
Turk J Elec Eng & Comp Sci
(2019) 27: 453 – 470
© TÜBİTAK
doi:10.3906/elk-1803-172

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Automatic concept identification of software requirements in Turkish

Fatma BOZYİĞİT1∗ , Özlem AKTAŞ2 , Deniz KILINÇ3

1Department of Computer Engineering, Graduate School of Natural and Applied Sciences, Dokuz Eylül University,
İzmir, Turkey

2Department of Computer Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey
3Department of Software Engineering, Faculty of Technology, Manisa Celal Bayar University, Manisa, Turkey

Received: 25.03.2018 • Accepted/Published Online: 04.10.2018 • Final Version: 22.01.2019

Abstract: Software requirements include description of the features for the target system and express the expectations
of users. In the analysis phase, requirements are transformed into easy-to-understand conceptual models that facilitate
communication between stakeholders. Although creating conceptual models using requirements is mostly implemented
manually by analysts, the number of models that automate this process has increased recently. Most of the models
and tools are developed to analyze requirements in English, and there is no study for agglutinative languages such
as Turkish or Finnish. In this study, we propose an automatic concept identification model that transforms Turkish
requirements into Unified Modeling Language class diagrams to ease the work of individuals on the software team and
reduce the cost of software projects. The proposed work is based on natural language processing techniques and a new
rule-set containing twenty-six rules is created to find object-oriented design elements from requirements. Since there is
no publicly available dataset on the online repositories, we have created a well-defined dataset containing twenty software
requirements in Turkish and have made it publicly available on GitHub to be used by other researchers. We also propose
a novel evaluation model based on an analytical hierarchy process that considers the experts’ views and calculate the
performance of the overall system as 89%. We can state that this result is promising for future works in this domain.

Key words: Software requirements, conceptual model, natural language processing, rule-based model, Unified Modeling
Language, class diagram, analytical hierarchy process-based evaluation

1. Introduction
The software development process has many activities starting from requirements analysis to deployment.
Requirements analysis is considered as the most important phase in the software development life cycle (SDLC).
Software requirements determine the needs of users and involve convenient text-based information about the
target system [1]. If a requirements document includes vague statements, it may not be understood clearly by
the software team and may cause expensive bugs to be fixed in the next phases [2]. These bugs also extend the
delivery time of the software and increase the total cost of the project. Therefore, it is important to write clear
requirements and convert them to conceptual models that increase the understanding of the users’ needs. The
aim of drawing a conceptual model is to map domain information from user’s side to software components on
the developer’s side.

A conceptual model can be represented in different forms, such as Unified Modeling Language (UML)
diagrams, entity relationship models (ERMs), and business models (BMs). The UML notion was created by
∗Correspondence: ftmbozyigit@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
453

https://orcid.org/0000-0002-5898-746
https://orcid.org/0000-0001-6415-0698
https://orcid.org/0000-0002-2336-8831


BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Grady Booch, James Rumbaugh, and Ivar Jacobson and has been evolving since the second half of the 1990s [3].
UML has fourteen types of diagrams to model software systems and business processes, and all the diagrams
are grouped into two categories: structural diagrams and behavioral diagrams.

In the object-oriented analysis phase, UML diagrams are the most used models to present a wider view
of user requirements. Although this phase is generally considered as a manual task, a literature survey shows
that automatic generation of UML models from text-based requirements has become an area of interest for
researchers. Considering the literature, it is seen that the majority of studies achieve automatic generation of
requirements documents written in English. This is because English is one of the most spoken languages in the
world and the morphology of English is simple and regular. On the other hand, analyzing textual requirements is
a challenging task for morphologically complex languages such as Turkish and Finnish when their agglutinative
structure is considered.

In this study, a rule-based method that analyzes requirements written in Turkish and automatically
generates UML class diagrams is proposed, and to the best of our knowledge, it is the first such study in the
literature. Design components of a class diagram (classes, attributes, methods, and relationships) are extracted
from textual requirements utilizing natural language processing (NLP) methods such as tokenization and part
of speech (POS) tagging. The main contributions of this study are as follows:

1. It is the first such study carried out on Turkish. To provide this contribution a novel comprehensive
rule-based model involving twenty-six transformation rules is developed for Turkish.

2. Considering the literature, there is no common and publicly available dataset for any language to be used
in the experimental works of other researchers. As the second contribution of the study, we have prepared
a well-defined dataset containing software requirements both in Turkish and English and made it publicly
available on GitHub.1

3. Studies in the literature perform evaluations with commonly used measures such as precision, recall,
and F-measure [4]. These measures assume that each evaluation criterion (classes, attributes, methods,
relationship type, etc.) has equal weight, which may cause inconsistent evaluation results. This is because
the evaluation phase is highly dependent on personal opinions, and so the priority/weight of these criteria
varies depending on views of users. In our study, a novel evaluation method based on multicriteria decision
making (MCDM) is proposed.

This paper is organized as follows. In Section 2, related works are presented. Section 3 gives information
about the methods used for implementing the automatic model generation of the requirements in Turkish.
Section 4 gives information about the proposed methodology of our study and experimental study. Section 5
includes the evaluation results. Section 6 concludes the paper and gives information about our future work.

2. Related works
There are many studies implementing automatic transformation of software requirements into UML diagrams in
the literature. Most of the studies are usually carried out in the English language. The first work in this domain
is a tool named LOLITA (Large-scale Object-based Linguistic Interactor, Translator, and Analyzer) that was
presented by Mich in 1996 [5]. In this study, basic NLP steps (lexical, syntactic, and semantic analysis) and a
straightforward rule-based model are used to analyze software requirements. The object diagrams are produced
with a transformation process of natural language requirements documents in English.

1“Repository of Turkish-AutoConceptIdentifier,” accessed 29 July 2018, https://github.com/ftmbozyigit/Turkish-
AutoConceptIdentifier.

454

https://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier
https://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier


BOZYIGIT et al./Turk J Elec Eng & Comp Sci

It has been observed that the reviewed studies commonly generate the class diagram as a conceptual model
by analyzing textual requirements. For instance, Sagar and Abirami [6] aimed to create a rule-based model
including specific rules to identify classes and relationships in class diagrams by using functional specifications
written in English. In their study, they created thirty-eight rules that are gathered under three categories of
class, attribute, and relationship. The test of the study was done using a modified ATM problem statement
from Rumbaugh’s ATM model [7]. Additionally, Ibrahim and Ahmad proposed a model called RACE for
transforming software requirements into class diagrams by using NLP methods [8]. They used a rule-based
system built at the start of study, and then the NLP techniques were applied to the textual data with the
specified rules. Finally, domain ontology was used to refine candidate classes in the diagram to obtain higher
accuracy rates. Another example is the study done by Zhou and Zhou [9]. They used domain knowledge with
NLP spider model techniques and extracted object-oriented (OO) design elements from written requirements
to build class diagrams. It is emphasized that the use of domain ontology improves the performance of the
transformation process.

