurons in the
hidden layer and the activation function were determined according to the obtained accuracies. As seen in
Figure 5, the optimum activation function and the number of neurons are the radial basis function and 10,
respectively.

4.2. Subject-free results
In this stage, each sample that belonged to a subject was combined and reordered arbitrarily. Then the ELM
was employed in order to estimate SBP, MBP, and DBP. Obtained error rates based on 12-fold cross-validation
are summarized in Table 1. As seen for subject-free results in Table 1, the SBP, MBP, and DBP can be estimated
more accurately by using PPG signals. Additionally, in order to assess the performance of the ELM, some other
machine learning methods, which are GRNN, LR, kNN, RIDGER, LASSOR, kSmooth, PLSR, and GPR, were
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Figure 5. Optimizing the structure of the single hidden layer artificial neural network.

employed in estimating SBP, MBP, and DBP by the PPG + ECG dataset and obtained RMSEs based on
12-fold cross-validation are given in Table 2.

Table 1. Obtained subject-free error rates by ELM.

Dataset Parameter MAE RMSE MAPE MARE

PPG
SBP 4.253 5.234 6.682 0.067
MBP 3.579 4.457 4.382 0.044
DBP 3.946 4.933 3.997 0.040

ECG
SBP 4.364 5.477 6.803 0.068
MBP 4.038 5.066 4.905 0.049
DBP 4.570 5.728 4.570 0.046

PPG + ECG
SBP 4.371 5.478 6.825 0.068
MBP 3.639 4.562 4.405 0.044
DBP 3.953 4.935 4.000 0.040

Table 2. Obtained RMSE by some popular machine learning methods for PPG + ECG dataset.

Employed machine learning method Obtained RMSE in estimating parameter
SBP MBP DBP

GRNN 5.819 5.015 5.348
LR 5.825 5.165 5.427
kNN 7.234 6.275 6.545
RIDGER 5.848 5.239 5.541
LASSOR 5.848 5.239 5.541
kSmooth 5.886 5.027 5.35
PLSR 6.62 6.44 7.169
GPR 16.407 20.654 27.731

As seen in Table 2, the minimum RMSEs were achieved by GRNN in estimating each of the parameters.
Achieved RMSEs are 5.819, 5.015, and 5.348 in estimating the SBP, MBP, and DBP, respectively. Since obtained
RMSEs by the ELM in PPG + ECG in estimating SBP, MBP, and DBP are 5.478, 4.562, and 4.935, respectively
(see Table 1), it can be said that the ELM showed higher success in estimating ABP.
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In order to assess the effectivity of using exacting features from the signals in the time-frequency domain,
some statistical features, which are given in Table 3, were extracted in the time and frequency domains of the
signals. Obtained error rates by the ELM and other employed machine learning methods are given in Table 4.
As seen Tables 1, 2, and 4, the best results were obtained by the features that were extracted from the signals
in the time-frequency domain.

Table 3. Extracted statistical features.

Domain Statistical features
Time domain Energy, mean, standard deviation, maximum, minimum, kurtosis, skewness
Frequency domain Mean, standard deviation, kurtosis, skewness

Table 4. Achieved error rates with PPG and/or ECG datasets.

ML Methods SBP MBP DBP
MARE MAE RMSE MARE MAE RMSE MARE MAE RMSE

PPG

ELM 0.11 6.84 9.05 0.12 9.37 11.27 0.14 19.26 23.77
GRNN 0.15 8.76 12.57 0.16 14.23 18.44 0.19 26.35 33.02
LR 0.11 6.86 9.27 0.12 10.55 13.45 0.14 19.60 24.17
kNNR 0.15 8.96 12.94 0.17 14.53 18.87 0.20 26.88 33.71
RIDGER 0.11 6.85 9.26 0.12 10.56 13.48 0.14 19.60 24.17
LASSOR 0.11 6.89 9.28 0.12 10.55 13.47 0.14 19.59 24.15
PLSR 0.13 7.70 10.43 0.14 12.17 15.64 0.16 21.63 26.84
GPR 0.96 55.53 56.81 0.96 84.26 86.28 0.96 136.07 139.97

