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Abstract: The electrification system in rail systems is designed with regard to the operating data and design parameters.
While the electrification system is formed, the minimum voltage rating that the traction force requires during the
operation needs to be provided. The highest value of the voltage drop occurring on the line is determined by the distance
between power centers. This value needs to be kept within certain limits for the continuity of operation. In this study,
the determination of the distance between DC traction power centers for a 1500-V DC-fed rail system is done by means
of the adaptive neuro-fuzzy inference system (ANFIS), support vector machines (SVMs), and artificial neural networks
(ANNs). The distance occurring on the line is calculated with regard to the operating parameters by means of the
ANFIS, SVMs, and ANNs. The ANFIS, SVMs, and ANNs are explained and a comparison is made. The data created
regarding one-way and two-way supply conditions are examined for simulation. The main contribution of this paper is
the determination of the distance between railway traction power centers with artificial intelligence methods.
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1. Introduction
In railways, there are various operation parameters affecting the system performance. Artificial intelligence
is expedient for numerous operation conditions and various railway traffic. In the literature, there are some
prediction works and research about these issues. One such topic is the use of neural networks (NNs) to predict
voltage drop during the starting of medium-voltage induction motors. Other is prediction of the voltage drop
due to the diode commutation process in the excitation system of salient-pole synchronous generators. DC
railway system emulator design for stray current, touch voltage prediction, and a fast scheme for fault detection
in DC microgrids based on voltage prediction are other works [1–4]. In this study, determination of the distance
between the power centers is done with artificial intelligence methods.

A 1500-V DC supply voltage is used for the traction force system in DC-supplied railways. The supply
voltage that the traction force uses is acquired through an interconnected network, which has 34.5-kV phase-
to-phase voltage. Two transformers of 34.5 kV/1.2 kV are present in the substations and the transformers can
operate as back-up [5]. The equivalent circuit model of a DC railway is presented in Figure 1. The equation
regarding the supplying status from a single substation is given with Eq. (1). The resistance values of the feeder
cables were also added to R1 and R3 . R1 and R3 values change in accordance with the distance depending
on the location of the vehicle. V1 is the voltage of the vehicle, Vn1 indicates the nominal supply voltage, and
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Ivehicle indicates the vehicle current. The maximum traction force of the vehicles in the railway vehicles with
high power consumption can increase to 20 MVA [5–7].

V 1=V n1−Ivehicle×R1−Ivehicle×R3 (1)

Since the voltage drop occurring on the line and the currents drawn do not reach high values under normal
operating conditions, the distances between the supply stations may be longer. As the number of traction
supply stations and the efficiency of the traction force system increase, the voltage drop on the line and the
losses decrease [8–12]. The single-line scheme of a DC-fed line is presented in Figure 2.
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Figure 1. Equivalent circuit model of the DC railway. Figure 2. Single-line scheme of a DC-fed line.

The vehicle traction force (F traction) consists of the sum of the resistance force against vehicle motion
(Fmotion) , slope resistance force (Fslope) , curve resistance force (Fcurve) , and the multiplication of acceleration
and mass of the vehicle, which are given with Eqs. (2), (3), (4), and (5), respectively. In the equations, V is
the vehicle speed; m is the vehicle mass; A, B, and C are the coefficients related to the vehicle characteristic; g
is the gravitational acceleration; γ is the angle of inclination; R is the curve radius; and C1 , C2 , and C3 are
the coefficients used to calculate the curve force. In Eq. (5), the acceleration-mass (ma) value expresses the net
force that affects the vehicle. The power equation of the vehicle is given with regard to the traction force and
vehicle speed by Eq. (6).