Furthermore, there are some studies in which both class diagrams and a code generation process are
proposed. In the study of Bajwa et al., a methodology called UMLG including basic NLP techniques, semantic
analysis, and a rule-based model was used to analyze a text and generate source code in Java [10]. They used
a dataset including five different requirements documents consisting of simple English sentences to test their
study. They indicated that average recall for English requirements specifications was calculated as 80.73% while
average precision was calculated as 85.27%. Additionally, Tripathy et al. used NLP techniques to create class
diagrams and generate source code from incomplete and ambiguous requirements documents [11]. They only
tested the problem statement of the Bank ATM2 in their study, and an additional dataset was not used. It was
pointed out in their study that the accuracy rate was calculated as 96%.

From the studies discussed above, it is clearly seen that there is no study implementing automatic
transformation of software requirements for Turkish, which has a complex morphology. Also, studies do not
have comprehensive and well-formed datasets that are publicly available. Finally, the studies do not take into
account expert opinions in the evaluation of the systems. Table 1 briefly introduces the differences of the studies
reviewed.

Table 1. General information about reviewed studies (lang.: language, avg.: average, reqs.: requirements, Pr: precision,
Re: recall).

Paper Supported lang. Method Diagram Source code # of reqs. Avg. # of words Evaluation
[5] English Rule-based Object - 1 94 -
[6] English Rule-based Class - 3 87 Pr, Re
[8] English Ontology-based Class - 1 97 -
[9] English Pattern-based Class - 1 78 -
[10] English Rule-based Class Java 5 102 Pr, Re
[11] English Rule-based Class Java, VB 1 85 Pr, Re

3. Materials and methods
3.1. An overview of the Turkish language
Turkish is a member of the Altaic language family and has distinctive characteristics such as vowel harmony
and extensive agglutination [12]. The word structure in agglutinative languages is based on the addition of

2Bjork RC. ”An example of object-oriented design: an ATM simulation,” accessed 12 November 2018, http://www.math-
cs.gordon.edu/local/courses/cs211/ATMExample/.

455

http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/


BOZYIGIT et al./Turk J Elec Eng & Comp Sci

derivational or inflectional morphemes to the roots as suffixes. Since morphemes change the meaning of the
stems or roots that they are added to, many different words may be derived from one word by adding morphemes.
An example for this situation is the word “Osmanlılaştıramadıklarımızdanmışsınızcasına” (“as if you are among
the ones that we could not Ottomanize”) [13]. Turkish, being an agglutinative language, has difficulties in
NLP, since it has more complex morphology when compared with other languages like English. Therefore,
development of an automated text for the diagram transformation tool is a challenging task for Turkish.

3.2. Natural language processing (NLP)
NLP is a science and engineering field, which designs and applies computer systems to be used in processing and
understanding natural languages [14]. The developments in information technologies have given momentum to
the studies dealing with natural languages in the literature. The basic NLP steps are tokenization, stemming,
POS tagging, etc.

3.2.1. Tokenization
One of the preliminary steps of text processing is tokenization, which is the process of separating sentence
structure into word groups [15]. To implement this process, the punctuation marks and spaces are considered
as separators, and the sentences are separated into their components. In order to simplify information retrieval
from requirements, the tokenization is applied first and word sequences are obtained.

3.2.2. Stemming and part of speech (POS) tagging
‘Stem’ is the name given to the words derived from the roots of nouns and verbs through derivational morphemes.
Stemming means that the derivational suffixes added to the words are held and the inflectional suffixes are
removed [16]. Note that the derivational suffixes are used to derive new words from roots of words, whereas the
inflectional suffixes are added to stem of the name and verbs to specify such information as the state, plurality,
time, etc.

After tokenized words are cleaned of inflectional morphemes through the stemming process, POS tagging,
which is the process of categorizing word groups considering their function in a sentence, is applied in our
proposed model [17]. As a result, each word is separated into categories such as noun, verb, conjunction, etc.

4. Proposed methodology
4.1. Dataset
Datasets have remarkable importance in scientific studies, so they must be well formed, well formatted, and
available to be used in other scientific studies. When the studies covered in the literature are examined, it is
observed that they have some limitations in the datasets used. These limitations are explained as follows:

• The datasets used include a small number of requirements documents.
• The requirements in the datasets are simple structured and not exactly like real-life scenarios.
• Publicly sharing the datasets commonly allows researchers who work in the same field to compare the

efficiency of their methods. It is realized that there is no study that uses a common dataset shared on a
public platform.

The dataset was constructed with the use of the “SENG 2115 - Object Oriented Programming (OOP)”
course questions taught in the Department of Software Engineering of Manisa Celal Bayar University (MCBU).

456



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Additionally, we collected requirements used in case studies of the related works and translated them into
Turkish to enhance our dataset. The dataset contains twenty different requirements in Turkish with their
English translations. Twelve of twenty requirements were prepared by the instructors of the Department of
Software Engineering between 2015 and 2018. The dataset was made publicly available to be used in the works
of other researchers. Table 2 shows detailed information about the dataset used in this study.

Table 2. Some properties of the created dataset.

Property Value
Number of requirements documents 20
Supported languages Turkish and English
Supported diagrams Class
Average number of sentences in requirements 11
Average number of words in requirements 108
Average number of classes in requirements 8
Average number of attributes in requirements 4
Average number of methods in requirements 4

Table 3 represents sample requirements named “Restoran (Restaurant)”, written both in English and
Turkish languages.

Table 3. Sample requirements in the dataset.

En
gl

ish

Yılmaz Restaurant has more than one personnel and dining tables. Personnel may be employed or
discharged at certain times. Each personnel has name, age, and gender information. The restaurant
has more than one section. These sections are kitchen, service, and cash. Personnel works according
to their sections. Personnel can be cook, waiter, and cashier. The cook stays in the kitchen and
prepares the orders. When the cook prepares the order, the system shows the order details and
table number. The waiter in the service section serves the costumer. When the waiter serves,
the system shows the name of the waiter and the table number. The cashier prepares the check
according to the order details in the system.

