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Abstract: In this paper, we introduce an Lp -norm aggregation to present a signal-to-noise ratio expression unified not
only for such diversity combining schemes as equal-gain combining, maximal-ratio combining, and selection combining,
but also for such transmission techniques as multihop transmission. Accordingly, we propose two moment-generating
function-based approaches that both respectively unify the exact analyses of the averaged channel capacity and averaged
effective capacity over generalized fading channels with respect to the diversity combining and multihop transmission
schemes. Finally, the mathematical formalism is illustrated by numerical special cases and verified by simulations.
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1. Introduction
Wireless systems continue to strive for higher data rates and better reliability while migrating to higher and
higher frequency bands. Due to high data-rate and coverage requirements of current systems, the channel
capacity (CC) analysis of diversity combining and transmission schemes becomes a fundamental issue that
needs to be considered from theoretical, empirical, and practical viewpoints. In the literature, there exist several
papers targeting the averaged symbol error performance (ASEP) of diversity combining schemes over fading
channels (see, for example, [1] and the references therein). Advances over the last decade on the ASEP analysis
of diversity combining schemes over fading channels emphasized the moment generating functions (MGF) as a
powerful tool for simplifying the ASEP analysis of diversity combining schemes [1–3]. However, to the best of
our knowledge, published papers concerning the exact averaged channel capacity (ACC) over fading channels
have been scarce when compared to those concerning the exact analysis of the ASEP [1, and references therein].
For maximal-ratio combining (MRC) diversity combining schemes, some insightful and special-case results for
ACC analysis are found in [4–8] and [9,10, and references therein]. Inspired by the landmark paper of Simon and
Alouini [2], two MGF-based frameworks concerning the exact ACC analysis over fading channels were proposed
in [10, Eq. (5)] and [10, Eq. (7)], respectively, each of which is targeting MRC but neither applicable nor
extendible not only to the ACC analyses of equal-gain combining (EGC) and selection combining (SC) but also
∗Correspondence: ferkan.yilmaz@gmail.com
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to those of amplify-and-forward (AF) and cascaded multihop transmission schemes. Later, Yilmaz and Alouini
proposed in [11, Eq. (6)] the other MGF-based framework, which unifies the ACC analyses of EGC and MRC
combining schemes. However, in this article, we introduce a unified signal-to-noise ratio (SNR) expression, and
then we propose a novel MGF-based approach that remarkably unifies the ACC analyses of MRC, EGC, and SC
combining schemes and AF and cascaded transmission schemes over correlated/uncorrelated generalized fading
channels.

In wireless systems, transmission is achieved based on packet switching that introduces a variable packet
delay as a quality-of-service (QoS) due to the fact that packets have to be buffered either after being received
from or before being transmitted to the other wireless nodes. This buffering will become a serious problem
for applications that are sensitive to delays, especially when the packet delay exceeds a certain threshold.
Thus, QoS provisioning is required in order to guarantee the packet delay performance with the achievable
maximum transmission rate. In this context, the averaged effective capacity (AEC) was introduced in [12] to
quantify the performance of single-input single-output and multiple-input single-output communication systems
under QoS limitations [13–22]. Particularly, the analysis of AEC was published in [13–15] considering MRC
combining over mutually independent fading channels, and also in [16,17] considering the same combining over
correlated fading channels. Specifically, presented in [13–15,17–19] are AEC analyses over mutually independent
not necessarily identical well-known fading channels, while [16] presented systems with a number of antennas
in fading environments with correlation and keyholes. Note that some analytical approaches are available in
the literature, e.g., see [20–22], each of which essentially focuses on the AEC analysis of MRC combining over
fading channels and is not only applicable to the AEC analyses of EGC and SC diversity receivers but also
to those of AF and cascaded transmission schemes. However, we propose in this article a novel MGF-based
framework to simultaneously analyze the ACC and AEC of diversity combining and transmissions schemes over
correlated/uncorrelated fading channels.

