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Abstract: In this paper, we introduce a novel metaheuristic optimization algorithm named the monarchy metaheuristic
(MN). Our proposed metaheuristic was inspired by the monarchy government system. Unlike many other metaheuristics,
it is easy to implement and does not need a lot of parameters. This makes it applicable to a wide range of optimization
problems. To evaluate the efficiency of the proposed algorithm, we examined it on the traveling salesman problem (TSP)
using some benchmark from TSPLIB online library of instances for the TSP. The experimental results indicate that
the monarchy metaheuristic is competitive with the other methods that exist in the literature for finding approximate
solutions.
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1. Introduction
Our proposed method, the monarchy metaheuristic, is a metaheuristic inspired by a form of government called
monarchy. A monarchy is a form of government in which supreme power is absolutely or nominally lodged
in an individual, who is the head of state, until his death or abdication. The head of a monarchy is called a
monarch or king. It was a common form of government across the world during the ancient and medieval times.
Nowadays, more than forty sovereign nations in the world have a monarch acting as head of state. Monarchies
can be classified according to how their monarch is selected, for instance, an elective monarchy is a monarchy
ruled by an elected monarch. On the other hand, for the hereditary monarchy, the throne is passed down as
a family inheritance but elective monarchies can transform into hereditary ones over time and hereditary ones
can have occasional elective aspects.

2. Definitions needed to understand the proposed method

2.1. Hereditary monarchy

A hereditary monarchy is the most common style of monarchy; it is the form that is used by almost all of the
world’s existing monarchies. Under a hereditary monarchy, all the monarchs come from the same family, and
the throne is passed down from one family member to another. The hereditary system has the advantages of
stability, continuity, and predictability.
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2.2. Dynasty

A dynasty is a family or line of rulers, a succession of sovereigns of a country belonging to a single family or
tracing their descent to a common ancestor. The persons in line to become monarchs are called dynasts.

2.3. Order of succession
An order of succession or line of succession is the sequence of those people eligible to come to the throne. In a
hereditary monarchy, the position of monarch is inherited according to an established order of succession, this
provides immediate replacement of the monarch after an unexpected vacancy. All possible monarchs are legally
recognized as born into or descended from the reigning dynasty or a previous one.

Different systems of succession have been used to select the next monarch such as, primogeniture, seniority,
and tanistry. For primogeniture, the eldest child of the monarch is first in line to become monarch. In some
monarchies, succession to the throne uses seniority which usually first gives the throne to the monarch’s next
eldest brother. Tanistry is a semielective and gives weight to merit while choosing the next monarch. A self-
proclaimed monarchy is established when a person claims the monarchy without any historical ties to a previous
dynasty.

3. The traveling salesman problem

We used the traveling salesman problem (TSP) for benchmarking and testing our method. It is commonly
used in investigating the performance and behavior of metaheuristics. It is one of the most studied problems
of combinatorial optimization. The TSP is very easy to describe, yet very difficult to solve. It is an NP-Hard
problem; this means that a method that ensures an optimal solution for all instances of this problem within
reasonable execution time does not exist yet.

The TSP can be described as follows: Given N cities and the distances between each pair of them, the
task of the salesman is to visit each and every city once so that the overall tour-length is minimal. The solutions
are coded using path representation which is the most natural representation which represents a tour as a list
of N cities. If city j is kth element of the list, city j is kth city to be visited. Hence, the tour 2 0 1 3 4 is
simply represented by (2, 0, 1, 3, 4).

4. Description of the monarchy metaheuristic

The monarchy metaheuristic inspired by the monarchy government system starts first by finding two solutions
to the problem randomly or by using any known heuristic, one of these two solutions will be the king, the
second will help to make the first dynasty list which contains the possible successors to the throne. For this
king solution, we will create two lists: the children list L1 , and the relative list L2 . Hence, the dynasty list will
be D : the union of L1 and L2 .

The next king will be chosen using one of three possible ways of succession chosen among the set of
different ways of succession that exist: primogeniture, seniority, and tanistry. We added a fourth way of
selection named intruder which represents the situation of self-proclaimed monarchy, where the next king is
not chosen from a dynasty list. The algorithm keeps running from one iteration to another, each iteration
starts with a new king solution to which we associate a dynasty list, this list is updated at each iteration. The
algorithm terminates when it reaches a prespecified number of iterations.
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4.1. Finding the first king

The first king solution can be generated randomly or created using any known heuristic. For instance, for the
TSP, the heuristic that we have used is a constructive heuristic based on the nearest neighbor algorithm, it is
one of the first algorithms used to determine a solution to the TSP. It starts with a randomly chosen city, as
long as there are cities that have not yet been visited, visits the nearest city that still has not appeared in the
tour. The algorithm terminates once all cities have been visited. It quickly finds a tour, but usually not the
best one.