Fmotion= A + B × V + C×V 2 (2)

F slope= m × g × sin(γ) (3)
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F curve= (m × g ÷ 1000) × (C1−C2×R) ÷ (R−C3) (4)

F traction=Fmotion+F slope+F curve+ma (5)

P vehicle=F traction×V (6)

The vehicle power increases with traction force and vehicle speed. The equivalent circuit given in Figure 1 was
simulated with different operating parameters and 1000 data arrays were obtained regarding different operating
conditions. The parameters used in the simulation are the number of vehicles, acceleration-mass value of the
vehicle, vehicle motion resistance, curve radius, slope, the length of the supply line, internal consumption current
of the vehicle, electric resistance, and inductance of the line; the calculated value is the highest voltage drop
value occurring on the line. Random values were assigned to all the input parameters used in the simulation. For
the simulation, the number of vehicles varying between 0 and 10 was used and vehicle placement was performed
by taking the maximum voltage drop into consideration.

2. Materials and methods
The diversity of the parameters and the variability in operating conditions in the simulation render the solution
of this problem complex. Artificial intelligence is a science that deals with enabling machines to produce
solutions to complex problems as humans. This is generally performed by taking the characteristics of human
intelligence and applying them to a computer as an algorithm. In accordance with the demanded or desired
needs, which mental attitude will be presented to which effect with less or more flexible or effective approaches
can be displayed. Artificial intelligence was preferred in this study due to the stated advantages. In this study,
the adaptive fuzzy inference system (ANFIS), support vector machine (SVM), and artificial neural network
(ANN), among the artificial intelligence applications, were used for the simulation. The ANFIS is a hybrid
artificial intelligence method that uses the parallel computing and learning capability of ANNs and the inferential
characteristic of fuzzy logic. The SVM is one of the quite effective and simple methods used in classification.
For classification, it is possible to divide two groups by drawing a line between two groups on a plane. The
location on which this line will be drawn should be the farthest place from the members of both groups. The
SVM determines how this line will be drawn. The ANN is a method that functions by imitating the way of
work of a simple biological nervous system. MATLAB and Weka programs were used for the simulation. Weka
was used for the SVM simulation for a better performance and is in widespread use in academic articles.

One thousand data arrays different from each other were used for the MATLAB simulation. The
simulations were run for 1000 different operation conditions. The MATLAB simulation screen is given in
Figure 3.

2.1. Adaptive neuro fuzzy inference system (ANFIS)

The ANFIS is a class of adaptive networks functionally equivalent to a fuzzy inference system. The ANFIS can
be given more integrated with some characteristics of controllers, learning ability, parallel processing, structured
knowledge representation, and other supervision and design methods. Fuzzy logic and NNs are supplementary
means used together in developing smart systems [13–15]. The ANFIS consists of 6 layers. This system is
displayed in Figure 4. The node functions of every layer in the ANFIS structure and the operation of the
layers are respectively as follows [15]. The first layer is the input layer. X1 and X2 are the input signals. The
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Figure 3. MATLAB simulation screen.
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input signals obtained from every node in this layer are transmitted to other layers. The second layer is the
fuzzification layer. In separating the input values into fuzzy sets, Jang’s ANFIS model uses the Bell activation
function generalized as a membership function [15]. Here, the output of each node consists of membership
degrees based on the input values and the membership function used and the membership values obtained from
the 2nd layer are presented as µAj (x) and µBj (y) . The third layer is the layer of rules. Each node in this layer
expresses the rules established in accordance with the Sugeno fuzzy logic inference system and their numbers
[15]. The output of each rule node µi turns out to be the multiplication of membership degrees that arrive from
the 2nd layer. The acquisition of µi values, on the condition that (j = 1, 2) and (i = 1, …, n) is as follows:

x
1

x
2

1. 2. 3. 4. 5. 6.

x
1
x
2

yE

Figure 4. ANFIS structure.

y3i=?i=µAj (x)×µBj (y)=µi (7) Here, y3i represents the output values of the 3rd layer; n represents the
number of nodes in this layer. The fourth layer is the normalization layer. Each node in this layer regards all
the nodes coming from the rule layer as input values and computes the normalized ignition level of each rule.
The computing of the normalized ignition level µ̄i is performed in accordance with the following formula:

y4i=Ni=
µi
n∑

i=1

µi

=µi (i = 1, n) (7)