The remainder of this paper is organized as follows. In Section 2, we introduce a unified SNR expression
in terms of Lp -norm aggregation. In Section 3, we propose two novel MGF-based approaches for the ACC
and AEC analyses, each of which is remarkably unified not only for a variety of diversity combining and
transmission schemes but also for correlated and uncorrelated generalized fading channels. In Section 4, the
schemes of diversity combining and transmission are outlined to show how to treat the ACC and AEC analyses
simultaneously. Finally, conclusions are drawn in the last section.

2. System and fading environment models

Consider an L -branch diversity combining or L -hop transmission scheme over additive white Gaussian noise
(AWGN) channels in flat fading environments. Accordingly, for ℓ ∈ {1, 2, . . . , L} , the instantaneous SNR of the
ℓth branch/hop is defined as γℓ = α2

lEs/N0 , where αlEs , and N0 denote the fading amplitude, average symbol
energy, and noise power, respectively. Let γend denote the instantaneous SNR at the output either of diversity
combining or of multihop transmission. As a contribution of this paper, it is consistently written in a manner
of unifying the instantaneous SNRs of diversity combining and transmission schemes by using the Lp -norm of
γ1γ2, . . . , γL , that is [23, Eq. (5)]:

γend = γend (η, p, q) = η

(
1

L

L∑
l=1

γp
l

)q

(1)
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where η ∈ R+ , p ∈ R , and q ∈ R specify the type of the diversity receiver or transmission technique; see Table.
In wireless communications, the analysis of the highest achievable rate over the fading channels is

corroborated by the ACC analysis and accordingly given by:

Cavg = E [log (1 + γend)] (2)

where E [·] is the expectation operator and log (·) is the natural logarithm [24, Eq. (4.1.1)]. By substituting
Eq. (1) into Eq. (2), the ACC evaluation involves the L -fold integral, that is:

Cavg =

∫ ∞

0

· · ·
∫ ∞

0

log2

(
1 + η

(
1

L

L∑
l=1

γp
l

)q)
pγ1,γ2,...,γL

(r1, r2, . . . , rL) dr1 . . . drL (3)

where pγ1,γ2,...,γL
(r1, r2, . . . , rL) denotes the joint PDF of γ1γ2, . . . , γL .

Table. Some special cases of the unified overall instantaneous SNR.

MRC receiver has the overall instantaneous SNR
[1]

γMRC = γend (L, 1, 1) =
L∑

l=1

γl

Cascaded fading channel has the overall instan-
taneous SNR [25, and references therein]

γCFC = γend (1, pL, 1/p) =
L∏

l=1

γl

EGC receiver has the overall instantaneous SNR
[1]

γEGC = γend (L, 1/2, 2) =
1
L

(
L∑

l=1

√
γ
l

)2

Geometric-mean approximation of the overall
instan-taneous SNR can be written as [26, 27]

γGMA = γend (1, p, 1/p) =

(
L∏

l=1

γl

) 1
L

SC receiver has the overall instantaneous SNR
[1]
γSC = γend (L, p, 1/p) = max (γ1, γ2, . . . , γL)

AF Multihop Transmission has the overall
instant- taneous SNR [34, and references therein]
γAFM = γend

(
1
L ,−1,−1

)
= 1

1
γ1

+ 1
γ2

+...+ 1
γL

RMSC receiver has the overall instantaneous
SNR [28]

γRMSC = γend

(√
L, 2, 1/2

)
=

√
L∑

l=1

γ2
l

Minimum-bound of the overall instantaneous
SNR can be written as
γMIN = γend (L, p, 1/p) = min (γ1, γ2, . . . , γL)

In addition to the ACC analysis in wireless communications, the analysis of the highest achievable rate
with delay constraints and buffer limitation over fading channels is corroborated by the AEC analysis, and it is
accordingly given by [12] and [16, Eq. (4)]:

Ceff = − 1

A
log
(
E
[
(1 + γend)

−A
])

(4)

where A ∈ R+ represents a metric of delay constraint and buffer limitation [16, Eq. (5)]. It appears evident,
by substituting Eq. (1) into Eq. (4), that the AEC evaluation involves the L -fold integral, that is:

Ceff = − 1

A
log

∫ ∞

0

· · ·
∫ ∞

0

[
1 + η

(
1

L

L∑
l=1

γp
l

)q]−A

pγ1,γ2,...,γL
(r1, r2, . . . , rL) dr1 . . . drL

 (5)

The L -fold integration in both Eq. (3) and Eq. (5) are numerically tedious and inefficient even for a small
number of L in addition to being inseparable from the product of one-dimensional integrals. To overcome this
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numerical inefficiency, we propose in what follows two MGF-based ACC and AEC analyses over correlated and
uncorrelated fading channels.