4.2. Creating the L1 list

Every solution in the L1 list is obtained by applying crossover between the king solution and another solution
(found by a constructive heuristic, or generated randomly). Many kinds of crossover methods exist but it is
essential that we find and apply a crossover method that produces valid results for our problem. In our case,
we used the ordered crossover since this crossover method produced valid solutions for the TSP.

The ordered crossover was proposed by Davis in 1985 [1], this operator builds the children tour by using
a subtour of one of the parents and maintaining the order of the cities of the remaining parent.

For example, consider the following two parent tours:
(2, 0, 1, 3, 4) , (0, 1, 3, 4, 2) . Two cut points identical for both parents are chosen. Assuming that these cut

points are located between the positions two and three and between three and four: (2, 0|1|3, 4) , (0, 1|3|4, 2) .
The resulting children tours will have the subtour between the cut points the same as the parent tours as follows:
(∗ ∗ |1| ∗ ∗) , (∗ ∗ |3| ∗ ∗) .

Then, using the other parent tour, starting with the second cut point and omitting the cities that have
already been presented in the child tour, the remaining nodes tour are inserted in the same order they appear in
it. When the end of the parent tour is reached, it continues from its first position. The children tours resulting
from this example would be (0, 3|1|4, 2) and (0, 1|3|4, 2) .

4.3. Creating the L2 list

The L2 list is formed by using the king solution neighbors; three types of neighborhood have been used:
one-point neighborhood, two-point neighborhood, and two-opt neighborhood.

The neighborhood of a given solution is the set of feasible solutions that somehow are similar to the given
solution and their objective function values are not very different.

1. One-point neighborhood: Given a tour, we randomly select a city and then relocate it to all other
positions of the tour. For instance, having a tour (0, 1, 2, 3, 4) and the selected city 2 , the next new tours
are (2, 0, 1, 3, 4) , (0, 2, 1, 3, 4) , (0, 1, 3, 2, 4) , (0, 1, 3, 4, 2) .

2. Two-point neighborhood: Given a tour, we randomly select a city and then swap the position of the
selected city with another city. For instance, having a tour (0, 1, 2, 3, 4) and the selected city 2 , the next
new tours are (2, 1, 0, 3, 4) , (0, 2, 1, 3, 4) , (0, 1, 3, 2, 4) ,(0, 1, 4, 3, 2) .

3. Two-opt neighborhood: Each two-opt neighbor is constructed with the well known two-opt algorithm,
which was first proposed by Croes in 1958 [2]. The two-opt move deletes two edges and thus breaks the
tour into two paths and then reconnects those paths in the other possible way.
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One-point neighborhood (↓ T: tour, K: integer, pos: integer,↑ Neighbors: a list of tours)

Input T: a tour, K: a number of neighbors, pos: integer.
Output Neighbors: a list of K neighbors.
Begin
city :=Tour.get(pos); j := 0 ; Neighbors :=Null;
while (j ≤ K ) do

if (j ̸= pos) then
i := 0 ;
while i ≤ (Tour.size()− 1) do

if (i ̸= pos) then Neighbor.set(i)=Tour.get(i);
end if
i := i+ 1 ;

end while
// The function add(pos, city) will add city at the position pos of the list Neighbor.
Neighbor.add(pos,city);

end if
Neighbors :=Neighbors.add(Neighbor);
j := j + 1 ;

end while
End

Two-point neighborhood (↓ T: tour, K: integer, pos: integer, ↑ Neighbors: a list of tours)

Input T: a tour, K: a number of neighbors, pos: integer.
Output Neighbors: a list of K neighbors.
Begin
j := 0 ; Neighbors :=Null;
while (j ≤ K ) do

Neighbor :=Tour.copy;
Neighbor.switch(pos,j);
Neighbors :=Neighbors.add(Neighbor)
j := j + 1

end while
End

4.4. Selection of the next king
As mentioned before, four ways of selection were used.

1. Primogeniture: Primogeniture is a succession law where the eldest son (or daughter, under certain
conditions) inherits all titles. In the absence of any children, brothers succeed. In the monarchy meta-
heuristic, if the way of selection of the next king is primogeniture, the next king will be chosen from the
L1 list.

