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Abstract: In this paper, heuristic optimization techniques, such as integrated particle swarm optimization (IPSO),
teaching–learning-based optimization (TLBO), and Jaya optimization, were applied effectively for the first time to
optimize the radial distribution network (RDN) by simultaneously considering reconfiguration of the network and
allocation and sizing of the distributed generations (DG). The objectives were to maximize the voltage stability and
to minimize the power loss of the network without violating the system constraints. In standard PSO technique, the
movement of current particle depends upon global best position and its own best position up to current step. However,
if the particle lies too close to any of these positions, the guiding role highly decreases and even vanishes. To resolve
this problem and to find the global best solution, IPSO was utilized to optimize the network reconfiguration and DG
allocation and sizing problem in the RDN. Also, the optimization techniques, such as TLBO and Jaya optimization, which
do not require any tuning of parameters, unlike other heuristic optimization techniques, were implemented successfully
in this paper. Seven test cases were generated from different combinations of network reconfiguration and DG allocation
and sizing. Moreover, for comparison, the optimization techniques, such as particle swarm optimization (PSO), adaptive
cuckoo search algorithm (ACSA), harmony search algorithm (HSA), and fireworks algorithm (FWA), were also applied
to IEEE 33- and 69-bus distribution test networks. The comparison results prove overall superiority of Jaya optimization
when applied on the two IEEE bus systems with seven test cases undertaken.

Key words: IPSO, TLBO, Jaya optimization, reconfiguration, distribution network, voltage stability, distributed
generation

1. Introduction
Network reconfiguration is considered as nonlinear, mixed integer, nondifferentiable, multiobjective constraint
optimization problem. The concept of distribution network reconfiguration (DNR) with the objective to min-
imize power losses was first proposed by Marlin and Back in 1975 [1]. Earlier; DNR problem, distributed
generation (DG) placement, and/or DG sizing problems were considered separately. In recent years, various
population-based metaheuristic optimization algorithms and their hybridization have been applied in the net-
work reconfiguration problem to achieve objectives such as minimum power loss, voltage profile enhancement,
and voltage stability improvement in the networks. Metaheuristic optimization techniques, such as particle
swarm optimization (PSO) and its variants, are used to solve the reconfiguration problem with the objective
∗Correspondence: msrawat@nituk.ac.in
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to minimize node voltage deviation, number of switching operations, and total cost of active power generations
by DGs and to enhance voltage stability and improve the load factor and reliability of the distribution network
[2–6]. In [7], the reconfiguration problem was solved using a hybrid algorithm based on PSO and honey bee
mating optimization (HBMO) with an objective to minimize power loss, fluctuation in node voltage, number
of switching operation and to balance loads among the feeders. In [8,9], the feeder reconfiguration problem
was solved using HBMO and modified HBMO. In [10–12], ant colony optimization (ACO) is proposed to solve
feeder reconfiguration problem with the objective to minimize power loss in the network. In [13,14], hybrid
algorithm based on PSO and ACO was used to solve feeder reconfiguration. Recently, other population-based
metaheuristic optimizations, such as simulated annealing (SA) [15], hybrid algorithm based on SA and Tabu
search [16], enhanced gravitational search algorithm (EGSA) [17], runner root algorithm [18], genetic algorithm
(GA) [19–21], discrete firefly algorithm [22], modified plant growth simulation algorithm [23], and fuzzy firefly
algorithm [24], have been applied to the network reconfiguration problem. Some researchers have integrated
both DG allocation and DNR problem to optimize the efficiency of distribution network. Metaheuristic opti-
mization techniques, such as harmony search algorithm (HSA) [25], fireworks algorithm (FWA) [26], integrated
gravitational search algorithm (IGSA)[27], PSO [28], and ACO [29], have been applied to optimize the network
reconfiguration and DG sizing with the objective to minimize power loss and enhance voltage stability.

In the literature, few works reported to simultaneously optimize the reconfiguration of network and
DG allocation and sizing in distribution networks. In [30], cuckoo search algorithm (CSA) was utilized for
optimization of simultaneous reconfiguration of network and location and sizing of DGs in the distribution
network. In [31], hybrid optimization based on shuffled frog leaping algorithm (SFLA) and PSO was used to
optimize the reconfiguration problem with multiple objectives, i.e. power loss minimization, voltage stability
improvement, and number of switching optimization. In the available literature, the objectives found for the
network reconfiguration problem are minimization of real power loss, voltage profile improvement, optimization
of the number of switches etc., which are supposed to be important considerations for the operation of a
traditional distribution network. Due to large penetration of DGs and high load demand, voltage stability
has emerged as an important issue in the modern distribution network. Recently developed methods, such
as Jaya algorithm, were utilized to optimize DGs location and sizing [32] and modified TLBO algorithm for
optimization of reconfiguration and DG allocations in IEEE 33-bus radial distribution network [33]. In [34],
IPSO was utilized to optimize the size, shape, and topologies of truss structure.