Tu
rk

ish

Yılmaz Restoran birden fazla çalışan ve servis masasına sahiptir. Restorana belirli zamanlarda
çalışan işe alınır veya işten çıkarılır. Her çalışan isim, yaş ve cinsiyet bilgilerine sahiptir. Restoranda
birden fazla bölüm bulunmaktadır. Bu bölümler mutfak, servis ve kasa olmaktadır. Çalışanlar
bulundukları bölüme göre iş yapmaktadırlar. Çalışanlar aşçı, garson ve kasiyer olabilmektedir.
Aşçı mutfakta bulunur ve sipariş hazırlar. Aşçı siparişi hazırladığında sistem sipariş detayı ve masa
numarasını gösterir. Serviste bulunan garson müşteriye servis yapar. Garson servis yaptığında
sistem garsonun adı ve masa numarasını gösterir. Kasiyer kasada bulunur ve sistemdeki sipariş
detayına göre adisyon hazırlayıp hesap keser.

4.2. General architecture of proposed system

Figure 1 shows the general architecture of the proposed system. First, a tokenization process is implemented.
Then the obtained tokens are stemmed and each token’s position in the sentence is labeled with POS tagging.
After these preprocessing steps, intermediate data to be used as input for the rule-based model are obtained.
Then twenty-six transformation rules are applied and OO design elements (class, attribute, method, and
relation) are determined. Finally, a class diagram is generated with use of extracted OO design elements.

457



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Extracting design
elements

Preprocessing Tokenization POS Tagging Stemming

Class 
Rules

General 
Rules

Attribute 
Rules

Method 
Rules

Relations 
Rules

Class Diagram

Rule- based model
Intermediate data

OOD elements

NLP methods

Figure 1. General architecture of proposed model.

4.3. Proposed rule-based model
Rule construction is an effective method to extract information from natural language texts. Rules are based
on human knowledge and expertise to find out candidate design elements in generated conceptual models. The
major contribution of our study is transforming intermediate text-based data in Turkish to OO design elements
using a rule-based model. In this study, a rule-set containing twenty-six rules is created to find out OO design
elements from requirements. The rules are categorized as five different topics as seen in Table 4. The relationship
rules have also three subcategories, taking different types of relationships into account.

Table 4. Rule-set categories.

Rule category Number of rules in the category
General rule (GR) 5
Class rule (CR) 3
Attribute rule (AR) 5
Method rule (MR) 3
Relationship rule (RR) 2 (Aggregation)

4 (Composition)
4 (Generalization)

To perform the information extraction task, the rules in the different categories are sequentially applied
for each input sentence. First, each sentence is gotten as input for the general rules category to determine
basic keywords. Then class, attribute, and method rules are applied to identify the name of classes and their
corresponding elements. After the extraction of classes and their elements, the relationships rules are performed.
This task starts with applying aggregation rules and then the sentences are matched with composition patterns
and generalization patterns. If a sentence does not match with any of the defined patterns, it means that it
does not contain any relationship to be used in the generated class diagram.

4.3.1. General rules
The aim of the rules in the “General” category is to perform a general analysis and a prefiltering process for
the requirements documents. As shown in Table 5, five rules are defined in this category and some of them are
explained with the use of examples.

458



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Table 5. Rules in the general rule-set.

GR Definition
GR1 Nouns in sentences are candidates for class and attribute names.
GR2 Proper nouns are removed from the candidate pool of classes and attributes.

GR3
Succession of the nouns in the sentences is aggregated and they are formed into a single
name if the first noun has no affix.
Example: ders kataloğu (course catalogue) → ders katalog

GR4 Verbs in the sentences are included by the pool of methods’ names.

GR5
Succession of the verbs in the sentences is aggregated and they are formed into a single
verb. This is a specific rule for Turkish.
Example işe almak (employ)→ işe almak
To implement this rule, we aggregated auxiliary verbs (olmak, etmek, yapmak, vermek,
buyurmak, olunabilmek, geçmek, getirmek, ettirilmek) in the sentences with the words
in front of them. On the other hand, we also created and shared a new compound
verb exceptions list,*which does not include auxiliary verbs such as “etkileşim sağlamak
(interact)”, “iletişim kurmak (communicate)”, “veri yüklemek (load)”, and so on.

* “Compound verb exceptions”, accessed 29 July 2018, https://github.com/ftmbozyigit/Turkish-
AutoConceptIdentifier/blob/master/CompoundVerbsExceptions.txt.

4.3.2. Class rules
In the OOP paradigm, a class is an abstract way of describing a real-world entity that includes the properties
and behaviors of an object to be created. In this study, three rules are defined in addition to general rules for
the identification of the class names. These rules, their explanations, and examples are shown in Table 6.

Table 6. Rules in the class rule-set.

CR Definition
CR1 The frequencies of names above a certain threshold are labeled as classes.

CR2
The second name in the definite noun phrase declares the class strictly if it is stated in
the document more than once.
Example: fakültenin bölümleri (departments of faculty)

Fakülte(faculty)→ Class1, bölüm(department)→ Class2

CR3
If verbs such as “sahip olmak (have)”, “içermek (include)”, and “bulundurmak (contain)”
exist in a sentence, the first name is labeled as a class.

4.3.3. Attribute rules
After the completion of general and class rules, the next step is to extract the attributes of classes from
requirements documents. Attributes of classes identify the states of objects. As shown in Table 7, there are five
rules in the “Attribute” category.

Figure 2 presents an example sentence processed using general (GR1 , GR5 ), class (CR3 ), and attribute
(AR4 ) rules.

4.3.4. Method rules
Behaviors of an object in the class diagram are methods that change the state of the system. In this study,
the rule-set involving three different rules is defined to determine the methods of classes. The rules and their
explanations are shown in Table 8.

459

https://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier/blob/master/CompoundVerbsExceptions.txt
https://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier/blob/master/CompoundVerbsExceptions.txt


BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Table 7. Rules in the attribute rule-set.

AR Definition
AR1 Adjectives can provide information about the properties of a class.

Example: Yeşil (Green) kart (card).
Renk (Color) is attribute of Kart class.

To implement this rule, the system uses the list of adjectives provided by Türk Dil Kurumu
(TDK) [18] to be used in academic works. We created a new adjective list*by adding
definitions for some basic adjectives in the list of TDK. Thus, meanings of the basic
adjectives such as color, number, shape, direction, etc. are easily retrieved and used for
specification of the attributes.

