
Turk J Elec Eng & Comp Sci
(2019) 27: 471 – 483
© TÜBİTAK
doi:10.3906/elk-1806-138

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A memory-efficient canonical data structure for decimal floating point arithmetic
systems modeling and verification

Mohammad Saeed JAHANGIRY , Saeed SAFARI∗

Department of Computer Architecture, School of Electrical & Computer Engineering, Faculty of Engineering,
University of Tehran, Tehran, Iran

Received: 23.06.2018 • Accepted/Published Online: 24.10.2018 • Final Version: 22.01.2019

Abstract: Decimal floating point (DFP) number representation was proposed in IEEE-754-2008 in order to overcome
binary floating point inaccuracy. Neglecting binary floating point verification has resulted in significant validity and
economic losses. Formal verification can be a solution to similar DFP design problems. Verification techniques aiming at
DFP are limited to functional methods whereas formal approaches have been neglected and traditional decision diagrams
cannot model DFP representation complexity. In this paper, we propose an efficient canonical data structure that can
model DFP properties. Our novel data structure models coefficient, exponent, sign, and bias of a DFP number. We
will prove mathematically that our data structure is canonical. We will also show that the size of the proposed data
structure will grow linearly for a DFP number for all format lengths, so our data structure can be built with a reasonable
amount of memory and run time. Experimental results support our mathematical discussion for linear growth of the
DFP data structure. Moreover, comparison of our data structure with integer decision diagrams reveals that our model
is also efficient for modeling integer functions when utilized as an integer level diagram.

Key words: Formal verification, decision diagrams, decimal floating point

1. Introduction
Decimal floating point (DFP) number representation, standardized in IEEE-754-R, results in a higher level
of computation accuracy compared to binary floating point (BFP) for arithmetic operations. Design of new
architectures for DFP arithmetic cores and DFP digital signal processing (DSP) systems requires substantial
verification efforts in order to prevent million-dollar financial loss recurrences similar to the Pentium floating
point bug [1, 2]. In contrast to simulation-based techniques, which suffer from a lack of completeness, formal
methods can provide a robust mathematical approach towards design verification of newly designed DFP
architectures. Thus, in order to formally verify DFP DSP systems, a novel and efficient data structure that is
capable of modeling both DFP numbers and basic arithmetic operations is required. The IEEE-754 standard [3]
for BFP number representation is a widespread standard used for arithmetic calculations. It could represent a
large range of numbers. A problem is raised, however, when some real numbers have no accurate representation
in this system. In fact, many real numbers between any two consecutive BFP numbers exist that have no accurate
representation according to IEEE-754. For example, the closest representation of 0.11 is 0.10999999940395355
in 64-bit format. IEEE-754-R was proposed to overcome this limitation using decimal representation [4]. DFP
number representation is capable of representing any real number regarding its fixed accuracy. Its precision
∗Correspondence: saeed@ut.ac.ir

This work is licensed under a Creative Commons Attribution 4.0 International License.
471

https://orcid.org/0000-0001-8046-6887
https://orcid.org/0000-0001-6940-591X

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

depends on the format chosen: 16 digits for 64-bit format (p = 16) and 34 digits for 128-bit format (p= 34).
DFP arithmetic cores were also integrated in some CPUs. IBM designed a hardware engine for a DFP unit
in z9 [5], z10, and z196 [6]. Intel provided some software libraries to support this concept [7]. Many other
works like [8] provided arithmetic architectures for DFP operations. Unfortunately, verification of DFP units
has received limited attention in the literature. To the best of our knowledge no significant research exists
aiming at formal verification of DFP units. The rest of this paper is organized as follows. In Section 2 we
provide some preliminary information on the DFP number representation standard. We then present related
work on formal verification in Section 3. We focus on arithmetic circuit verification methods and seek floating
point modeling approaches in that section. Our proposed data structure for DFP modeling is given in Section
4. Section 5 argues the canonicity of our modeling. Experimental results are provided in Section 6. Finally,
Section 7 concludes the paper.

2. Decimal floating point standard

DFP notation was standardized in IEEE-754-R. The standard defines three data types: 32-bit, 64-bit, & 128-bit.
The number representation base can be either 2 or 10, so that both binary and decimal representations are
supported. In this paper we focus on decimal representation. Figure 1 shows bit formatting for 64-bit notation
along with each field’s bit length.

Sign Combination
Exponent

Continuation
Coefficient Continuation

50 Bits8 Bits5 Bits1 Bit

Figure 1. Decimal floating point 64-bit representation field.

In the 64-bit format there is one bit for the Sign (S) field, five bits for the Combination (C) field, eight
bits for the Exponent Continuation (EC) field, and 50 bits for the Coefficient Continuation (CC) field. The
DFP value is calculated as in Eq. (1). Note that the representation base is 10.