ECG

ELM 0.11 6.99 9.37 0.12 9.90 11.81 0.14 19.48 24.18
GRNN 0.15 9.14 13.13 0.17 15.14 19.55 0.21 28.04 34.77
LR 0.12 7.10 9.47 0.12 10.90 13.81 0.14 19.58 24.19
kNNR 0.15 9.23 13.30 0.17 15.29 19.77 0.21 28.30 35.10
RIDGER 0.12 7.06 9.42 0.12 10.86 13.74 0.14 19.53 24.11
LASSOR 0.12 7.08 9.44 0.12 10.86 13.73 0.14 19.51 24.09
PLSR 0.20 11.94 16.17 0.20 17.96 23.65 0.22 30.84 39.83
GPR 0.99 57.40 58.28 0.99 86.92 88.23 0.99 140.13 142.80

PPG & ECG

ELM 0.11 6.93 9.30 0.12 8.86 11.92 0.14 19.43 24.05
GRNN 0.17 15.14 19.58 0.15 9.03 13.05 0.21 28.04 34.92
LR 0.12 10.56 13.47 0.11 6.97 9.39 0.14 19.21 23.86
kNNR 0.17 15.15 19.58 0.15 9.03 13.05 0.21 28.05 34.93
RIDGER 0.12 10.58 13.52 0.11 6.96 9.39 0.14 19.22 23.88
LASSOR 0.12 10.55 13.47 0.12 7.00 9.42 0.14 19.15 23.78
PLSR 0.14 12.50 16.27 0.13 7.87 10.58 0.16 22.10 28.18
GPR 1.00 87.31 88.49 1.00 57.66 58.47 1.00 140.72 143.18

2267



ERTUĞRUL and SEZGİN/Turk J Elec Eng & Comp Sci

4.3. Subject-based results
In order to investigate the subject-based accuracy, datasets that belonged to five subjects were randomly
selected from the Cuff-Less Blood Pressure Estimation Dataset [15]. Obtained accuracies based on 12-fold
cross-validation are summarized in Table 5.

Table 5. Obtained error rates for subject-based signals.

Dataset Parameter MAE RMSE MAPE MARE

PPG
SBP 1.039 1.345 1.630 0.016
MBP 1.012 1.387 1.222 0.012
DBP 1.384 1.806 1.378 0.014

ECG
SBP 1.065 1.388 1.670 0.017
MBP 1.032 1.419 1.246 0.012
DBP 1.390 1.821 1.388 0.014

PPG + ECG
SBP 1.054 1.374 1.649 0.016
MBP 1.008 1.368 1.218 0.012
DBP 1.383 1.818 1.378 0.014

As seen in Table 5, obtained error rates are close to each other. The results in this table belonging to
the windows that are 1 s long (125 samples per a window). Therefore, in order to investigate the relationship
between window length and obtained accuracy, various windows with different window lengths were employed
and obtained accuracies in each case are summarized in Table 6 based on 12-fold cross-validation. Note that
there are 125 samples in 1 s.

As seen in Table 6, the lowest RMSEs were achieved in estimating SBP, MBP, and DBP when the lengths
of windows were 2.5, 5, and 5 s, respectively. Another interesting obtained result is that the RMSEs obtained
with the PPG dataset were the lowest in comparison to RMSEs obtained with the ECG and PPG + ECG
datasets. In order to visualize these results, the DBP of an arbitrarily selected subject (5th subject in part
2) was estimated for various cases that used different windows lengths, and obtained RMSEs based on 12-fold
cross-validation are given in Figure 6.
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Figure 6. Obtained RMSEs according to window lengths.

The results in Figure 6 well suit the results in Table 6. Furthermore, Bracic and Stefanovska reported
that some subfrequencies in a blood flow signal, which are given in Table 7, are associated with different

2268



ERTUĞRUL and SEZGİN/Turk J Elec Eng & Comp Sci

physiological activities [38]. In order to assess the relationship between these reported subbands, the ECG
signal time-frequency domain was filtered and the statistical features were extracted from these filtered signals.
Obtained RMSEs are given in Table 8 based on 12-fold cross-validation. The results in Tables 7 and 8 show
that the most effective subband in estimating SBP, MBP, and DBP is the heart activity, as expected.

Table 6. Obtained RMSEs based on employed window length.