AR2

If there is a possessive construction in a sentence and the first name in the construction
takes possessive or place suffixes, the second name is pointed out as an attribute of the
first name. This is a special rule for Turkish.
For example, there are many inflectional suffixes can be added to the words “okul (school)”
and “öğrenci (student)” and change the situation of these words as following: “okulun
öğrencisi”, “okulun öğrencisinde”, “okuldaki öğrencileri”, “okuldaki öğrencilerde”, and
so on. All of these noun phrases are represented with “student(s) of school”, “school’s
student(s)”, and “student(s) in school” in the English language.
Consequently, all of the possessive constructions above give information about two design
elements: “okul” is determined as a class and “öğrenci” is specified as an attribute of the
related class considering AR2.

AR3
Object of the class derived from a noun can also be attribute of other classes extracted
from the same sentence.
Example: Mağaza asistanı, galerideki arabaların plaka, model, kiralama ücretini sisteme
kaydeder. (Store assistant records the information of cars in the gallery such as plate,
model, and renting price.)
Assume that the given example is a sentence in requirements including needs of a rented
car gallery system. “galeri (gallery)” and “araba (car)” are determined as classes, because
frequencies of them exceed a certain threshold value as stated in CR1. On the other hand,
we can specify “araba” as an attribute of the “galeri” class as a result of AR2. That is,
“araba” has both class and attribute labels in the system.

galeri → Class1, araba→ Class2 and attribute of Class1

AR4

If verbs such as “sahip olmak (have)”, “içermek (include)”, and “bulundurmak (contain)”
exist in a sentence, all the names except the name of the class are the attributes of that
class.

AR5
Time, location, and percentage attributes of a class are retrieved according to named entity
recognition (NET) supported by the ITU NLP tool [19].
Example: FB073 nolu uçuşun saat 08:45’te kalkışı yapılmıştır. (FB073 flight departed
at 08:45.)
Assume that the given example is a sentence in the requirements document including needs
of an airport system. “uçuş(flight)” is determined as class, because the frequency of it in
the requirements text exceeds a certain threshold value as stated in CR1. Moreover, the
NET process retrieves the TIME entity from the sentence.

uçuş → Class, zaman(time) → attribute of “uçuş” class
* “Adjective list,” accessed 29 July 2018, http://github.com/ftmbozyigit/Turkish-

AutoConceptIdentifier/blob/master/AdjectiveList.txt.

460

http://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier/blob/master/AdjectiveList.txt
http://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier/blob/master/AdjectiveList.txt


BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Fakülte birden fazla departmana sahiptir.
(Faculty has many departments.)

Nouns: fakülte (faculty), departman (departmant), 
Adjective: fazla (many)
Verbs: sahip olmak (have)

Fakülte

NLP, GR1, GR5

CR3, AR4

Departman

Figure 2. An example of executing general and class rules.

Table 8. Rules in the method rule-set.

MR Definition

MR1

Each verb in documents is a candidate method, except verbs such as “sahip olmak
(have)”, “içermek (include)”, “bulundurmak (contain)”, “kapsamak (involve)”, “bulun-
durmak (provide)”, “oluşmak (comprise)”, “oluşturmak (compose)”, “dahil olmak (par-
ticipate)”, “varolmak (exist)”, “meydana gelmek (consist)”, “kapsamına almak (include)”,
and similar verbs listed in our repository*.

MR2
A verb identified as a method can belong to more than one noun identified as classes in
the same sentence.
Example: Öğrenciler ve öğretim üyeleri, sistem değerlendirme anketlerini yapabilirler.
(Students and instructors can conduct system evaluation surveys.)
Assume that the example sentence is in a requirements document including the needs
of a course enrollment system. “öğrenci (student)” and “öğretim üye (instructor)” are
determined as classes, because their frequency in the requirements text exceeds a certain
threshold value as stated in CR1. Our system labels “anket yapmak() (conduct survey)”
verb as methods for both “öğrenci” and “öğretim üye” classes. Thus, “anket yapmak()”
method belongs to both “öğrenci” and “öğretim üye” classes.

öğrenci → Class1, instructor → Class2, anket yapmak() → method of Class1
and Class2

MR3
The verb in the sentence having the class information is the method belonging to that
class.

* “Verbs not indicating method,” accessed 29 July 2018, https://github.com/ftmbozyigit/Turkish-
AutoConceptIdentifier/blob/master/Verbs(notMethods).txt.

4.3.5. Relationship rules

Relationships identify the ways of communication between the classes in the conceptual models. In our study, we
define two rules and eight linguistic patterns to find out relationships in the generated class diagrams. Linguistic
patterns are specifically formed regarding the grammatical structure of the Turkish language by the authors of
the study. Each sentence in the requirements is processed regarding relationship rules and patterns. If input
data are matched with a rule or pattern, the relationship between two classes and its type are revealed. The
defined rules and patterns in this study are split into three subcategories to get aggregation, composition, and
generalization relationship types. These three subcategories are described in Tables 9, 10, and 11, respectively.
Aggregation is a kind of association between two classes describing a part of a relationship. Related classes in
this type of relation are not affected if a container class is deleted. On the other hand, a composition relationship

461

https://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier/blob/master/Verbs(notMethods).txt
https://github.com/ftmbozyigit/Turkish-AutoConceptIdentifier/blob/master/Verbs(notMethods).txt


BOZYIGIT et al./Turk J Elec Eng & Comp Sci

indicates a strict aggregation relation between the classes. If a container class is deleted all its classes also need
to be deleted [20]. The generalization relationship is used to generate a derived class that inherits all elements in
the parent class. The rules in the generalization and composition subcategories are defined using pattern-based
modeling. For relationships indicating generalization and composition, a list of patterns covering relevant cases
is defined by the authors of study.

Table 9. Rules in the aggregation rule-set.

AggR Rule definition

AggR1
If all nouns are labeled as the class in a noun phrase, there is a certain relationship between
them.
Example: Banka’nın müşterileri (Customers of the bank)

There is a relation between Banka and Müşteri classes.
AggR2 If an attribute in a sentence is also labeled as a class, there is a relationship.

Table 10. Patterns (Turkish) in the composition set.

CompP Pattern definition
CompP1 Bir (Class1) birden fazla (Class2) oluşmaktadır/içermektedir/bulundurmaktadır.
CompP2 (Class1) bir tür (Class2).
CompP3 (Class1) (Class2) parçasıdır/kısımıdır/elemanıdır oluşmaktadır/içermektedir.
CompP4 (Class1) (Class2) ait bir parçadır/kısımdır/bölümdür.