2. Seniority: For the seniority way of succession, the order of succession to the throne prefers the king’s
younger brother over the king’s own sons. A king’s children (the next generation) succeed only after
the males of the elder generation have all been exhausted. In the monarchy metaheuristic, if the way of
selection of the next king is seniority, the choice of the next king will be from the L2 list.

3. Tanistry: Tanistry is a rare succession method where the king is chosen from the dynasty list by election.
In the monarchy metaheuristic, if the way of selection of the next king is tanistry, the next king will be
the best solution in list D which is the dynasty list that contains all members of both L1 and L2 lists.
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Two-opt neighborhood (↓ T: tour, pos1: integer, ↑ Neighbors: a list of tours )

Input T: a tour, pos1: integer.
Output Neighbors: a list of neighbors.
Begin
pos2 := pos1 + 1 ;
i := 0 ; Neighbors :=Null;
while (i ≤ Tour.size()− 3) do

pos3 := pos2 + 1 + i ;
pos4 := pos3 + 1 ;
//Reverse the path between pos2,pos3.
Neighbor :=Neighbor.ReversePath(pos2, pos3);
Neighbors :=Neighbors+Neighbor;
i := i+ 1 ;

end while
End

Procedure primogeniture (↓ L1 : a list of tours, ↑ T : a tour)
Input ↓ L1 : a list of tours.
Output ↑ T : the best tour of L1 .
Begin
// BestFitness (↓ L1 : a list of tours) is a function that calculate the fitness value of each tour in L1 and
return the tour that have the best value of fitness.
T= BestFitness (L1 );
End

Procedure seniority (↓ L2 : a list of tours, ↑ T : a tour)
Input ↓ L2 : a list of tours.
Output ↑ T : the best tour of L2 .
Begin
// BestFitness (↓ L2 : a list of tours) is a function that calculate the fitness value of each tour in L2 and
return the tour that have the best value of fitness.
T= BestFitness (L2 );
End

Procedure tanistry (↓ L1, L2 : a list of tours, ↑ T : a tour)
Input ↓ L1, L2 : two lists of tours.
Output ↑ T : the best tour of L1 ∪ L2 .
Begin
Tour D= L1 ∪ L2 ;
// BestFitness (↓ D : a list of tours) is a function that calculates the fitness value of each tour in D and
returns the tour that have the best value of fitness.
T= BestFitness (D );
End

4. Intruder: A self-proclaimed monarchy is established when a person claims the monarchy without any
historical ties to a previous dynasty. In the monarchy metaheuristic, if the way of selection is intruder,
the next king solution will not be chosen from the dynasty list. It will be created using any known
metaheuristic. In our case, simulated annealing (SA) [3] was used to create an intruder king.
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Procedure intruder ( ↑ Solution : a tour)
Output ↑ Solution : a tour found using SA
Begin
// FirstSolution() is a function that find a first solution to start a simulated annealing algorithm.
Tour CurrentTour=FirstSolution();
// Initialize the simulated annealing parameters
TInitial= Random(Int); TFinal= Random(Int);
T= Tinitial ;
IMax= Random(Int);
while i ≤ IMax do

while T ≥ TFinal do
// Pick a random neighbor of CurrentTour.
NextTour ∈ N(CurrentTour) ;
∆E = Fitness(NextTour)− Fitness(CurrentTour) ;
if ∆E ≤ 0 then

CurrentTour= NextTour;
else if ∆E > 0 then

Set (CurrentTour=NextTour) with probability exp−∆
T

end if
T = T × CoolingRate ;

end while
i = i+ 1;

end while
Solution= CurrentTour;
End

4.5. The monarchy metaheuristic framework

As any other metaheuristic, the monarchy metaheuristic can be defined within a generic framework. One of
the principal advantages of this metaheuristic is that it can be viewed as single-solution metaheuristic if we
decide to keep the king solution only at each iteration or it can be used as population-based metaheuristic if
all solutions of the dynasty list associated to the king solution of each iteration are memorized. Algorithm 1
presents the framework of the proposed method.