To date, to the best of our knowledge, IPSO technique has been an uncharted optimization technique in
the radial distribution network. Also, for the first time, new heuristic optimization techniques such as IPSO,
TLBO, and Jaya algorithm have been utilized for voltage stability enhancement and power loss minimization in
the radial distribution network by simultaneous reconfiguration of the network and DG allocation and sizing.
The test results on IEEE 33- and 69-bus distribution test system shows the superiority of the Jaya algorithm
followed by ACSA over other optimization techniques, i.e. PSO, IPSO, TLBO, HSA and FWA.

2. Problem formulation
In a typical distribution network, total active power loss of the feeders (PTloss

) can be calculated by adding the
losses of all the feeders in distribution network and formulated as follows:

PTloss
=

N∑
i=1

Ri
P 2
i +Q2

i

V 2
i

. (1)
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The power loss reduction in the distribution system can be calculated by Eq. (2).

∆PR
loss =

PRec
loss

P 0
loss

, (2)

where PRec
loss and P 0

loss are active power loss with and without reconfiguration. In this paper, voltage stability
index (VSI) [35] was applied to monitor the network voltage stability. Critical values of this index lie between
0 and 1. The VSI value near zero at any node represents most vulnerable node in terms of stability. Higher
values of VSI indicate higher stability in the network. The formulation of the considered VSI is given by Eq.
(3).

V SIm+1 = |Vm|2 − 4(Pm+1Xm −Qm+1Rm)2 − 4(Pm+1Rm −Qm+1Xm)|Vm|2, (3)

where Pm+1 and Qm+1 are the total real and reactive power fed from node ‘m+1’. |Vm| and |Vm+1| are voltage
magnitudes at node ‘m’ and ‘m+1’, respectively. Rm and Xm are feeder resistance and reactance, respectively.
The deviation in VSI is given by Eq. (4).

∆V SI = (1− V SIm) m = 1, 2, 3, ..., Nbr, (4)

where Nbr is the total number of branches in the radial distribution network. The combined objective to reduce
power loss and enhance voltage stability can be formulated as follows:

Fobj = min(∆PR
loss +∆V SI). (5)

Subjected to constraints
V min ≤ Vm ≤ V max m = 1, 2, 3, ..., Nbr,

0 ≤ Ij ≤ Imax j = 1, 2, ..., Nbr,

|A| = 1,

0 ≤ PDGi
≤ PDGmax

i = 1, 2, ..., NDG,

(6)

where |A| represents the determinant of the network incidence matrix having value 1 when the network is a
radial distribution network. V min and V max represents the minimum and maximum node voltage limits. Imax

denotes the maximum current in feeder j . PDGmax
represents the maximum DG size.

3. Mathematical modelling of optimization techniques

The mathematical formulation of optimization techniques TLBO, Jaya, and IPSO algorithm are given as follows:

3.1. Teaching learning based optimization (TLBO)

The TLBO is a heuristic optimization technique which simulates the process of teaching and learning in a class.
The teaching–learning process is partitioned in two phases, i.e. teacher phase and learners phase.

Teacher phase: A teacher can improve the mean (e.g., average marks of all students) of the class to a
certain extent depending upon the quality of the students in class and the knowledge delivered to the students.
Let Tk be the teacher and Mk the mean at any iteration k. By delivering knowledge to students, teacher (Tk )
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will try to improve the class mean from Mk to a new mean (Mnew ). The difference between the existing and
new mean can be mathematically formulated by Eq. (7):

∆M = rk × (Mnew − TFMi), (7)

where rk represents a random number between 0 and 1; TF represents teaching factor whose value can be either
1 or 2 and calculated as TF = round[1+ rk × (2− 1)] . The solution vector can be updated by solving Eq. (8):

Xk+1 = Xk +∆M. (8)

Learners phase: Students can enhance their knowledge by two means, either by learning from teacher or
through their fellow students in the class. Mathematical formulation of the student’s learning can be expressed
as follows:

For i=1:npop
Randomly select two learners Xi and Xj , where i ̸= j
If f(Xi) < f(Xj)
Xnew,i = Xold,i + ri(Xi −Xj)

Else
Xnew,i = Xold,i + ri(Xj −Xi)

End If
End For
Accept Xi+1 if it gives better function value.