Table 11. Patterns (Turkish) in the generalization set.

GenP Pattern definition
GenP1 Bir (Class1) (Class2) kategori yer almaktadır/dahildir/bulunmaktadır.
GenP2 (Class1) (Class2)’dır/dir.
GenP3 (Class1) (Class2) ait bir kategoridir.
GenP4 (Class1) (Class2)’nın bir alt dalıdır/kategorisidir/alanıdır.

4.4. Analytical hierarchy process (AHP)-based evaluation
Current research appears to validate that there is no related study in the literature employing MCDM methods
to evaluate the performance of the system. The evaluation of a study transforming requirements into conceptual
models is a comprehensive process, because there are various criteria affecting the performance of the produced
model. Furthermore, the importance of the criteria may vary depending on the view and preferences of the
decision makers. Since the proposed method requires handling various evaluation criteria, we developed a
new evaluation model by applying AHP that allows decision makers to prioritize criteria in order to deal with
complex decision making problems [4]. The structure of the AHP is as follows:

1. The decision-making problem is defined and the criteria affecting decision points are determined.
2. Decision makers perform pairwise comparison between the specified criteria by using the ranking scale

proposed by Saaty [21].

462



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

3. Matrix calculations are performed with the following proposed methodology of Saaty [21] and then
weights/priority orders for each criterion are specified.

Our AHP-based evaluation model consists of three basic steps, which are explained in the following:
Step 1 (Defining problem and determining criteria): The determined criteria for the evaluation

of our study are presented in Table 12.

Table 12. Definitions of evaluation criteria.

Number of criterion Acronym Definition
Criterion 1 C1 Finding the classes completely.
Criterion 2 C2 Finding the relationships between the classes completely.
Criterion 3 C3 Finding the attributes of the classes completely.
Criterion 4 C4 Finding the methods of the classes completely.
Criterion 5 C5 Specifying the relationship types correctly.

Step 2 (Pairwise comparison): After specification of the problem statement and the criteria, we
asked three academicians (from MCBU and Dokuz Eylül University) and the head of the software department
at Commensis Software Company, who are experts in the OO programming domain, to be participants in the
evaluation of our study. They compared each of the determined criteria using a ranking scale from one to nine.

Step 3 (Calculating weights of the criteria): The weights of criteria were calculated by applying
the matrix calculation following Saaty’s proposed study [21]. The results are shown in Table 13.

Table 13. Weight of each criterion calculated by AHP.

Criterion Weight
C1 53.7%
C2 21.1%
C3 10.0%
C4 10.0%
C5 5.2%

Results of AHP regarding feedbacks of the experts indicate that the criteria used for the evaluation of
conceptual models may have different weights. In the related studies, weights of each evaluation criterion are
considered as equal. This assumption may not always yield accurate results. For instance, it is admitted that
finding all the specified classes correctly in a conceptual model is the most important factor according to AHP
results including the views of the experts in our study.

4.5. Experimental study
Each requirement in the dataset is tested to validate our proposed approach. We selected the requirements
named “Restoran” shown in Table 3 as a case study for this section. First, the preprocessing phase is applied
to the text parts of the requirements using basic NLP steps as mentioned in Section 3.2. The output of this
phase is a list of intermediate data including POS tags and keywords, which specify the relationships. The list
of data is shown in Table 14.

Next, the list of intermediate data in Table 14 is processed by applying the first four categories of the
rule-based model (GR, CR, AR, and MR). Thus, classes and their corresponding elements (attributes and

463



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Table 14. Intermediate data obtained through NLP methods on Restaurant requirements.

Nouns

restoran (restaurant), çalışan (personnel), servis masa (dining table), isim (name), yaş
(age), cinsiyet (gender), bilgi (information), bölüm (section), mutfak (kitchen), servis (ser-
vice), kasa (cash register), aşçı (cook), garson (waiter), kasiyer (cashier), sipariş (order),
sistem (system), sipariş detayı (order detail), masa numarası (table number), müşteri (cus-
tomer), garson ad (waitress’s name), adisyon (check)

Proper nouns Yılmaz
Adjectives -

Verbs
sahip olmak (have), işe almak (employee), işten çıkarmak (discharge), bulunmak, ol-
mak (be), iş yapmak (work), sipariş hazırlamak (prepare an order), göstermek (show),
servis yapmak (service), adisyon hazırlamak (prepare cash), hesap kesmek (cash)

Adverbs -
Relationship key-
words sahip olmak, olmak, bulunmak

methods) are determined to generate the related class diagram. The results of this process for the case study
are presented in Table 15.

Table 15. Design elements in the “Restoran” requirements.

Sentence
no.

Classes Attributes Methods Specific
keywords

Used rules

1 restoran çalışan, servis masası - sahip olmak GR1, CR1, CR4, AR4

2 restoran çalışan işe almak,
işten çıkarmak

- GR1, GR4, GR5, CR1

3 çalışan isim, yaş, cinsiyet - sahip olmak GR1, CR4, AR4

4 restoran bölüm - bulunmak GR1, GR4, CR4, MR1

5 bölüm mutfak, servis, kasa - olmak GR1, CR1, AR4, MR3

6 çalışan - - olmak GR1, CR1, AR4, MR3

7 aşçı mutfak - bulunmak GR1, GR4, CR1, MR3

8 sistem sipariş detayı, masa numarası göstermek - GR1, GR3, GR4

9 garson servis servis yapmak bulunmak GR4, GR5, CR1, MR3

10 sistem garson ad, masa numarası göstermek - GR1, GR4, GR5, CR1

11 kasiyer - hesap kesmek - GR4, CR1, MR1

Moreover, the associations between the specified classes are determined performing the relationship
rules and patterns (RPR) to the “Restoran” requirements. Finally, all design elements are extracted and the
transformation process is accomplished. Resulting relationships and used rules/patterns are shown in Table 16.

For the “Restoran” requirements, nine classes, nine attributes, three methods, and eleven relationships
are obtained performing the proposed rule-based model. The generated class diagram is illustrated in Figure 3.
Participating experts confirmed that all the design elements are located correctly in the generated class diagram.
The results yielded by the experimental study provide convincing evidence that our proposed study effectively
performs the transformation of requirements texts into class diagrams.

464



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Table 16. Relationships extracted from “Restoran” requirements.