Window length (s) Parameter PPG ECG PPG + ECG

0.25
SBP 3.767 3.064 2.402
MBP 3.502 2.803 2.357
DBP 2.952 2.903 2.512

0.5
SBP 2.101 2.236 2.057
MBP 1.933 1.681 1.610
DBP 2.241 1.951 1.988

0.75
SBP 1.254 1.240 1.222
MBP 1.200 1.279 1.248
DBP 1.376 1.331 1.325

1
SBP 1.171 1.246 1.246
MBP 1.046 1.134 1.171
DBP 1.197 1.212 1.210

1.5
SBP 1.113 1.139 1.100
MBP 1.026 1.018 1.081
DBP 1.244 1.277 1.244

2
SBP 1.113 1.145 1.139
MBP 0.952 0.969 0.959
DBP 1.249 1.287 1.238

2.5
SBP 1.081 1.074 1.162
MBP 0.964 0.950 0.977
DBP 1.184 1.207 1.321

5
SBP 1.135 1.030 1.158
MBP 0.631 0.637 0.635
DBP 1.157 1.225 1.332

4.4. Subject-based time-ordered results
Since the motivation of writing this paper is to propose an approach that can be employed in order to estimate
SBP, MBP, and DBP simultaneously, each sample that was extracted from the PPG, ECG and PPG + ECG in
the time-frequency domain was estimated based on its previous samples for each particular subject and obtained
mean accuracies are listed in Table 9.

As seen in Table 9, lower error rates were achieved while using each subject-based dataset in a time-
ordered way instead of employing a batch approach. Obtained RMSEs in estimating DBP from PPG are given
in Figure 7.
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Table 7. Frequency subbands [38].

Frequency band (Hz) Physiological activity
0.6–1.6 Heart activity
0.16–0.4 Respiratory activity
0.06–0.16 Myogenic activity
0.02–0.06 Neurogenic activity
0.0095–0.02 Metabolic activity

Table 8. Obtained RMSEs based on frequency subbands and window lengths.

Window length (s) Parameter Frequency bands (Hz)
0.6–1.6 0.16–0.4 0.06–0.16 0.02–0.06 0.0095–0.02

0.25
SBP 2.884 2.827 2.737 2.731 2.628
MBP 2.675 2.695 2.595 2.450 2.381
DBP 2.724 2.742 2.732 2.701 2.627

0.5
SBP 2.265 2.127 2.090 1.883 1.795
MBP 1.807 1.755 1.667 1.666 1.587
DBP 1.870 1.878 1.871 1.868 1.868

0.75
SBP 1.238 1.233 1.228 1.345 1.242
MBP 1.357 1.347 1.349 1.339 1.325
DBP 1.328 1.326 1.327 1.323 1.328

1
SBP 1.205 1.207 1.240 1.207 1.236
MBP 1.431 1.346 1.377 1.299 1.120
DBP 1.204 1.217 1.205 1.212 1.210

1.5
SBP 1.096 1.098 1.100 1.095 1.118
MBP 0.990 0.991 0.992 0.988 0.993
DBP 1.234 1.229 1.236 1.236 1.268

2
SBP 1.132 1.127 1.136 1.129 1.137
MBP 0.918 0.949 0.929 0.893 0.960
DBP 1.240 1.201 1.208 1.204 1.284

2.5
SBP 1.075 1.081 1.081 1.081 1.077
MBP 0.936 0.935 0.935 0.935 0.917
DBP 1.196 1.199 1.287 1.201 1.299

5
SBP 1.165 1.167 1.166 1.163 1.151
MBP 0.648 0.649 0.649 0.661 0.653
DBP 1.166 1.172 1.175 1.183 1.167

4.5. Comparison with the literature

In order to validate the feasibility of the proposed approach, obtained results must also be confirmed with
reported results in the literature. Some reported errors in estimating SBP, MBP, and DBP are given in Table
10.
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Table 9. Obtained subject-based error rates in employing datasets according to time order.

Dataset Parameter MAE RMSE MAPE MARE

PPG
SBP 1.050 1.574 1.617 0.016
MBP 0.798 1.021 0.991 0.010
DBP 1.019 1.398 1.088 0.011

ECG
SBP 0.915 1.212 1.410 0.014
MBP 1.241 2.346 1.553 0.016
DBP 0.942 1.269 1.005 0.010

PPG + ECG
SBP 0.827 1.033 1.277 0.013
MBP 0.867 1.191 1.080 0.011
DBP 1.092 1.565 1.163 0.012
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Figure 7. Obtained RMSEs according to data lengths.