4.6. The monarchy metaheuristic parameter

The monarchy metaheuristic (MN) needs one parameter: the length of the two lists, L1 and L2 . Different ways
can be used to set this parameter. The user can choose to set the length of these two lists at the beginning of
the algorithm and then for every king solution at each iteration, the length of the two lists, L1 and L2 , will
be the same. Another way which gives more importance to the quality of the solution selected as a King at
each iteration consists of choosing the length of the two lists according to the percentage of improvement of the
solution. The length of the lists can be changed from one iteration to another, and the length of L1 can also
be different from the length of L2 .

4.7. What if the next king solution does not bring an improvement?

We tested two alternatives in case the next selected king solution did not bring an improvement: The first one
consists of keeping this solution and the size of L1 ; L2 constructed for this solution will decrease according
to the value of percentage of improvement. This alternative has been denoted as MN1 . The second one is to
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Algorithm 1 Pseudocode of the monarchy metaheuristic

Initialization
- Construct the first king solution K1 randomly or using any known heuristic.
- Initialize LK with K1 . LK is the list that contains all king solutions

found at all iterations.
- Set an initial size for L1 and L2 .
- Generate L1 , L2 associated to K1 .
- Set delta← 0 (delta is the percentage of improvement of solution).
- Set a value for the number of maximum iterations (MaxIterations).
- Initialize the iteration counter N ← 1 .

while (N < MaxIterations ) do
a) Choose a way of selection of the next king solution.
if (way of selection is Primogeniture) then

- Evaluate each solution of L1 .
- Select the next king solution from L1 (the best solution in L1 ).

else if (way of selection is Seniority) then
- Evaluate each solution of L2 .
- Select the next King from L2 (the best solution in L2 ).

else if way of selection is Tanistry) then
- Build the dynasty list D which is L1 ∪ L2 .
- Evaluate each solution of D .
- Select the next king solution from D .

else if (way of selection is Intruder) then
- Generate the next king solution by any other metaheuristic.

end if
b) Calculate delta , the percentage of improvement of the solution.
if delta < 0 then

1. Use one of the following alternatives:
Alternative 1:

- Put the actual king solution into the LK list and generate L1 , L2 .
- The size of L1 , L2 will decrease according to the value of delta .

Alternative 2:
- Take the best king solution found so far and use its L1 , L2 lists.

2. N ← N + 1 .
else if delta > 0 then

1. Put the actual king solution into LK .
2. The size of L1 , L2 will increase according to the value of delta .
3. Generate L1 and L2 .
4. N ← N + 1 .

end if
end while
Termination criteria: The algorithm stops if it reaches a prespecified number of iterations.
Finalization: Report the best king solution obtained.
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neglect this solution, get back to the best king solution found so far and use the dynasty list of this best solution
to choose the next king solution, this alternative has been denoted as MN2 .

5. Experimental results and discussion

The MN metaheuristic was tested on several instances of euclidian symmetric TSP, the instances were collected
from TSPLIB which is an online library of TSP. Most of the instances included in TSPLIB have already been
solved to optimality and they have been used in many research studies. Each instance presents a specific number
of cities (e.g., the data in instance eil51 includes 51 cities and instance st70 includes 70 cities and so on).
The Monarchy Metaheuristic was operated throughout 500 iterations and each TSP problem was repeated 50
times using integer distances and 20 times using real distances. The MN algorithm was implemented using
Java on 2.5 -GHz Dell computer with 4 GB RAM running on windows 7 . The parameter setting for the MN
metaheuristic is the length of the two lists L1 and L2 , for the first iteration the initial lengths of L1 and
L2 were set to 50 . The results of the other methods were directly taken from the literature when available.
The results presented are the best, the average, the worst tour lengths, and the relative error values obtained
according to the optimal values. The relative error RE indicates how far the obtained solution is from the
optimal solution. The relative percent error value was calculated with the following equation:

RE(%) =
(LRT − LOT )

LOT
× 100 (1)

LRT : length of the resulting tour, LOT : length of the optimal tour.
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Figure 1. Comparison of objective function values for
Eil51 instance of TSP (using integer distances).

Figure 2. Comparison of objective function values for
Pr76 instance of TSP (using integer distances).

Figures 1 and 2 show a comparison of objective function values of the proposed method with other existing
metaheuristics that have used integer distances for Eil51 and Pr76 instances of TSP.

Table 1 shows a comparison of the two proposed alternatives of the monarchy metaheuristic MN1 and
MN2 and other methods in the literature that have used integer distances, the results of GA (genetic algorithm)
and AMCPA (adaptive multicrossover population algorithm) were taken from [4], the results of HGA (hybrid
genetic algorithm) were taken from [5], the results of HDE (hybrid differential evolution algorithm) and DPSO
(discrete particle swam optimization) were taken from [6], and the results of SA (simulated annealing), ACO
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Table 1. The comparison of MN algorithm and other algorithms in the literature (using integer distances).