Here, npop is the size of solution vector or population.

3.2. Jaya optimization

Like TLBO, Jaya optimization is a population-based optimization technique which does not require any tuning
of parameters. TLBO requires two phases (i.e. teaching phase and learner phase) whereas Jaya optimization
requires only one phase to solve the constrained optimization problem. Let the function f(x) be optimized.
Assume that initially there are ‘P’ numbers of the solution vector (also called population) and each solution
vector contains m number of design variables. Let at any iteration k, Xi,m,k be the ith design variable for the
mth solution vector during the kth iteration. The updated value of Xi,m,k is given as follows:

X ′
i,m,k = Xi,m,k + randk × (Xi,best,k − |Xi,m,k|)− randk × (Xi,worst,k − |Xi,m,k|), (9)

where X ′
i,m,k is the updated value of Xi,m,k , Xi,best,k is the value of design variable i for the best solution

vector, Xi,best,k is the value of design variable i for the worst solution vector, and randk is a random variable
that varies in the range [0,1] during kth iteration. The optimization technique always tries to get closer to the
best solution and tries to avoid the worst solution in each iteration. X ′

i,m,k is accepted if it gives better function
value, otherwise Xi,m,k will be retained.

3.3. Integrated particle swarm optimization

In standard PSO, the main drawback of the algorithm appears when the particle flies near to global or local
positions and the guiding path of particles decreases [36]. Under this condition, there is risk of being trapped
in local minima. To counter this problem, a third particle called weighted particle (Xw ) is introduced into the
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velocity updating formulation [34]:

Xw =

M∑
i=1

C̄w
i XP

i , (10)

where C̄w
i =

(
Ĉw

i /
M∑
i=1

Ĉw
i

)
and Ĉw

i =
max

1≤k≤M
(f(Xp

k))−f(Xp
i )+ϵ

max
1≤k≤M

(f(Xp
k))− min

1≤k≤M
(f(Xp

k))+ϵ
; Npop represents the population of

particles; Xw is the position vector of weighted particles; Ĉw
i is the weighted constant of each particle. The

function f(.) represents the fitness of the particle, while max
1≤k≤M

(f (Xp
k)) and min

1≤k≤M
(f (Xp

k)) represent the

maximum and minimum fitness values in Pbest. Finally, ϵ specifies a small positive number (0.0001) to prevent
division by zero condition. In IPSO, particle position vectors with weighted particle are updated as follows:
IF rand0i ≤ α ,

t+1V i = 0,

t+1Xi =
tXi + ϕ4i

(
tXw − tXi

)
,

ϕ4i = C4 × rand4i.

(11)

IF rand0i > α ,
t+1V i = wi × tV i + (ϕ1i + ϕ2i + ϕ3i)(

tXP
j − tXi) + ϕ2i(

tXG − tXP
j ) + ϕ3i(

tXw − tXP
j ),

t+1Xi =
tXi +

t+1vi,
(12)

where ϕ1i = C1 × rand1i , ϕ2i = C2 × rand2i , ϕ3i = C3 × rand3i ; superscripts ‘t’ and ‘t+1’ denotes present
and next iteration respectively; tV i and t+1V i are the present and updated velocity of particles; wi represents
an inertia factor for the present velocity, which is a random number chosen from [0.5,0.55] in each iteration.

4. Implementation of TLBO, Jaya, and IPSO for network reconfiguration considering DGs

4.1. Implementation of TLBO algorithm for RDN with DGs
Step 1: Determine the primary loops in the radial distribution network [30]. Obtain the minimum and

maximum limits of tie line in each primary loop, minimum and maximum limits of location, and output
power (kW) of DGs.