Sentence no. Class1 Class2 Relationship type Used rules
1 restoran çalışan Composition CompP1

2 restoran bölüm Composition CompP2

3 çalışan çalışan aşçı, garson, kasiyer Generalization GenP1

4 restoran bölüm mutfak, servis, kasa Generalization GenP2

5 aşçı mutfak Aggregation AggR2

6 garson servis Aggregation AggR2

7 kasiyer kasa Aggregation AggR2

Restoran (Restaurant) 

çalışan (personnel) 

servis_masası (table) 

bölüm (section) 

işe_almak() (employee) 

işten_çıkarmak() (discharge) 

Garson (Waiter)

servis_yapmak() (service)

Aşçı (Cook) 

sipariş_hazırlamak() (cook)

Bölüm (Section)

Çalışan (Personnel) 

isim (name)

yaş (age)

cinsiyet (gender)

iş_yapmak() (work)

Kasiyer (Cashier)

hesap_kesmek() (cash)

Servis (Service)

garson (waiter)

Mutfak (Kitchen)

aşçı (cook)

Kasa (Cash)

kasiyer (cashier)

bulunur bulunur bulunur

Sistem (System) 

masa_numarası (table_no) 

garson_ad(name of waiter) 

bölüm (section) 

göstermek() (show) 

Figure 3. Class diagram of “Restoran” model.

5. Evaluation of system performance
The evaluation process with respect to the specified criteria (stated in Section 4.4) is performed by comparing
the outputs of the system with the class diagrams generated by the experts who participated in this study.
Assume that the set of design elements specified in the experts’ model is denoted by E and the set of elements
revealed by the system is denoted by S. Numbers of correct, incorrect, and missing elements determined by the
comparison between S and E are as follows.

1. The cardinality of intersection of S and E gives the number of elements correctly identified by the system
(it is denoted as Ncorrect ).

465



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

2. The cardinality of difference of S and E gives the number of incorrect determined elements in the generated
class diagram by the system (it is denoted as N incorrect ).

3. The cardinality of difference of E and S gives the number of missing elements that could not be extracted
by the system (it is denoted as Nmissing ).

In this part, the proposed system is tested and evaluated for each criterion C i (stated before in Section 4.4)
using all the requirements documents in the dataset. The detailed experimental results for each requirement
are presented in Table 17.

Table 17. Detailed experimental results regarding each criterion (C i C: number of correct elements regarding C i , C i I:
number of incorrect elements regarding C i , C i M: number of missing elements regarding C i ).

Requirements C1C C1I C1M C2C C2I C2M C3C C3I C3M C4C C4I C4M C5C C5I C5M
R1(Restaurant) 11 0 0 11 0 0 9 2 1 6 1 0 4 2 3
R2(Company) 8 0 1 6 1 3 7 0 0 5 1 2 6 1 3
R3(Library) 9 2 0 5 2 0 3 0 0 5 2 1 5 2 0
R4(Game) 5 0 2 3 1 2 4 0 1 4 2 0 4 0 2
R5(Music band) 7 0 1 6 1 0 4 3 1 3 1 0 3 0 0
R6(Timetable) 7 2 0 5 0 1 10 2 2 6 1 0 3 1 2
R7(Super market) 6 1 2 3 1 2 7 2 3 7 0 3 4 0 1
R8(Hotel reservation) 9 0 2 5 2 0 12 0 4 5 1 1 5 1 1
R9(Fitness center) 8 1 0 4 1 1 9 3 2 3 3 2 3 1 0
R10(File manager) 7 0 0 6 0 0 4 1 1 3 0 2 5 1 2
R11(Football team) 10 0 0 6 2 1 5 2 0 7 1 1 7 2 2
R12(Car gallery) 5 0 0 3 0 1 12 2 0 8 1 0 2 1 1
R13(Enrollment [6]) 6 1 0 8 1 1 8 1 2 9 2 2 10 2 3
R14(ATM [7]) 8 1 0 8 0 2 3 1 0 3 0 1 9 1 2
R15(Video rental [22]) 4 0 1 4 1 0 8 2 1 8 2 0 4 1 1
R16(Cinema [23]) 4 0 0 4 0 1 4 1 0 6 1 1 4 0 2
R17(Timbered house
[23]) 9 0 0 7 1 0 3 0 0 1 1 0 3 3 1

R18(Musical store [24]) 6 0 0 9 1 1 4 0 1 8 2 1 8 2 3
R19(Pressure [25]) 4 1 1 4 1 2 5 1 1 3 1 0 3 0 3
R20(Airport [26]) 7 1 0 4 1 2 7 0 0 5 0 2 4 0 1

We calculated performance measures (precision, recall, and F-measure) for each evaluation criterion to
evaluate the system. Precision (Pr) refers to the accuracy of the proposed system and gives information on how
much of the output extracted by the system is correct [27]. It is obtained by finding the ratio of the correctly
identified data to the total extracted data in the generated model. Its formula is given in Eq. (1).

Pr =
Ncorrect

Ncorrect +Nincorrect
(1)

Recall (Re) indicates the ability of the system to generate all design elements correctly. It is the ratio of
the correct design elements extracted by the system to the number of true elements in the experts’ model. The

466



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

formula of recall is given in Eq. (2).

Re =
Ncorrect

Ncorrect +Nmissing
(2)

The F-measure (Fm) of the proposed system is obtained by calculating the weighted harmonic mean of
its precision and recall. The formula of Fm is given in Eq. (3).

Fmeasure =
2× Pr ×Re

Pr +Re
(3)

Pr, Re, and Fm values for all requirements in the dataset regarding each evaluation criterion are presented
in Table 18.

Table 18. Precision, recall, and F-measure values.