3. Main results
In this section, we present two MGF-based approaches for ACC and AEC analyses.

3.1. An MGF-based ACC analysis
A unified MGF-based approach for the evaluation of the ACC of diversity combining and transmission schemes
is given in the following theorem.

Theorem 1 (ACC analysis over correlated fading channels). The ACC analysis over correlated fading channels
can be exactly evaluated by

Cavg =

∫ ∞

0

Cη,q (s)

[
∂

∂s
Mγend

(s | p)
]
ds (6)

where η ∈ R+ , p ∈ R , and q ∈ R are chosen according to the type of the combining or transmission technique,
and where Cη,q (s) is the auxiliary function given by

Cη,q (s) = −H1,2
3,3

[
η

Lqsq

∣∣∣∣ (1, 1) , (1, 1) , (1, |q| /2 + q/2)
(1, 1) , (0, 1) , (0, |q| /2− q/2)

]
(7)

and Mγend
(s | p) = E

[
e−s(γp

1+γp
2+...+γp

L)
]

is the joint generalized MGF of γ1γ2, . . . , γL . Furthermore, Hm,n
p,q [·]

denotes Fox’s H function [29, Eq. (8.3.1/1)]1.

Proof For a specific q (i.e. q = 1 for MRC, q = 1/2 for EGC, and q = −1 for AF multihop transmission),
we can write

1

X
log (1 +Xq) =

1

X
G1,2

2,2

[
Xq

∣∣∣∣ 1, 1
1, 0

]
(8)

by using [29, Eq. (8.4.6/5)] and [30, Eqs. (2.9.1) and (2.1.5)], where Gm,n
p,q [·] denotes Meijer’s G function [29,

Eq. (8.2.1/1)]. Accordingly, Eq. (8) can also be written as

1

X
log (1 +Xq) =

1

2πi

∫ σ+i∞

σ−i∞

Γ (−s) Γ (−s) Γ (1 + s)

Γ (1− s)
X−qs−1ds (9)

within the convergence region −1 < σ < 0 , where i =
√
−1 is the imaginary number, and Γ (·) is the

gamma function [32, Eq. (6.1.1)]. Further, herein, q could be negative, namely q = −1 for the AF multihop
transmission. Keeping this in mind, the term X−qs−1 can be written in terms of Laplace transform:

X−qs−1 =

∫ ∞

0

uqs

Γ (1 + qs)
exp (−Xu)du (10)

within the convergence condition qℜ{s} > −1 (i.e., qσ > −1) . Accordingly, substituting Eq. (10) into Eq. (9)
and using [29, Eq. (8.3.1/1)], we obtain

log (1 +Xq) =

∫ ∞

0

Cη,q (s)

[
∂

∂s
exp (−Xs)

]
ds (11)

1For more information about Fox’s H function, readers are referred to [28–30].
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where the auxiliary function Cη,q (s) is given in Eq. (7). Finally, substituting Eq. (11) into Eq. (3) and then

using the joint generalized MGF Mγend
(s | p) = E

[
e−s(γp

1+γp
2+...+γp

L)
]

, that is

Mγend
(s | p) =

∫ ∞

0

· · ·
∫ ∞

0

exp
(
−s

L∑
l=1

γp
l

)
pγ1,γ2,...,γL

(r1, r2, . . . , rL) dr1 . . . drL (12)

we readily reduce Eq. (3) into Eq. (6), which proves Theorem 1. 2

Theorem 2 demonstrates how to use the MGF to carry out the ACC analysis simultaneously for a variety of
diversity combining and transmission schemes. In the case of no correlation between γ1γ2, . . . , γL , it is rewritten
as shown in the following theorem.