Step 2: Initialize the size of population equal to Npop and generate the solution vectors given as follows:
Xk = [SW1,….., SWNO, Lo_DG1,…, Lo_DGm, Size_DG1, ..., Size_DG3] ,

where SW1, SW2, . . . , SWNO are tie switches in primary loops PL1 to PLN_Tie ; Lo_DG1, . . . , Lo_DGm ,
and Size_DG1 ,…,Size_DG3 are the locations and sizes of ‘m’ DG units, respectively. The number of
tie switches are N_Tie . The random generation of variables in each solution vector X is deduced from
Eq. (13):

SWk = round
[
SW k

LB,m1
+ rand× (SW k

UB,m1
− SW k

LB,m1
)
]
,

Lo_DGk = round[LokLB,m2
+ rand× (LokUB,m2

− LokLB,m2
)],

Size_DGk = round[SizekLB,m3
+ rand× (SizekUB,m3

− SizekLB,m3
)],

(13)

where m1 = 1, 2, ..., N_Tie ; m2 = 1, 2, ...,m ; m3 = 1, 2, ...,m ; SWLB and SWUB are minimum and
maximum tie switch positions in any fundamental loop m1 ; LoLB and LoUB are lower and upper limits
of DG locations, which vary between node 2 and the maximum number of nodes in the network. Similarly,
SizeLB and SizeUB represent the lower and upper limits of DG power output (kW).
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Step 3: Check radial condition of each host nest by checking the system radial algorithm [30].
Step 4: Initialize the iteration number.
Step 5: Calculate the mean of each element in the solution vector columnwise, which represents the average

mark obtained in a particular subject and is represented as follows:
Mpop = [MSW1,…….,MSW2,MLo,1,…..,MLo,m,Msize,1,…….Msize,m].

Step 6: Find the fitness function for all the generated solution vectors. The solution vector whose fitness
function value is minimum shall be considered as a teacher.

Step 7: In the teacher phase, the teacher will try to enhance the mean of class from Mpop to Xteacher,
which is the updated value of mean for the current iteration. The difference between two means can be
formulated as follows:

dM = rand× (Xteacher − TF ∗Mpop), (14)
where TF represents a teaching factor which is randomly selected between 1 or 2. The updated solution
is represented by Eqs. (15) and (16).

Xt+1 = Xt + dM ; (15)

Xt+1 = [round(Xt+1
m1 ), round(Xt+1

m2 ), Xt+1
m3 ]. (16)

The limits of each tie switch and DG location and sizing are checked by Eq. (17):

SW lim
m1 =

SWLB,m1 if SWm1 < SWLB,m1

SWUB,m1 if SWm1 > SWUB,m1

SWm1 otherwise

Lo_DGlim
m2 =

 2 if Lom2 < 2
LoUB,m2 if Lom2 > LoUB,m2

Lom2 otherwise

Size_DGlim
m3 =

2 if SizeLB,m3 < SizeLB,m3

SizeUB,m3 if Sizem3 > SizeUB,m3

Sizem3 otherwise

(17)

The radiality checking algorithm is run to check the radiality of the updated solution. Accept the new
solution if it gives the better fitness function.

Step 8: In the learners phase, the mathematical formulation is explained in Section 3.1.
Step 9: Increase the iteration number. Stop the process if termination criteria (maximum number of

iterations) are reached, otherwise repeat from Step 5.

4.2. Implementation of Jaya optimization for RDN with DGs

Steps 1 to 4 are similar to those of TLBO algorithm defined in Section 4.1.
Step 5: Find the best and worst solution vectors in Npop solution vectors. In this paper, the best solution

vector represents the minimum value of fitness function and the worst solution vector represents the
maximum value of the fitness function.

Step 6: Set maximum no. of iterations (Maxiter) and start the iteration counter (Iter = 1).
Step 7: Update the solution vector using Eq. (9).
Step 8: Find the best and worst solution vectors. If best function value is better than the previous best

solution, accept the updated solution vector X ′
i,m,k .

Step 9: Increase the iteration number (Iter = Iter + 1). Stop the process when termination criteria
(maximum number of iterations) are reached.
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4.3. Implementation of IPSO algorithm for RDN with DGs.
Steps 1 to 4 are similar to those of TLBO algorithm defined in Section 4.1.

Step 5: Calculate the fitness function value for each particle and obtain the global best (Gbest) and the
personal best (Pbest ) positions of particles.

Step 6: Set maximum no. of iterations and start the counter (Iter = 1).
Step 7: Calculate weighted particle Xw using Eq. (10).
Step 8: If rand0i ≤ 0.4 , update velocity (t+1V i) vector and Xi using Eq. (11). Else rand0i > 0.4 , update

the velocity vector (t+1V i) and Xi using Eq. (12), where rand0i is a random number generated between
0 and 1.