C1 C2 C3 C4 C5

Requirements Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm
R1 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.90 0.86 0.75 1.00 0.86 0.67 0.57 0.62
R2 1.00 0.88 0.94 0.86 0.67 0.75 1.00 1.00 1.00 0.86 1.00 0.92 0.87 0.67 0.76
R3 0.82 1.00 0.90 0.71 1.00 0.83 1.00 1.00 1.00 0.71 0.83 0.77 0.71 1.00 0.83
R4 1.00 0.71 0.83 0.75 0.60 0.67 1.00 0.80 0.89 0.67 1.00 0.80 0.67 1.00 0.80
R5 1.00 0.88 0.93 0.86 1.00 0.92 0.57 0.80 0.67 0.75 1.00 0.86 1.00 1.00 1.00
R6 0.78 1.00 0.88 1.00 0.83 0.91 0.83 0.83 0.83 0.86 1.00 0.92 0.75 0.60 0.67
R7 0.87 0.91 0.89 1.00 0.89 0.94 0.84 0.93 0.88 0.82 0.96 0.88 0.93 1.00 0.96
R8 1.00 0.82 0.90 0.71 1.00 0.83 1.00 0.75 0.86 0.83 0.83 0.83 0.83 0.83 0.83
R9 0.89 1.00 0.95 0.80 0.80 0.80 0.75 0.82 0.78 0.50 0.60 0.55 0.75 1.00 0.86
R10 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.80 1.00 0.60 0.75 0.83 0.71 0.77
R11 1.00 1.00 1.00 0.75 0.86 0.80 0.71 1.00 0.83 0.88 0.88 0.88 0.78 0.78 0.78
R12 1.00 1.00 1.00 1.00 0.75 0.86 0.86 1.00 0.92 0.89 1.00 0.94 0.67 0.67 0.67
R13 0.86 1.00 0.92 0.89 0.89 0.89 0.89 0.80 0.84 0.82 0.82 0.82 0.83 0.77 0.80
R14 0.89 1.00 0.94 1.00 0.80 0.89 0.75 1.00 0.86 1.00 0.75 0.86 0.90 0.82 0.86
R15 1.00 0.80 0.89 0.80 1.00 0.89 0.80 0.89 0.84 0.80 1.00 0.89 0.80 0.80 0.80
R16 1.00 1.00 1.00 1.00 0.80 0.89 0.80 1.00 0.89 0.86 0.86 0.86 1.00 0.67 0.80
R17 1.00 1.00 1.00 0.88 1.00 0.93 1.00 1.00 1.00 0.50 1.00 0.67 0.50 0.75 0.60
R18 1.00 1.00 1.00 0.90 0.90 0.90 1.00 0.80 0.89 0.80 0.89 0.84 0.80 0.73 0.76
R19 0.80 0.80 0.80 0.80 0.67 0.73 0.83 0.83 0.83 0.75 1.00 0.86 1.00 0.50 0.67
R20 0.88 1.00 0.93 0.80 0.67 0.73 1.00 1.00 1.00 1.00 0.71 0.83 1.00 0.80 0.89

The studies in the literature calculate the values of precision, recall, and F-measure metrics assuming
that all evaluation criteria have the same weights (standard calculation). However, considering these criteria as
equally weighted may cause misleading evaluation results, since the priority of each criterion varies depending on
views of users. Thus, we propose a novel evaluation model including AHP to assign a weight to each criterion
in the direction of the experts’ opinions (as stated in Section 4.4). The F-measure value of each evaluation
criterion (in Table 18) is multiplied by the weights of criteria (Table 13), and a new accuracy ratio is calculated
for generated class diagrams. The formula for calculating the weighted F-measure value is given in Eq. (4).

Accuracy = (w1 × C1) + (w2 × C2) + (w3 × C3) + (w4 × C4) + (w5 × C5) (4)

467



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

Table 19 shows the comparison of performances calculated by conventional and AHP-based evaluation
methods in terms of precision, recall, and F-measure for ten requirements in the dataset.

Table 19. Conventional and AHP-based evaluation results.

Conventional evaluation Evaluation using AHP
Requirements Pr Re Fm Pr Re Fm
R1 0.87 0.88 0.88 0.95 0.92 0.94
R2 0.93 0.85 0.89 0.95 0.82 0.88
R3 0.79 0.97 0.87 0.80 0.98 0.88
R4 0.88 0.75 0.83 0.91 0.73 0.81
R5 0.84 0.93 0.87 0.90 0.91 0.90
R6 0.84 0.85 0.85 0.83 0.93 0.88
R7 0.88 0.76 0.79 0.87 0.90 0.87
R8 0.88 0.85 0.86 0.92 0.85 0.87
R9 0.74 0.84 0.79 0.81 0.90 0.85
R10 0.93 0.82 0.87 0.97 0.92 0.95
R11 0.82 0.90 0.86 0.90 0.95 0.92
R12 0.88 0.88 0.88 0.96 0.93 0.94
R13 0.85 0.85 0.85 0.86 0.92 0.89
R14 0.91 0.87 0.89 0.91 0.92 0.92
R15 0.84 0.90 0.87 0.91 0.87 0.89
R16 0.93 0.86 0.90 0.95 0.93 0.94
R17 0.78 0.95 0.85 0.90 0.99 0.94
R18 0.90 0.86 0.88 0.95 0.93 0.94
R19 0.84 0.76 0.80 0.81 0.78 0.79
R20 0.94 0.84 0.88 0.89 0.89 0.89

When we review the results in Table 19, it is seen that nearly all classes and relationships in the generated
Restoran (R1 ) class diagram are correctly determined. This shows that C1 and C2 criteria are successfully
met by the system for R1 . However, it is seen that there are two incorrect and three missing relationship
types determined. That is, the C5 criterion is not met properly in the generated Restoran model. As seen in
Table 19, the F-measure of the Restoran model calculated with the AHP-based evaluation is 94%; however, it
is measured as 88% by performing conventional evaluation. Since evaluation criteria are assumed to be equal
in conventional evaluation, elements that do not meet the C5 considerably reduce the value of the F-measure.
Experts participating in our study stated that the incorrect and missing elements for C5 (relationship type) do
not affect the system performance dramatically, because it has lower priority order than the other evaluation
criteria. Thus, they claimed that evaluation using AHP gives more realistic results than the conventional
method. For this reason, we can state that using MCDM methods including expert opinions possibly provide
more realistic and consistent evaluation results in concept identification studies.

Additionally, as can be understood from the evaluation results in the table, our study achieved a success
rate of over 85% on a large majority of twenty requirements in the dataset. However, the performance results
on the R4 (81%) and R19 (79%) requirements are significantly lower compared to the others. This is because
both of the two requirements are not well written in Turkish and the structure of the sentences is complex.