Problem Method Best Average Worst RE OPT
GA 441 445 - 3.52
HGA 436 440 - 2.35
AMCPA 441 465.7 - 3.52
HDE 439 444 - 3.05
DPSO 437 445 - 2.58

Eil51 SA 447 467 - 4.92 426
ACO 432 439 - 1.40
TPASHO 426 431 - 0
MN1 426 432.88 442 0
MN2 426 435.2 468 0
GA 7745 8040.1 - 2.69
AMCPA 7542 7805.2 - 0
HGA 7544 7559 - 0.03

Berlin52 HDE 7544 7816 - 0.02 7542
DPSO 7700 7960 - 2.09
MN1 7863 8071.88 8183 4.25
MN2 7703 7947.32 8295 2.13
GA 707 750.2 - 4.74
AMCPA 692 706.5 - 2.51
HGA 683 686 - 1.19

St70 HDE 684 691 - 1.33 675
DPSO 712 733 - 5.48
MN1 705 721.32 735 4.44
MN2 675 698.48 733 0
GA 558 610.6 - 3.71
AMCPA 566 578.1 - 5.20
HGA 552 559 - 2.60

Eil76 HDE 558 568 - 3.71 538
DPSO 580 587 - 7.80
MN1 573 580.4 589 6.50
MN2 540 558.54 585 0.37
GA 189,659 - - 75.35
HDE 109,491 110,539 - 1.23
DPSO 113,505 115,144 - 4.94

Pr76 SA 112,341 113,523 - 3.86 108,159
ACO 110,462 111,037 - 2.13
TPASHO 108,219 110,031 - 0.05
MN1 110,964 114,522.66 116,355 2.59
MN2 109,021 111,116.08 115,384 0.79
GA 21,566 22,270.4 - 1.33

Kroa100 AMCPA 21,608 22,125.3 - 1.53
HGA 21,733 21,811 - 2.12 21,282
MN1 23,178 23,625 23,844 8.90
MN2 22,363 23,398.08 23,674 5.08
GA 696 725.8 - 10.65

Eil101 AMCPA 657 678.1 - 4.45
HGA 651 661 - 3.50 629
MN1 654 667.38 674 3.97
MN2 630 649.68 670 0.15
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Table 2. The comparison of MN algorithm with other algorithms in the literature (using real distances).

Problem Method Best Average Worst RE OPT CPU(s)
ACO 450.59 457.86 463.55 5.06 112.11
ABC 563.75 590.49 619.44 31.45 2.16

Eil51 HA 431.74 443.39 454.97 0.67 428.87 58.33
MN2 431.17 437.25 446.89 0.54 71.1
ACO 7548.99 7659.31 7681.75 0.06 116.67
ABC 9479.11 10390.26 11021.99 25.64 2.17

Berlin52 HA 7544.37 7544.37 7544.37 0 7544.37 60.64
MN2 7774.24 7952.09 8065.97 3.05 69.25
ACO 696.05 709.16 725.26 2.79 226.06

St70 ABC 1162.12 1230.49 1339.24 71.63 677.11 3.15
HA 687.24 700.58 716.52 1.49 115.65
MN2 682.66 706.11 724.59 0.82 103.8
ACO 554.46 561.98 568.62 1.66 271.98
ABC 877.28 931.44 971.36 60.85 3.49

Eil76 HA 551.07 557.98 565.51 1.04 545.39 138.82
MN2 563.66 573.68 583.43 3.35 123.85
ACO 115166.66 116321.22 118227.41 6.48 272.41
ABC 195198.9 205119.61 219173.64 80.47 3.50

Pr76 HA 113798.56 115072.29 116353.01 5.21 108159.44 138.92
MN2 109140.82 111049.24 114868.83 0.91 125.9
ACO 22455.89 22880.12 23365.46 5.49 615.06
ABC 49519.51 53840.03 57566.05 132.64 5.17

Kroa100 HA 22122.75 22435.31 23050.81 0.04 21285.44 311.12
MN2 22415.47 23116.88 23703.12 5.31 204.65
ACO 678.04 693.42 705.65 5.56 527.42
ABC 1237.31 1315.95 1392.64 92.63 5.17

Eil101 HA 672.71 683.39 696.04 4.73 642.31 267.08
MN2 664.258 682.935 700.497 3.42 210.05

(ant colony optimization), and TPASHO (two-phase hybrid optimization algorithm) were taken from [7]. As
seen in Table 1, the results produced by the proposed method are better than those of all the other methods
for Eil101, Eil76, Eil51, and St70 test problems, and the optimum solutions are obtained for the Eil51 and St70
instances. For the Pr76 instance, the quality of the obtained solution is better than those of GA, HDE, DPSO,
SA, ACO, and the solution is not far from the optimum solution (RE = 0.79).