Step 9: Evaluate fitness function for current particlef(Xi) and also for weighted particle f(Xw) .
If (min(f(Xi), f(X

w)) < f(XPbest
)

UpdatePbest

If (min(f(Xi), f(X
w)) < f(XGbest

)

Set Gbest = Xi or Xw

End If where XPbest is the previous best position of the current particle. Replace XPbest and XGbest

with Xi or Xw , whichever has better fitness value.
Step 10: Increase iteration number (Iter = Iter + 1). Stop the process when termination criteria (maximum

number of iterations) are reached.

5. Results and analysis
The mathematical formulation of applied optimization techniques was validated through IEEE 33- and 69-bus
distribution test networks. The installed locations of DGs were restricted to three only for the considered test
systems. Each DG size lies between 0 and 2 kW. The seven different test cases were examined with PSO,
IPSO, TLBO, and Jaya algorithm and compared with HSA, FWA, and ACSA. The simulation was performed
on MATLAB software on Intel i7 processor, 2.4 GHz, 8 GB RAM computer. All the cases considered for
optimization are as follows: Case 1: Base case; Case 2: Reconfiguration only; Case 3: DG allocation
only; Case 4: DG allocation after reconfiguration; Case 5: Reconfiguration after DG allocation; Case 6:
Simultaneous reconfiguration and DG sizing; Case 7: Simultaneous reconfiguration and DG allocation and
sizing. For the load flow solutions for each considered case, the forward–backward sweep algorithm was utilized
in this paper.

5.1. IEEE 33-bus distribution test system
The IEEE 33-bus test system includes 37 branches, 32 sectionalizing switches, and 5 tie switches. The parameters
of test systems were taken from [37]. Total active and reactive loads of the test system are 3.72 MW and 2.3
MVAr, respectively. The branches 33, 34, 35, 36, 37 are tie branches which builds the primary loops. The results
obtained from all the cases considered are summarized in Table 1. For Cases from 2 to 7, the optimization
methods, i.e. IPSO, TLBO, PSO, and Jaya algorithm, are applied and compared with ACSA, FWA, and HSA.
It is observed from Table 1 that the power loss in the base case is 202.67 kW, which gets reduced to 139.98,
72.95, 60.86, 60.85, 65.87, and 58.49 for cases from 2 to 7, respectively when Jaya optimization is applied. The
percentage power loss reduction for cases from 2 to 7 are 30.93, 64.01, 69.97, 69.97, 67.49, and 71.14, respectively.
The magnitude of minimum voltage in p.u. for the network gets improved from 0.9131 (base case) to 0.9813
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(case 7). Moreover, a significant improvement in minimum VSI value in various cases have been observed; it
is improved from 0.6951 (base case) to 0.9272 (case 7). The optimal reconfiguration in case 2 is obtained with
tie switches 7, 14, 9, 32, 28 using IPSO, TLBO, PSO, Jaya, ACSA, and FWA. The nodes 14, 24, and 30 are
identified as optimal locations when only DG allocation is considered (i.e. case 3), whereas the optimal DG
allocation gets shifted to nodes 30, 12, and 16 when the Jaya optimization technique is applied after network
reconfiguration (i.e. case 4). A similar pattern to that of Jaya algorithm is observed for TLBO, IPSO, PSO,
ACSA, FWA, and HSA optimization techniques whereby the percentage loss reduction and minimum VSI are
improved for the rest of the cases in comparison to the base case.

It can also be observed from Table 1 that the minimum power loss occurs in the test system in case
7 when simultaneous consideration of network reconfiguration and DG allocations and sizing are considered
irrespective of the optimization techniques applied. However, it is also observed that when both reconfiguration
and DG installation are considered for the distribution network (i.e. case 4 and case 5), the voltage profile and
VSI values have higher increment compared to when only reconfiguration or DG installation (i.e. case 2 and
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case 3) is performed. It can be seen from Figures 1–4 that the fitness function value is minimum for case 4 for
the optimization methods ACSA, TLBO, PSO, and IPSO whereas for Jaya method, the fitness function value
is minimum for case 7. Hence, with the help of Table 2, it can be concluded that Jaya algorithm, which is one
of the simplest algorithms, is also the most efficient one for all the considered cases.