The fifth layer is the purification layer. The resulting weighted values of a given rule in each node in the
purification layer are calculated. The output value of the ith node in the 5th layer is as follows.

y5i=µi [pix1+qix2+ri] , (i = 1, n) (8)

The (p i , q i , r i) variables here are the outcome parameter set of the ith rule. The sixth is the sum layer. There
is only one node in this layer and it is labeled as Σ . The output value of each node in the 5th layer is summed
here so that the actual value of the ANFIS system is obtained. The computing of y, which is the output value
of the system, is performed in accordance with the equation below [15].

y=

n∑
i=1

µi [pix1+qix2+ri] (9)

2.2. Support vector machine (SVM)

SVMs can be employed in classification and regression problems. The basic idea in the SVM regression method
is finding the linear separator function that reflects the characteristic of the educational data available in a
way as close to reality as possible and suits the statistical learning theory. Similarly to the classification, in
the regression, the core functions are used for the nonlinear situations to be processed. The most significant
advantage of SVMs is to solve the classification problem by converting it to a squared optimization problem.
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This way, in the learning stage regarding the solution of the problem, the number of operations decreases
and the solution is reached more rapidly when compared to other techniques/algorithms. The technique, due
to this characteristic of it, provides a great advantage, especially in bulky datasets. Furthermore, since it is
optimization-based, it is more successful in terms of the classification performance, computational complexity,
and practicality when compared to other techniques [16–19].

A SVM constitutes an n-dimensional hyperplane, which optimally divides the data into two categories.
SVM models are closely related to ANNs, and the SVM, which uses a sigmoid kernel function, has a two-layer,
feedforward ANN. The interesting characteristic of the SVM is that it functions with the quality of structural
risk minimization in statistical learning theory rather than the empirical risk minimization principle derived by
minimizing the mean squared error on the dataset. One of the basic assumptions of the SVM is the independent
and similar distribution of all samples in the education set. The SVM can be employed in classification and
regression problems. The basic idea in the SVM regression method is finding the linear separator function,
which reflects the characteristic of the educational data available in a way as closes to reality as possible and
suits the statistical learning theory. Similarly to the classification, in the regression, the core functions are used
for nonlinear situations to be processed. Two situations that can be encountered with SVMs are the data being
of a structure that can be linearly separated or cannot be linearly separated. The SVM network structure is
given in Figure 5. X indicates the input vector and b is the bias value. In the system, support vectors are shown
with K, whereas a is the Lagrange coefficient. Y is the output of the system.

       Bias

         b

Input Vector

         x

K(x,x 1)

K(x,x 2)

K(x,x 3)

K(x,x m )

Support Vectors

E Output

    y

Coeff icients

(Lagrange Factors)

a1
a2

a3

am

Figure 5. Support vector machine structure.

The SVM is a controlled classification algorithm based on statistical learning theory. The mathematical
algorithms that the SVM has were initially designed for the classification problem of two-class linear data but
later they were generalized for the classification of multiclass and nonlinear data.

SVM regression uses a set of core functions for simulations. In this study, the normalized polynomial
kernel was selected and is given by Eqs. (10) and (11).

K(x, y) =< x, y > ÷
√

(< x, x >< y, y >) (10)

< x, y >= PolyKernel(x, y) (11)

2.3. Artificial neural network (ANN)

294



AKÇAY and KOCAARSLAN/Turk J Elec Eng & Comp Sci

ANNs emerged as a mathematical method from the latest outputs of endeavors to study and imitate
human nature. They take computing and data processing power from their parallel distributed structure and
their capability to learn and generalize. Generalization is defined as an ANN producing proper reactions to
inputs that have not been experienced in the course of education or learning. These characteristics indicate the
problem-solving capability of ANNs [20–25].

A biological neuron consists of a nucleus, body, and two extensions. The structure of the ANN is given
in Figure 6. The 1st layer is the input layer. Data are received here and entered into the system. The 2nd layer
is the hidden layer. Its use depends on the simulation. The 3rd layer is the output layer. Inputs are processed
and received here. Each sphere (nerve) has a function and a threshold value [26–30].