We noticed that the results of the MN2 are better than those of MN1 . Therefore, we did more tests
using real distances to compare MN2 with the methods in the literature that used real distances.

Table 2 shows a comparison between the proposed method MN2 and ACO (ant colony optimization),
ABC (artificial bee colony), and HA (hierarchic approach: ACO with ABC); these three methods used real
distances and their results were taken from [8].

In Table 2, we can see that the proposed method (MN) produced results that are better than those of
ACO in terms of time and quality. The quality of the obtained solutions of the MN method are better than
those of the ABC method and it is very competitive with the HA method.

Figures 3 and 4 show a comparison of objective function values of the proposed method with other existing
metaheuristics that use integer distances for some TSP instances.
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Figure 4. Comparison of objective function values for
Kroa100 and Eil101 instances of TSP (using integer dis-
tances).
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Figure 5 shows a comparison of the relative percent error values of our metaheuristic with other existing
metaheuritics that used real distances.

Figure 6 shows a comparison of the relative percent error values of our metaheuristic with other existing
metaheuritics that used integer distances.

Figures 7 and 8 show a comparison of objective function values of the proposed method with other
existing metaheuristics that used real distances. Figure 9 shows computing time comparison between the MN
metaheuristic and other existing methods.

Figure 10 shows the convergence curve of best results for the proposed method (the second alternative
MN2 ) in single run (best run) for Eil51 TSP instance, in this case, the proposed algorithm started with solution
found by greedy heuristic and reached the 426 value which is the optimal value for Eil51 instance. Figure 11
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Figure 8. Comparison of objective function values for
Pr76, Kroa100, and Berlin52 instances of TSP (using real
distances).
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shows the convergence curve of best results for the proposed method (the second alternative MN2 ) in single
run for Pr76 instance, the proposed algorithm started with solution found by greedy heuristic.

Figures 12a and 12b show convergence curves of the proposed method, and the genetic algorithm
(respectively), for the Eil51 instance. Figures 13a and 13b show convergence curves of the proposed method,
and the genetic algorithm, respectively, for the Pr76 instance.

Figures 12 and 13 show a comparison of convergence curves of best results for the proposed metaheuristic
and genetic algorithm both started with random solutions for Eil51 instance and Pr76 instance (respectively),
the proposed algorithm converges faster than the genetic algorithm and needs less iterations than the genetic
algorithm to reach the global optimum.

As it can be seen in Figures 12 and 13, the proposed method (MN metaheuristic) outperforms the genetic
algorithm in terms of convergence and quality of solution.

The results obtained for TSP instances prove that the proposed method (the Monarchy Metaheuristic)
is competitive with the existing methods in the literature. It is worth mentioning that the MN also has the
possibility of improving its performance since it can use various algorithms as subalgorithms.
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Figure 10. Convergence curve of best results for MN2

starting with solution found by greedy heuristic for Eil51
instance.

Figure 11. Convergence curve of best results for MN2

starting with solution found by greedy heuristic for Pr76
instance.
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Figure 12. Comparison of convergence curves of MN2 and GA both started with random solutions for Eil51 instance.
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Figure 13. Comparison of convergence curves between MN2 and GA both started with random solutions for Pr76
instance.
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6. Conclusion and future work
In this paper, a novel metaheuristic inspired by the monarchy government system and named the Monarchy
Metaheuristic (MN) was introduced and investigated. The performance of the MN method was validated
through a set of seven TSP (traveling salesman problem) benchmarks available on TSPLIB online library of
instances of the TSP problem. Tests were done using integer distances and real distances. The results of
the proposed method indicate that the MN method is competitive with the other methods that exist in the
literature. In future works, we plan to reduce the computing time by changing the subalgorithms that were
used and by testing others. We also aim to prove the effectiveness of the method on other types of problems
such as the vehicle routing problem.
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