468



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

6. Conclusion
Transforming requirements into OO conceptual models is a vital but challenging task in software development.
Although mostly done manually, there are available approaches to automate this step of SDLC. A clear majority
of these approaches deal with English requirements and there is no study generating conceptual models for
agglutinative languages such as Korean, Finnish, and Turkish. Thus, the main contribution of our study,
automatically generating class diagrams from Turkish requirements, is accomplished by using NLP techniques
and a novel rule-based model including twenty-six transformation rules. It is seen that all studies in this domain
have a dataset containing a small number of documents and there is no shared dataset that is publicly available
from online repositories. This is definitely a gap that needs to be filled. Hence, we have prepared an enhanced
dataset that contains twenty software requirements in Turkish. Additionally, it is publicly available on GitHub
to be used by other researchers in this domain. The performance evaluation of concept identification studies is
vague because there is no definition for an accurate conceptual model. It is possible that two different people
differently evaluate the same requirements document, because the priorities of evaluation criteria can vary from
person to person. However, it is seen that the reviewed studies consider that the evaluation criteria have the
same priorities and do not include expert opinions for performance measurement of the systems. This approach
can lead to inconsistent results in evaluation of the studies. For this reason, the third contribution is achieved
by using an AHP-based evaluation model and decision makers’ feedback. As a result of the evaluation, average
accuracy of the proposed model is measured as 89%. We cannot compare our results with other studies, because
our work is the primary study carried out on Turkish requirements in the literature. It is clearly seen that the
results of our study are motivating enough for future works, although the evaluation is performed against an
experts’ model including their assumptions and implicit information.

As our future work, it is aimed to design a novel system that extends our study with the following
functionalities:

• Specifying all types of relationships between the classes completely,
• Extracting more diagram types beside class diagrams,
• Generating source code.

References

[1] Pohl K. Requirements Engineering: Fundamentals, Principles, and Techniques. 1st ed. Berlin, Germany: Springer-
Verlag, 2010.

[2] Sagar V, Abirami S. Conceptual modeling of natural language functional requirements. J Syst Software 2014; 88:
25-41.

[3] Hunt J. Guide to the Unified Process Featuring UML, Java and Design Patterns. 2nd ed. London, UK: Springer-
Verlag, 2003.

[4] Bozyiğit F, Aktaş Ö, Kılınç D. A novel evaluation approach for the systems transforming software requirements to
object oriented source code. In: International Conference on Engineering Technologies; 7–9 December 2017; Konya,
Turkey. pp. 129-134.

[5] Mich L. NL-OOPS: From natural language to object oriented requirements using the natural language processing
system LOLITA. Lect Notes Artif Int 1996; 2: 161-187.

[6] Sagar VBRV, Abirami S. Conceptual modeling of natural language functional requirements. J Syst Software 2014;
88: 25-41.

[7] Rumbaugh J, Blaha M, Premerlan W, Eddy F, Lorensen W. Object-Oriented Modeling and Design. 2nd ed. New
York, NY, USA: Pearson Education, 2007.

469



BOZYIGIT et al./Turk J Elec Eng & Comp Sci

[8] Ibrahim M, Ahmad R. Class diagram extraction from textual requirements using natural language processing
techniques. In: 2010 Second International Conference on Computer Research and Development; 7–10 May 2010;
Kuala Lumpur, Malaysia. New York, NY, USA: IEEE. pp. 200-204.

[9] Zhou X, Zhou N. Auto-generation of class diagram from free-text functional specifications and domain ontology.
In: Artificial Intelligence; 2004.

[10] Bajwa IS, Samad A, Mumtaz S. Object oriented software modelling using NLP based knowledge extraction.
European Journal of Scientific Research 2009; 35: 22-33.

[11] Tripathy A, Agrawal A, Rath, SK. Requirement analysis using natural language processing. In: Fifth International
Conference on Advances in Computer Engineering; 26–27 December 2014; Kochi, India. pp. 463-472.

[12] Kılınç D, Özçift A, Bozyiğit F, Yıldırım P, Yücalar F, Borandağ E. TTC-3600: A new benchmark dataset for
Turkish text categorization. J Inf Sci 2017; 43: 174-185.

[13] Aşlıyan R, Günel K, Filiz A. Türkçe Otomatik Heceleme Sistemi ve Hece İstatistikleri. In: Akademik Bilişim ’06;
9–11 February 2006; Denizli, Turkey (in Turkish).

[14] Prakash M, Lucila O, Wendy W. Natural language processing: an introduction. J Am Med Inform Assn 2011; 18:
544-551.

[15] Rehman Z, Anwar W, Bajwa UI, Xuan W, Chaoying Z. Morpheme matching based text tokenization for a scarce
resourced language. PLoS One 2013; 8: e68178.

[16] Can F, Kocberber S, Balcik E, Kaynak C, Ocalan HC, Vursavas OM. Information retrieval on Turkish texts. J
Assoc Inf Syst 2008; 59: 407-421.

[17] Eryiğit G. ITU Turkish NLP web service. In: Proceedings of the Demonstrations at the 14th Conference of the
European Chapter of the Association for Computational Linguistics; 2014; Gothenburg, Sweden. pp. 1–4.

[18] Türk Dil Kurumu. Büyük Türkçe Sözlük. Ankara, Turkey: TDK, 2018 (in Turkish).

[19] Şeker GA, Eryiğit G. Extending a CRF-based named entity recognition model for Turkish well formed text and
user generated content of Turkish. Semant Web 2017; 8: 625-642.

[20] Kim DK, Lu L, Lee B. Design pattern-based model transformation supported by QVT. J Syst Software 2017; 125:
289-308.

[21] Saaty TL. Decision making with the analytic hierarchy process. International Journal of Services Sciences 2008; 1:
83-98.

[22] Kiyavitskaya N, ZeniMich L, Berry DM. Requirements for tools for ambiguity identification and measurement in
natural language requirements specifications. Requir Eng 2008; 13: 207–239.

[23] Landhäußer M, Körner SJ, Tichy WF. From requirements to UML models and back: how automatic processing of
text can support requirements engineering. Software Qual J 2014; 22: 121-149.

[24] Kumar DD, Sanyal R. Static UML model generator from analysis of requirements (SUGAR). In: 2008 Advanced
Software Engineering and Its Applications; 2008; Hainan Island, China. pp. 77–84.

[25] Berry DM. Ambiguity in natural language requirements documents. In: Monterey Workshop; 2007; Monterey, CA,
USA. pp. 1-7.

[26] Ball CG, Kim RL. An Object-Oriented Analysis of Air Traffic Control. McLean, VA, USA: The MITRE Corporation,
1991.

[27] Harmain HM, Gaizauskas R. Cm-builder: A natural language-based case tool for object-oriented analysis. Automat
Softw Eng 2003; 10: 157-181.

470


	Introduction
	Related works
	Materials and methods
	An overview of the Turkish language
	Natural language processing (NLP)
	Tokenization
	Stemming and part of speech (POS) tagging


	Proposed methodology
	Dataset
	General architecture of proposed system
	Proposed rule-based model
	General rules
	Class rules
	Attribute rules
	Method rules
	Relationship rules

	Analytical hierarchy process (AHP)-based evaluation
	Experimental study

	Evaluation of system performance
	Conclusion