Theorem 2 (ACC analysis over uncorrelated fading channels). The ACC analysis over uncorrelated fading
channels can be achieved by

Cavg =

∫ ∞

0

Cη,q (s)

L∑
l=1

[
∂

∂s
Mγl

(s | p)
]∏L

k = 1,
k ̸= l

Mγk
(s | p)ds (13)

where Mγl
(s | p) = E [exp (−sγp

l )] is the generalized MGF of the l th branch/hop.

Proof Note that, assuming that all instantaneous SNRs γ1γ2, . . . , γL are uncorrelated, the joint PDF can be
rewritten as the product of the PDF of γ1γ2, . . . , γL as follows:

pγ1,γ2,...,γL
(r1, r2, . . . , rL) =

L∏
l=1

pγl
(rl) (14)

where pγl
(rl) denotes the PDF of γl . Accordingly, substituting Eq. (14) into Eq. (12), we have

Mγend
(s | p) =

L∏
l=1

∫ ∞

0

e−sγp
l pγl

(r) dr =

L∏
l=1

Mγl
(s | p) (15)

With this result, Eq. (6) can be readily simplified to Eq. (13), which proves Theorem 1. 2

Regarding the usage of Eq. (7) in both Eqs. (6) and (13), an implementation of Fox’s H function is
available in [25]. Using [29, Eq. (8.3.2/22)], the auxiliary function Cη,q (s) can also be expressed as the more
familiar Meijer’s G function. As such, for |q| = k/l with gcd (k, l) = 1 , where k ∈ Z+ and l ∈ Z+ , the auxiliary
function Cη,q (s) is given by

Cη,q (s) = −

√
(2π)

k+1

(2π)
2l
k
Gl,2l

2l+k,2l

 ηlkk

Lksk

∣∣∣∣∣∣
Ξ
(l)
(1),Ξ

(l)
(1),Ξ

(k)
(1)

Ξ
(l)
(1)Ξ

(l)
(0)

 , for q ≥ 0; (16)

Cη,q (s) = −

√
(2π)

k+1

(2π)
2l
k
Gl,2l

2l,2l+k

ηlLksk

kk

∣∣∣∣∣∣
Ξ
(l)
(1)Ξ

(l)
(0)

Ξ
(l)
(1),Ξ

(l)
(0),Ξ

(k)
(0)

 , for q < 0; (17)
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where Ξ
(x)
(n) is the coefficient list defined as

Ξ
(x)
(n)

x

n

x+ 1

n

x+ 2

n
, · · · , x+ n− 1

n
(18)

with x ∈ C and n ∈ Z+ . It is worth noting that the computational efficiency and latency of Gm,n
p,q [·] is primarily

addressed by the total number of coefficients (i.e. p + q) . In this context, regarding |q| = k/l , the numbers
k ∈ Z+ and l ∈ Z+ have to be kept small while supporting |q| ≈ k/l . Otherwise, Fox’s H function is preferable.

In accordance with the Table, let us consider some special cases of Eq. (7) to illustrate the flexibility and
analytical accuracy of the novel MGF-based approach presented above. For instance, for p > 0 and q > 0 , it is
shown that using [30, Eq. (2.1.12)], Eq. (7) simplifies to [11, Eq. (9)] as expected. Specifically, setting η = L

and q = 1 in Eq. (7) and using [29, Eqs. (8.3.2/21) and (8.2.2/9), (8.2.2/14), and (8.4.11/1)], the auxiliary
function CL,1 (s) for the L -branch MRC combining is given as

CL,1 (s) = −H1,2
3,2

[
1

s

∣∣∣∣ (1, 1) , (1, 1) , (1, 1)
(1, 1) , (0, 1)

]
= Ei (−s) (19)

where Ei(·) is the exponential integral function [24, eq. (8.211/1)]. Accordingly, putting (19) into (6) yields
the well-known MGF-based approach reported in [10, eq. (7)], i.e.