Input Layer

Hidden Layers

Output Layer

Figure 6. The structure of the artificial neural network.

The output of a neuron is given with Eq. (12) as a function formed by adding a bias (b) value to the
sum of the input data in specific weights. I indicates input, while W represents the coefficients that the input
values take.

Output = f(i1W1 + i2W2 + i3W3 + b) (12)

3. Results and discussion
One thousand data arrays different from each other were used for the calculation of distances. A portion of the
data used is displayed in Table 1. These data were used for simulation with the ANFIS, SVM, and ANN. Ten
input data and 1 output datum are used for the design. These data are the operational data obtained from the
train traffic. Input 1 is the number of the supply direction system. In DC rail systems this value may be one
or two. Input 2 is the number of the vehicles, which depends on the operational traffic. Input 3 is the product
of mass and acceleration. Input 4 is the vehicle motion resistance. Input 5 is curve radius of the route. Input 6
is the slope of the location. Input 7 is the voltage drop at the line. Input 8 is the vehicle current of the internal
consumption. Input 9 and input 10 are resistances of catenary and rail. The output is the length of the supply
line, which obtains the traction power distances.

3.1. Simulation results with the ANFIS
The structure of the system created for the ANFIS and the simulation results are given below. A structure with
10 inputs and 2 membership functions created for the ANFIS after much testing is given in Figure 7. The input
data are given in Table 1 for the ANFIS system. The length of the supply line constitutes the output data.
A triangular-shaped membership function was used for the simulation. This triangular-shaped membership
function was chosen because of the performance of the better results. The triangular curve is a function of a
vector that depends on scalar parameters. A total of 210 = 1024 rules were established for the ANFIS design.
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The ANFIS architecture is shown in Figure 8. The system consists of the input, input MF, rule, output MF,
and output modules. The proposed ANFIS detector is a first-order Sugeno type fuzzy inference system with 10
inputs and 1 output. Each input has 2 triangular-type membership functions.
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Figure 7. Triangular-shaped membership function.

outputinput

input MF rule output MF

Figure 8. ANFIS architecture.

The realized values and calculated values of all data are shown with the ANFIS simulation in Figure 9.
The regression value for all data is 0.77. The other performance calculations for the ANFIS and other methods
are given in Table 2.

3.2. Simulation results with the SVM
The 10 input data and 1 output datum used in the ANFIS simulation were simulated with the SVM method.
By trying different variations to obtain better results in the simulation, the SVM parameters were eventually
selected as follows. The complexity parameter “c = 1” was selected. The performance of the classifier depends
on this parameter. The normalized polynomial kernel function was selected as the core function and the exponent
value was taken as “e = 3”. Test mode 10-fold cross-validation was selected in Weka for a better performance.
Cross-validation is a technique to evaluate predictive models by partitioning the original sample into a training
set to train the model and a test set to evaluate it.
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Table 1. A portion of the data set that used.

Input 1 - Number of supply directions 2 2 2 1 1
Input 2 - Number of vehicles 3 1 4 4 3
Input 3 - ma value (kN) 241 227 290 280 226
Input 4 - Vehicle motion resistance (kN) 74 74 73 75 66
Input 5 - Curve radius (m) 851 802 997 856 859
Input 6 - Slope 21 281 134 133 383
Input 7 - Voltage drop (V) 257 66 219 378 794
Input 8 - Internal consumption current
of the vehicle (A)

241 218 176 160 168

Input 9 - Catenary resistance (Ω) 0.0271 0.0112 0.0275 0.0142 0.0182
Input 10 - Rail resistance (Ω) 0.0312 0.0275 0.0176 0.0206 0.0293
Output - Length of the supply line (km) 37 26 29 16 32
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Figure 9. ANFIS regression graph.

Table 2. The simulation results of all methods.