V alue = −1Sign × Coefficient× 10Exponent−Bias (1)

The sign is either 0 or 1, depending on the Sign field. Bias is 398 for the 64-bit format. The exponent
and coefficient are derived from C, EC, and CC fields. The coefficient in a DFP number is determined in two
steps: 1- The most significant digit (MSD) is determined by the Combination field. 2- Remaining digits are
determined by the Coefficient Continuation field. The exponent of a DFP number is also constructed in two
steps:

1. Two most significant bits (MSBs) of an exponent are decoded using the Combination field.

2. The remaining bits are decoded using the EC field.

According to IEEE-754-R, densely packed decimal (DPD) encoding is used in order to represent three decimal
digits using 10 bits (instead of 12 bits). In the case of 64-bit format, 50 bits of the CC field are categorized in
five groups of 10 bits, resulting in 15 digits. The MSD of the coefficient is decoded using the Combination field.
Totally we have 16 decimal digits, which constitute the DFP coefficient of a 64-bit representation. A similar
procedure could be easily applied to other formats.

472

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

3. Related work

Verification of arithmetic circuits and systems is performed by either simulation or mathematical methods [9].
In this paper, we focus on the latter methods. Two main approaches in this field are deductive proofs by
means of theorem proving and algorithmic decision diagram-based methods. We provide a general overview
of formal methods used in arithmetic circuits and systems verification. More specifically, we focus on floating
point modeling and verification.

Arithmetic circuits modeling and verification methods fall into two categories: deductive proofs and
decision diagram-based algorithms. Our experience with theorem-proving as the main approach to deductive
proofs shows that it requires a high level of knowledge of the tools and it lacks automation potentials. Different
proof systems like higher order logic (HOL) [10] differ in their logic level points of view.

Algorithmic decision diagram-based methods, on the other hand, are more promising since they provide
an opportunity for automation. Model checking, equivalence checking, symbolic simulation, etc. are the most
common methods. The binary decision diagram (BDD) served as a basis for the reduced ordered binary decision
diagram (ROBDD). The ROBDD can model logical functions using a canonical representation [11]. Modeling
integer domain functions was made feasible by multiterminal BDDs (MTBDDs) [12]. Similar to the ROBDD,
the MTBDD uses the Shannon decomposition type. Ordered functional decision diagrams (OFDDs) and their
extensions are used to minimize fixed polarity Reed–Muller (FPRM) expressions, which can represent Boolean
functions canonically with a better performance compared to other binary diagrams [13–16]. Integer functions,
however, cannot be modeled directly. One cannot even think of modeling floating point circuits.

Hierarchical decision diagrams were proposed in [17] and [18] as edge-valued binary decision diagrams
(EVBDDs). This data structure can model integer functions; nevertheless, higher level arithmetic circuits like
floating points are far from the scope of this approach. The binary moment diagram (BMD) and its extension,
the *BMD, use the positive Davio decomposition type for mapping from the Boolean domain to integer range
[19, 20]. More extension to BMDs resulted in K*BMD [21] and HDD [22] with more expressive power, but none
of them can model floating point representation.

In order to leverage the expressive power of modeling methods, the Taylor expansion diagram (TED) was
derived [23, 24]. Similar to other diagrams there are rules for ordering, normalization, and isomorph subgraph
removal. Enhanced TED [25] and TED+ [26] are some extensions of this data structure. However, if a function
has no Taylor expansion around zero, there would be no TED representation. Floating point modeling is still
beyond the capabilities of the TED. Another representation trying to improve the performance of modeling is
the Horner expansion diagram (HED) and its modular version, the M-HED [27, 28]. These representations,
though powerful, are not capable of modeling floating points. Binary floating point formal modeling was studied
in [29, 30]. A new data structure, namely the multiplicative power hybrid decision diagram (*PHDD), has been
introduced, which can model binary floating point standards. Edges in this model have different weights. Basic
arithmetic operations were modeled and the paper reported its performance for integer multiplier circuits. It
was compared with BMDs in terms of speed and memory usage. DFP was not the subject of [29]; however, it
could be used as a hint for DFP modeling.

Simulation-based verification of DFP square root operation was performed in [31] by verifying corner
cases of the operation. Fused-Multiply-Add operation was verified functionally in [32] using constraint solving
of corner cases. The authors of [33] integrated the works of [31] and [32] and proposed three engines to solve

473

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

simulation-based verification constraints for basic DFP operations. None of the mentioned works addressed
DFP verification formally, but rather functionally.