Cavg =

∫ ∞

0

Ei (−s)

[
∂

∂s
Mγend

(s | 1)
]

ds (20)

Further, putting (19) into (13) further yields to the ACC analysis of the L-branch MRC diversity receiver with
uncorrelated diversity branches as expected.

For the L -branch EGC diversity receiver, setting η = L and q = 2 in Eq. (7) and performing some
algebraic manipulations using [29, Eqs. (8.3.2/21), (8.2.2/9), and (8.4.12/4)], the auxiliary function CL,2 (s) for
the L -branch EGC diversity receiver can be expressed as

CL,2 (s) = −H1,2
3,2

[
1

Ls2

∣∣∣∣ (1, 1) , (1, 1) , (1, 2)
(1, 1) , (0, 1)

]
= 2Ci

(√
Ls
)

(21)

where Ci (·) is the cosine integral function [32, Eq. (5.2.27)]. Eventually, substituting Eq. (21) into Eq. (6)
yields our result [33, Eq. (4)], that is

Cavg =

∫ ∞

0

2Ci
(√

Ls
)[ ∂

∂s
Mγend

(s | 1/2)
]

ds (22)

For the case where there is no correlation among diversity branches, the ACC analysis is further simplified to
our result [33, Eq. (5)], as expected.

For the L -hop AF multihop transmission scheme, the parameters η , p , and q are chosen to be η = 1/L ,
p = −1 , and q = −1 , respectively, in accordance with the Table. Using [34, Eqs. (07.34.03.0475.01) and
(06.06.03.0003.01)], C1/L,−1 (s) can be expressed as

C1/L,−1 (s) = −H1,2
2,3

[
s

∣∣∣∣ (1, 1) , (1, 1)
(1, 1) , (0, 1) , (0, 1)

]
= Ei (s)− log (s)− γ (23)
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where γ = 0.57721566 · · · is the Euler–Mascheroni constant [24, Eq. (8.367/1)]. Putting Eq. (23) into Eq. (13)
yields the ACC analysis for the L -hop AF multihop transmission, that is

Cavg =

∫ ∞

0

(Ei (s)− log (s)− γ)

[
∂

∂s
Mγend

(s | −1)

]
ds (24)

which is different than [35, Eq. (10)], but it can be easily transformed to [35, Eq. (10)] by means of using the
integration by parts rule [24, Eq. (2.02/5)].

Consequently, all these special cases presented above prove the analytical accuracy and validity of the
proposed MGF-based approach simultaneously treating the ACC analysis for a variety of diversity combining
and transmission schemes.

3.2. An MGF-based AEC analysis

A unified MGF-based approach for AEC analysis is proposed in the following.

Theorem 3 (AEC analysis over correlated fading channels). The AEC analysis over correlated fading channels
can be readily achieved by

Ceff = − 1

A
log
(∫ ∞

0

EA,η,q (s)

[
∂

∂s
Mγend

(s | p)
]
ds

)
(25)

where η ∈ R+ , p ∈ R , and q ∈ R are chosen according to the type of the combining or transmission technique,
and where Eη,q (s) is the auxiliary function given by

EA,η,q (s) = − 1

Γ (A)
H1,1

2,2

[
η

Lqsq

∣∣∣∣ (1−A, 1) , (1, |q| /2 + q/2)
(0, 1) , (0, |q| /2− q/2)

]
(26)

Proof Note that, using [29, Eq. (8.4.2/5)] and [30, Eqs. (2.9.1) and (2.1.5)] for a certain q ∈ R+ , we can
write

1

X
(1 +Xq)

−A
=

1

XΓ (A)
G1,1

1,1

[
Xq

∣∣∣∣ 1−A
0

]
(27)

which is rewritten in terms of Mellin–Barnes contour integration [29, Eq. (8.2.1/1)] as 1
X (1 +Xq)

−A
=

1
2πi

∫ σ+i∞
σ−i∞

Γ(A−s)Γ(s)
Γ(A) X−qs−1ds within the converging region 0 < σ < A , where substituting Eq. (10) and

then utilizing Fox’s H function [29, Eq. (8.3.1/1)] after changing the order of integrals, we obtain

(1 +Xq)
−A

=

∫ ∞

0

EA,η,q (s)

[
∂

∂s
exp (−Xs)

]
ds (28)

where the auxiliary function EA,η,q (s) is given in Eq. (26). Finally, substituting Eq. (28) into Eq. (5) and
then using Eq. (12), we readily reduce Eq. (5) into Eq. (25), which proves Theorem 3.