Method ANFIS SVM ANN
Mean absolute error (MAE) 2.46 2.74 0.57
Root mean squared error (RMSE) 6.84 3.83 0.75
Relative absolute error (RAE) 0.3261 0.3627 0.0763
Root relative squared error (RRSE) 0.7813 0.4378 0.0864
Total number of instances 1000 1000 1000
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The realized values and calculated values of all the data are observed in Figure 10. The regression value
is shown with R and, as seen in the figure, this value is 0.90.
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Figure 10. SVM regression graph.

3.3. Simulation results with the ANN
Ten input data, 10 hidden neurons, 1 output neuron, and 1 output datum were used for the ANN architecture
used in the design. The network was trained with the Levenberg–Marquardt backpropagation algorithm. The
selection of the number of hidden neurons is important to inhibit overfitting. With increasing hidden neuron
number, ANN mapping accuracy increases given the training.

Input and output data are given in Table I. The ANN architecture used is given in Figure 11. Seventy
percent of the data used for simulation were used for education, 15% for validation, and 15% for the testing. As
seen in Figure 12, the best validation value was reached at the 124th iteration by inhibiting overfitting in the
simulation. The lowest mean squared error value is 0.57113. The training, validation, and test data produced
by the system displayed similar characteristics. Since the validation error value increased in the course of 6
iterations, the simulation was stopped at the end of 130 iterations.

Input

10
b

W

Hidden

10

b

W

Output

1

Output

1

Figure 11. ANN architecture designed [MATLAB R2015b].

The backpropagation gradient value is given on a logarithmic scale for each iteration in Figure 13. The
difference between the test values and validation values is predicted. Validation checks and MATLAB stop the
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simulation with the increase in the MSE value of the validation values in order to inhibit overfitting at the end
of 6 iterations. The MSE performance is given with the training state graph. Gradient = 3.5011 at epoch 130,
mu = 0.001 at epoch 130, and validation checks = 6 at epoch 130.
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Figure 13. Training state graph.

The error histogram is shown in Figure 14. The differences between the realized values and calculated
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values are seen with this graph. The distribution of the errors of the training data is shown with blue, validation
data with green, and test data with red. The errors are mostly concentrated between –1.829 and 1.784.
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The realized and calculated values of the training, validation, and test data are seen in Figure 15. The
regression value is shown with R, and as seen in Figure 15, these values are 0.99673 for training, 0.99651 for
validation, and 0.99366 for the test data. The R value is 0.99627 for all data. As this value approaches 1, the
accuracy of the data calculated by the system increases.

3.4. The comparison of the ANFIS, SVM, and ANN results

The ANN regression result is 0.99627. The results show fair results with maximum percent error 0.37%. In the
SVM method, the regression value is 0.90. Maximum percent error is 1%. The ANFIS regression value is 0.77
where the maximum percent error is 23%. The accuracy for the realized values and calculated values of the
ANN and SVM methods is better than that of the ANFIS results. When the ANFIS, SVM, and ANN results
are compared, the ANN results are observed to be better. The performance calculation results of all methods
are given in Table 2.

4. Conclusions
In this study, the prediction of the distance between DC traction power centers on a DC-supplied railway
with regard to the operating data was performed. One thousand random input data arrays and the calculated
output data were used for the simulation. In the analyses carried out, the ANFIS, SVM, and ANN techniques
were used. The distance value was predicted. The RRSE value for the data obtained for the ANFIS in the
calculations carried out is 78%, while this value is 44% for the SVM and 9% for the ANN. The RMSE values
are 7 V for the ANFIS simulation, 4 V for the SVM, and 1 V for the ANN. The MAE value acquired for the
ANFIS is 2 V and for the SVM is 3 V, while this value is 1 V for the ANN. The RAE value for the ANFIS is
33% and for the SVM is 36%, while this value is 8% for the ANN. When the data obtained from the simulations
are compared, the prediction values produced with the ANN are observed to be better. When the prediction
data produced for all techniques are compared with the real data, it is observed that errors are at an acceptable
rate and that the prediction data produced are usable.
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Figure 15. ANN regression graph.
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