In Table 10, AE is the absolute error (mmHg), µ shows MBP error (mmHg), r is correlation coefficient,
MSE MBP is the MBP squared error (mmHg), and MAD is MBP absolute difference (mmHg). It is obvious
from Table 10 that RMSEs obtained by the proposed approach are lower than the achieved ones (see Table 9).
The proposed approach can be acceptable based on the comparison between achieved results in this study (see
Tables 1, 5, 6, and 9) and reported results in the literature.

The proposed approach has some major improvements over the presented approaches in the literature.
Just measuring ECG or PPG is enough to estimate SBP, MBP, and DBP. Moreover, it was reported by Ding and
Zhang that some presented estimation methods can only provide SBP, MBP, or DBP, but in the proposed method
the three of them can be provided simultaneously [13]. Furthermore, achieved accuracies in the estimation of
SBP, MBP, and DBP in the present paper are Grade A based on the British Hypertension Society standards
[15]. Additionally, obtained errors in this study are also lower than the standards of the Association for the
Advancement of Medical Instrumentation, in which MAE and STD must be lower than 5 mmHg and 8 mmHg
for both SBP and DBP [5,16]. Further investigations should be carried out to determine more relevant statistical
properties for achieving lower error rates. On the other hand, extracting features from the signals in the time-
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Table 10. Reported error rates in estimating SBP, MBP, and DBP in the literature.

Ref. #Subjects Signal Method 
Accuracy 

SBP MBP DBP 

[1] 11 
ECG & 

PPG 

PTT + ECG R-peak Detection + 

PPG peak detection 

AE = 14.83–

18.29 
 

AE = 8.22–

12.09 

[4] 55 
PPG & 

ECG 
Delta PAT and delta HR 

RMSE = 5.21 

r = 0.691 
 

RMSE = 4.32 

r = 0.578 

[5] 25 
PPG & 

ECG 

PTT and Hilbert–Huang 

transform 

µ = 0.44 

STD = 3.85 

r = 0.71 

 

µ = 0.93 

STD = 1.84 

r = 0.69 

[6] 5 PPG 
Cardiovascular parameters + 

multiple regression 
 r = 0.71  

[7] 96 PPG Acceleration pulse wave 
r = 0.89 

STD = 8.2 
  

[8] 4 
ECG & 

PPG 

PAT + LR 

PTT + LR 

E = 2.7–16 

E = 12–25 
  

[13] 27 
ECG &  

PPG 
PPG intensity ratio + PTT 

µ = –0.37 

STD = 5.21 

MAD = 4.09 

µ = –0.08 

STD = 4.06 

MAD = 3.18 

µ = –0.18  

STD = 4.13 

MAD = 3.18 

[15] - 
ECG & 

PPG 
Physiological parameters + SVM 

MAE = 6.34  

STD = 8.45 

MAE = 7.52  

STD = 9.54 

MAE = 12.38  

STD = 16.17 

[16] 25 
ECG & 

PPG 
PAT and HR 

µ = 0.41 

MSE = 70.05 
 

µ = 0.07 

MSE = 35.08 

[39] 41 
ECG & 

PPG 
PTT 

µ = 1.4 STD = 

10.2 
 

µ = 2.1 

STD = 7.3 

[40] 23 
ECG & 

PPG 
PTT 

µ = 0.52 

STD = 3.3 

r = 0.983 

  

frequency domain is a more time-consuming process than extracting the features in any of the time or frequency
domains of the signals.

5. Conclusion
BP is one of the most important health parameters and unfortunately, for more than a century, it has
generally been measured by mercury sphygmomanometer. Since the measurement procedure by mercury
sphygmomanometer is a hard and time-consuming process, alternative methods have been presented in the
literature, which are generally based on measuring both PPG and ECG and estimating BP based on these
records. In this study, a simple, effective, and subject-free methodology that shows high accuracy (low error) by
using PPG and ECG separately or both ECG and PPG signals together was presented. In the proposed method,
statistical features were extracted from the signals in the time-frequency domain. Later, extracted features were
employed to estimate SBP, MBP, and DBP by ELM. Achieved results showed that by the proposed approach
only a PPG or an ECG signal is enough to estimate SBP, MBP, and DBP. Moreover, each of these BP types
can be provided simultaneously.
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