Similar to the idea that we established in Figure 1, Theorem 3 presents how to simultaneously carry out
the AEC analysis of diversity combining and transmission schemes over correlated fading channels. In the case
that there is no correlation among γ1γ2, . . . , γL , it is also rewritten as shown in the following theorem. 2
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Theorem 4 (AEC analysis over uncorrelated fading channels). The AEC analysis over uncorrelated fading
channels can be achieved by

Ceff = − 1

A
log


∫ ∞

0

EA,η,q (s)

L∑
l=1

[
∂

∂s
Mγl

(s | p)
] L∏

k = 1
k ̸= l

Mγk
(s | p)ds

 (29)

Proof The proof is obvious by following the same steps as in the proof of Theorem 2. 2

It is worth using Theorem 3 for certain special cases of diversity combining and transmission schemes in
order to check the accuracy of the proposed MGF-based AEC analysis. For example, for q ∈ R+ such as q = 1

for MRC and q = 2 for EGC diversity receiver, the auxiliary function EA,η,q (s) is simplified to

EA,η,q (s) = − 1

Γ (A)
H1,1

2,1

[
η

Lqsq

∣∣∣∣ (1−A, 1) , (1, q)
(0, 1)

]
(30)

with the aid of [30, Eq. (2.1.12)]. It can be readily shown that, using [30, Eq. (2.9.1)] and [29, Eq. (8.4.16/1)],
Eq. (30) is further simplified for MRC combining as follows:

EA,L,1 (s) = − 1

Γ (A)
H1,1

2,1

[
1

s

∣∣∣∣ (1−A, 1) , (1, 1)
(0, 1)

]
=

Γ (A, s)

Γ (A)
− 1, (31)

where Γ (·, ·) denotes the complementary incomplete gamma function [32, Eq. (6.5.3)]. Accordingly, the AEC
analysis of MRC combining is obtained as

Ceff = log
(

1

Γ (A)

∫ ∞

0

(Γ (A, s)− 1)

[
∂

∂s
Mγend

(s | p)
]
ds

)
(32)

Applying the integral rule [24, Eq. (2.02/5)] to our result Eq. (32) results in perfect agreement with [20, Eq.
(7)] and [22, Eq. (8)]. Furthermore, using [29, Eq. (8.3.2/22)], Eq. (30) is simplified for EGC combining as
follows:

EA,L,2 (s) = −
√
π

Γ (A)
G1,1

3,1

[
4

s2

∣∣∣∣ 1−A, 1, 1/2
0

]
=

−s2A

Γ (2A+ 1)
1F2

[
A;A+ 1/2;A+ 1;−s2/4

]
(33)

where pFq [·; ·; ·; ·] denotes the generalized hypergeometric function [29, Eq. (7.2.3/1)]. Then, with the aid of
Eq. (33), the AEC analysis of EGC combining is readily achieved by

Ceff = − 1

A
log
(
−
∫ ∞

0

s2A

Γ (2A+ 1)
1F2

[
A;A+

1

2
;A+ 1;−s2

4

] [
∂

∂s
Mγend

(s | p)
]
ds

)
(34)

In addition to the AEC analyses of MRC and EGC combining, Theorem 3 can also be used for AF multihop
transmission by just setting η = 1/L and p = q = −1 in Eq. (25), such that the auxiliary function EA,1/L,−1 (s)

is readily simplified by utilizing both [29, Eq. (8.3.2/21)] and [29, Eq. (8.4.45/1)] as follows:

EA,1/L,−1 (s) = − 1

Γ (A)
H1,1

1,2

[
s

∣∣∣∣ (1−A, 1)
(0, 1) , (0, 1)

]
= −1F1 [A; 1;−s] (35)
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where 1F1 [·; ·; ·] denotes the Kummer confluent hypergeometric function [29, Eq. (7.2.2/1)]. Accordingly, the
AEC analysis of AF multihop transmission is obtained as

Ceff = − 1

A
log
(
−
∫ ∞

0
1F1 [A; 1;−s]

[
∂

∂s
Mγend

(s | p)
]
ds

)
(36)

which is in perfect agreement with [36, Eq. (3)], as expected.

4. Performance analysis results
In this section, the proposed MGF-based approaches presented in the previous sections are employed to exactly
evaluate the ACC and AEC analyses. Accordingly, extended generalized K (EGK) distribution [23] is the model
of the channel fading distributions that the branches/hops are subjected to. Due to its versatility in capturing
different well-known fading conditions either as special or as limiting cases, it provides unification over fading
distributions, e.g., see [23, Table I]. In EGK fading channels, the instantaneous SNR γl of the l th branch/hop
follows the PDF [23, Eq. (3)]

pγl
(γ) =

ξ

Γ (m) Γ (ms)

(
ββs

γ̄

)mξ

Γ

(
ms −m

ξ

ξs
, 0,

(
ββs

γ̄

)mξ

γξ,
ξ

ξs

)
(37)

where m (0.5 ≤ m < ∞) and ξ (0 ≤ ξ < ∞) represent the fading figure (diversity severity/order) and the
fading shaping factor, respectively, while ms (0.5 ≤ ms < ∞) and ξs (0 ≤ ξ < ∞) are the shadowing
severity and the shadowing shaping factor, respectively. β and βs are β = Γ(m + 1/ξ)/Γ(m) and βs =

Γ(ms+1/ξs)/Γ (ms) , respectively. Further, Γ (·, ·, ·, ·) denotes the extended incomplete gamma function defined
as Γ (α, x, b, β) =

∫∞
x

rα−1 exp
(
−r − br−β

)
dr , where αβb ∈ C and x ∈ R+ . Referring to the previous section,

the joint generalized MGF of γ1γ2, . . . , γL , i.e. Mγend
(s | p) ≜ E

[
exp

(
−s

L∑
l=1

γp
l

)]
, is required in closed

form. Assuming the branches/hops are strictly uncorrelated, and referring to Theorem 2 and Theorem 4, the
generalized MGF of γl , i.e. Mγl

(s | p)E [exp (−sγp
l )] , and its derivative ∂

∂sMγl
(s | p) ∂

∂sE [exp (−sγp
l )] are also

required in closed form. Using [30, Eq. (2.1.5)], the PDF of γl is obtained as

pγl
(γ) =

1

Γ (m) Γ (ms) γ
H3,1

1,3

[
ββs

γ̄
γ

∣∣∣∣ −−−
(ms, 1/ξs) , (m, 1/ξ )

]
(38)

where − − − denotes the empty arguments. Exercising [30, Eqs. (2.5.29) and (2.5.30)] on Eq. (38), the
generalized MGF Mγl

(s | p)E [exp (−sγp
l )] is readily obtained as2

Mγl
(s | p) =

H3,1
1,3

[(
ββs

γ̄

)|p|
1

s|p|/p

∣∣∣∣ (θ (p) , θ (p))
(m, |p| /ξ) , (ms, |p| /ξs) , (θ (p) , θ (−p))

]
Γ (m) Γ (ms)

(39)

where θ (x) denotes the unit step function, resulting in 1 if x ≥ 0 and 0 otherwise. By means of using [30, Eqs.
(2.1.5) and (2.2.2)], its derivative MGF, i.e. ∂

∂sMγl
(s | p) ∂

∂sE [exp (−sγp
l )] = −

∫∞
0

γp exp (−sγp) pγl
(γ) dγ , is

2 Note that there exist some printing errors in [11, Eqs. (A.2) and (A.3)], whose corrected versions are given above in Eqs. (39)
and (40), respectively.
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derived as