5.2. IEEE 69 bus distribution test system

To examine the performance of various optimization techniques on the medium scale distribution network, a 69-
bus distribution test system was considered in this study. Test system includes 73 branches, 68 sectionalizing
switches, and 5 tie switches. The test system has 3.802 MW and 2.695 MVAr of active and reactive loads,
respectively. Primary loops for 69 bus test system are obtained by the algorithm given in [30]. Similar to
33-bus test system, the optimization problem for cases 2 to 7, are solved using optimization techniques, i.e.
PSO, TLBO, IPSO, and Jaya algorithm, and compared with ACSA, FWA, and HSA. Tuning of parameters for
optimization techniques (i.e. PSO, IPSO) is set similar to the IEEE 33-bus system. Like 33-bus test system, in
order to reduce network power losses and voltage stability improvement, seven different cases were considered
in this study. The results obtained from the seven cases are summarized in Table 3. It is observed from Table
3 that the power loss in the base case is 224.99 kW, which gets reduced to 99.59, 72.44, 37.53, 41.57, 43.35, and
44.04 for cases 2 to 7 respectively when Jaya optimization is applied. The percentage power loss reduction for
cases 2 to 7 are 55.74, 67.80, 83.32, 81.52, 80.73, and 80.42 respectively. The magnitude of minimum voltage
in p.u. for the network gets improved from 0.9092 (base case) to 0.9807 (case 7). Moreover, a significant
improvement in minimum VSI value in various cases was observed, which gets improved from 0.6833 (base case)
to 0.9239 (case 7). The optimal reconfiguration in Case 2 was obtained with tie switches 69, 70, 14, 61, 56
using Jaya and FWA. The nodes 11, 19, and 61 are identified as optimal locations when only DG allocation is
considered (i.e. case 3), whereas the optimal DG allocation gets shifted to nodes 11, 64, and 61 when the Jaya
optimization technique is applied after network reconfiguration (i.e. case 4). A pattern similar to that of Jaya
algorithm was observed for TLBO, IPSO, PSO, ACSA, FWA, and HSA optimization techniques whereby the
percentage loss reduction and minimum VSI are improved for the rest of the cases in comparison to the base
case.

The power loss is significantly reduced in Case 7 while using ACSA optimization while the minimum
voltage magnitude and VSI are improved in Case 3. The performance of optimization techniques is summarized
in Table 4. Hence, with the help of Table 4. it can be concluded that Jaya algorithm, which is one of the
simplest algorithms, is also the most efficient one for all the considered cases. Figures 5–8 reflect that the fitness
function value is minimum for case 4. This implies that in order to obtain minimum power loss and maximum
voltage stability, DG should be installed after reconfiguration only.

It is observed from Figures 5–8 that the fitness function value is minimum for Case 4. This implies
that in order to obtain minimum power loss and maximum voltage stability, DG should be installed after
reconfiguration.

6. Conclusions
In this paper, optimization techniques such as PSO, IPSO, TLBO, and Jaya were used for simultaneously
optimizing the network reconfiguration and DG location and size. The objectives were to minimize the power
loss and maximize the voltage stability of the distribution network. Seven different cases, i.e. base case
(without reconfiguration and DG allocation and sizing), reconfiguration only, DG allocation only, DG allocation
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Figure 5. Comparison of fitness function values with
PSO.

Figure 6. Comparison of fitness function values with
IPSO.
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Figure 7. Comparison of fitness function values with Jaya
algorithm

Figure 8. Comparison of fitness function values with
TLBO

after reconfiguration, reconfiguration after DG allocation, simultaneous reconfiguration and DG sizing, and
simultaneous reconfiguration and DG allocation and sizing were considered. The optimization problem was
formulated with multiple objectives of minimization of power loss along with maximization of system VSI and
was evaluated for IEEE 33- and 69-bus radial distribution networks. The optimization problem was solved using
various techniques, i.e. PSO, IPSO, TLBO, and Jaya optimization and was also compared with ACSA, HSA,
and FWA. The Jaya and TLBO optimization techniques do not require any tuning of parameters. Moreover,
among all optimization techniques considered, Jaya optimization showed the best performance in all the seven
cases framed for IEEE 33- and 69-bus distribution networks. The simulation results highlighted the fact that in
simultaneously working on the application of network reconfiguration and DG installation, there is a significant
reduction in power loss and enhancement in voltage stability of the network which is in contrast to when
only reconfiguration or DG installation was done. The convergence results also revealed that the minimum
fitness function was obtained for case 4. Therefore, in order to achieve the combined objective of power loss
minimization and voltage stability maximization, a protocol is set to allocate the DGs only after reconfiguration.
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This will help in the voltage stability enhancement of radial distribution network empowered by simple, easy,
hassle-free Jaya algorithm.
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