To the best of our knowledge there is no prior work on DFP modeling. Most of the data structures in the
literature can model Boolean (BDD, ROBDD, EVBDD, FPRM, etc.) or integer (BMD, *BMD, TED, HED,
etc.) functions. The PHDD can model only binary floating points, not decimal standards; thus, there is no
prior work for modeling decimal floating point arithmetic and our research provides the first data structure to
overcome this limitation. Because of this, there are no previous results in the literature to be compared with
our experiments. However, we can use our data structure as an integer level decision diagram as well. In this
case, comparison with some other methods is feasible. We will address this issue in Section 7.

4. Proposed DFP data structure

In this section we propose a novel data structure suitable for formal modeling of DFP arithmetic systems. Any
proposed model for a DFP system, including ours, should be able to model sign, coefficient, and exponent
efficiently. To do so we use different decomposition rules.

We assume that coefficient digits are uncompressed; i.e. each binary coded decimal (BCD) is coded with
four bits and, as a result, the representation of a 3-digit BCD number needs 12 bits. This means that DPD
encoding is neglected in our model. This is obviously not a problem, since DPD encoding is a simple AND/OR
logic and could be easily verified.

4.1. Exponent modeling

For the modeling exponent, we note that the base of both arithmetic and calculation is 10 and the coefficient
is multiplied by powers of 10. Normally decision diagrams work on a binary basis, but here we require a 10-ary
basis. This is a must because we should model expressions like 10Exponent .

The decomposition rule for exponent modeling is Shannon decomposition, since it simplifies our exponent
model. Keep in mind that in contrast to traditional binary decision diagrams, here Shannon decomposition is
applied on a 10 basis, not a binary basis.

In Figure 2, ec0 is bit 0 of the exponent, and so on. The value of each node is displayed close to it. Notice
how edge weights are calculated based on powers of 10. Each bit of the exponent is modeled by its counterpart
node in our data structure. A node is connected to other nodes by means of two edges. The real weight of an
edge equals 10 to the power of the shown weight; for example, if an edge is shown with weight of 2 (ec1 in
Figure 2), then the real weight of that edge equals 102 . Continuing node evaluation, the exponent value can be
derived as follows.

Figure 2 illustrates how constituting parts of the exponent can be calculated at each level. Generalizing
the procedure to other levels, it is possible to calculate the ith part of the exponent at level i as shown in Eq.
(2).

10Exponent at level i = (1 + 9ec0)(1 + 99ec1)(1 + 999ec2)...(1 + (10i − 1)eci−1) (2)

In 64-bit format the exponent is 10 bits long. According to Eq. (2) and Figure 2, it is possible to derive the
exponent value at the top node of the exponent model. This is done in Eq. (3):

10∏
i=1

(1 + (10i − 1)eci−1) (3)

474

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

ec0

1

1

ec1

2

3i = 3

(1-ec0) + 10 1 × ec0 = 1 + 9ec0

(1-ec1) (1+9ec0) + 10 2 × ec1 × (1+9ec0)

= (1+9ec0) (1+99ec1)

ec2 (1+9ec0) (1+99ec1) (1+999ec2)

i = 2

i = 1

Figure 2. Exponent modeling using 10-based Shannon decomposition.

In order to model a biased exponent, we impose an appropriate weight on the top exponent node. Like before,
the weights of edges in our exponent modeling are powers of 10; thus, 10−Bias can be modeled with an edge
whose weight is –Bias . According to Eq. (1) and the fact that 10Exponent−Bias = 10Exponent × 10−Bias ,
Figure 3 illustrates how to incorporate bias into exponent modeling.

ec 9

10i = 10

10
Exponent

10
Exponent -Bias

 = 10
Exponent

 × 10
-Bias

-398

Sign

1

(1 -Sign)+ Sign (-1) = 1 -2 Sign

Figure 3. Exponent modeling incorporating bias. Figure 4. Sign modeling.

4.2. Sign modeling

The sign is modeled with a node with Shannon decomposition. A negative sign should be somehow inserted
into the diagram. This is accomplished with an edge with weight of –1. This negative weight is displayed with
a dot on the edge in our diagrams. Figure 4 shows further illustration.

4.3. Coefficient modeling

In DFP standard coefficients consist of BCD digits. These digits are compressed, but as previously described,
we assume that they are not compressed; thus, four bits are assumed for each BCD digit. Without losing the
generality, here we focus on 64-bit format. In the case of 32-bit or 128-bit format similar data structures can
be derived. The only difference is in the size of the data structure, i.e. the number of nodes.

475

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

In 64-bit format there are 16 BCD digits constructing the coefficient. The coefficient is derived from Eq.
(4).

Coefficient = d0 + 101d1 + 102d2 + ...+ 1015d15 =

15∑
i=0

10idi (4)

Since four bits are used for each BCD, we have Eqs. (5) and (6).