∂

∂s
Mγl

(s | p) =
H4,1

2,4

[(
ββs

γ̄

)|p|
1

s|p|/p

∣∣∣∣∣ (θ (p) , θ (p)), (0, |p|)
(1, |p|) , (m, |p| /ξ) , (ms, |p| /ξs) , (θ (p) , θ (−p))

]
Γ (m) Γ (ms) ps

(40)

Referring to [23, Table I], both Mγl
(s | p) and ∂

∂sMγl
(s | p) of many well-known fading distributions commonly

used in the literature are found to be the special cases of Eqs. (39) and (40), respectively. Thus, inserting
Eqs. (39) and (40) in both Eqs. (13) and (29), the ACC and AEC analyses can be evaluated for many well-
known fading distributions. For example, Eqs. (39) and (40) reduce to the MGF and derivative MGF of the
generalized-K distribution for ξ → 1 and ξs → 1 , and to those of gamma distributions for ξ → 1 and ξs → ∞ .

In Figure 1 and Figure 2, the ACC and AEC performances are respectively depicted for the MRC and
EGC combining schemes over uncorrelated Nakagami-m fading channels while being depicted in Figure 3 for
multihop transmission over the same fading channels. The results achieved by Monte Carlo simulations are
shown to be in perfect match with the analytical ones obtained by our two MGF-based approaches.
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Figure 1. The ACC and AEC performances of the
L -branch MRC combining over mutually interdependent
Nakagami-m-fading channels.

Figure 2. The ACC and AEC performances of the double-
branch (L = 2) EGC combining over mutually interdepen-
dent Nakagami-m-fading channels.

As observed in both in Figure 1 and Figure 2, the ACC increases as the number of the diversity branches,
i.e. L ∈ N increases, which means that the highest rate rises with a negligible probability of error during
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transmission. It is also observed that as either the fading block length or the asymptotic decay rate of the
buffer occupancy increases, the AEC increases, resulting in more reliability against the fading block length and
the asymptotic decay rate of the buffer occupancy. As the fading conditions get better (i.e. as the quality
of the transmission increases), both the fading block length and thus the asymptotic decay rate of the buffer
occupancy approach zero, which yields that the ACC and AEC performances certainly overlap, as expected.

In Figure 3, the ACC and AEC of the AF multihop transmission are illustrated, showing that both
monotonically decrease with the number of hops. As the fading conditions get better, the ACC and AEC
performances certainly overlap, similar to the fact mentioned above for those of MRC and EGC combining
schemes.
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Figure 3. The ACC and AEC performances of the AF multihop transmission over mutu3 ally interdependent Nakagami-
m-fading channels.

Finally, the concepts of ACC and AEC performances are well utilized in all figures as two crucial QoS
metrics providing the averaged maximum achievable rate in all diversity combining and transmission schemes
given in the Table. Note that our two MGF-based approaches presented above are more general as compared to
the ones proposed in [9–12,20,22] since both can also be used for the ACC and AEC analyses of RMSC and SC
diversity combining schemes and cascaded fading channels. Furthermore, both MGF-based approaches provide
numerical techniques to find the performance lower-bounds. However, these special cases are beyond the scope
of this paper due to space limitation.
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5. Conclusion
In this paper, we proposed two MGF-based approaches for both ACC and AEC analyses of diversity combining
and transmission schemes over generalized fading channels. Specifically, in contrast not only to [9,10], which are
basically unified with respect to generalized fading channels, but also to [11], which is unified for both EGC and
MRC combining schemes with respect to fading channels, our MGF-based ACC analysis is explicitly generic
enough to unify the ACC analysis for popular diversity combining and transmission schemes over generalized
fading channels. In addition, our MGF-based AEC analysis is more generic than those proposed in [20–22],
such that it remarkably unifies not only for a variety of diversity combining and transmission schemes but also
for correlated and uncorrelated fading distributions. Finally, we show that analysis-based and simulation-based
results are in perfect agreement.
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