Coefficient = [cc0 + 2cc1 + 4cc2 + 8cc3] + 101[cc0 + 2cc1 + 4cc2 + 8cc3] + ... (5)

Coefficient =

15∑
i=0

10i[cc4i+0 + 2cc4i+1 + 4cc4i+2 + 8cc4i+3] (6)

According to Eq. (6) it is evident that two parameters are key parameters in constituting the coefficient:
1- The i index, which generates powers of 10 and is related to each BCD level. 2- Powers of two, which are
multiplied by coefficient bits. Thus, our model should cover both powers. One such node is depicted in Figure 5.
In Figure 5 both the node and edge are weighted. Nodes similar to that of Figure 5 will be used to model the
coefficient. Each node like in Figure 5 has an i index that determines the power of 10. Edges have a j index,
which determines the power of two. The top node value is calculated as shown in Figure 5. The decomposition
rule here is positive Davio, because we can directly derive our intended value without Shannon complementation.

cc i

j

Value = ccn + 10
i
× 2

j
×ccm

ccn ccm

index = i

Figure 5. Coefficient modeling for a single node.

Based on our discussion and Figure 5, the coefficient model can be sketched as illustrated in Figure 6.
It is easily verified that the top node value is that of Eq. (6). Remember that BCD digits are assumed to
be uncompressed. Also keep in mind that the decomposition rule is positive Davio in coefficient modeling.
Numbers close to each node in Figure 6 show powers of 10.

4.4. DFP number comprehensive model
We covered separate modeling of sign, coefficient, and exponents in the previous subsections. Now it is time to
integrate them and render a comprehensive diagram that models all these aspects.

Both nodes and edges are weighted in this model. Coefficient bits start with cc and exponent ones start
with ec. Both Shannon and positive Davio decomposition rules are utilized appropriately. The model is shown
in Figure 7. Note the following:

476

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

cc0

0 1

cc1

cc2

cc3

cc4

cc5

cc6

cc7

cc8

1

2

3

1

2

3

0

0

0

0

1

1

1

1

2

cc0

cc0+2 1cc1

[cc0+2 1cc1]+2 2cc2

[cc0+2 1cc1+2 2cc2]+2 3cc3

[cc0+2 1cc1+22 cc2+2 3cc3]+10 12 0c

c4

[(cc0+2 1cc1+2 2cc2 +2 3cc3)+10 12 0cc4]+10 12 1cc5

[(cc0+2 1cc1 +2 2cc 2+2 3cc3)+10 12 0cc4+10 121cc5]+10 12 2cc 6

. . .

Figure 6. Coefficient modeling using positive Davio decomposition.

• Nodes with Shannon decomposition are sketched with bold circles.

• Positive Davio nodes are displayed with circles that are not bold.

• A thick line represents an edge with power of 10.

• A thin line represents an edge with a power of two.

• Negative weighted edge is depicted with a dot on that edge.

The computed value at some important nodes is shown for simplicity. In the next section we will focus on
modeling canonicity.

5. Model canonicity

In the following discussions we assume that variable ordering is according to Eq. (7). Variable ordering becomes
more important when we discuss model canonicity.

V ariableOrdering : Sign < ec9 < ... < ec0 < cc63 < ... < cc0 (7)

In this section we show that our proposed model is canonical. Note that canonicity of DFP modeling is basically
different and more complex compared to traditional decision diagrams. Traditional decision diagrams represent
a Boolean/integer function with Boolean/integer domain.

The model presented for a DFP number in Figure 7 is a canonical model because:

477

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

cc0

0 1

cc1

cc2

cc61

cc62

cc63

1

2

1

2

3

0

0

0

15

15

15

ec0

1

ec1

2

10

ec9

Sign

. . .

Value = Coefficient

Value = Coefficient × 10 Exponent

Value = (-1) Sign × Coefficient × 10 Exponent

Value = (-1) Sign × Coefficient × 10 Exponent -Bias

-398

Figure 7. DFP number comprehensive model.

478

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

• According to IEEE-754-R there is a unique interpretation of bits in each format. Each bit has a determined
meaning and the DFP number value is determined based on the determined meaning of bits according to
Eq. (1). On the other hand, there is always one and only one node related to each bit in each format.
This means that the number of nodes equals the number of bits plus two (for terminal nodes 0 and 1) in
Figure 7.

• There is a fixed variable ordering based on which our DFP model is constructed; thus, our model is an
ordered model. This variable ordering was reported in Eq. (7).

• Edges and weights in the model determine the relation between nodes. This relation is fixed and defined
based on node and edge weights at each level. If another relation replaces the defined relation, by changing
weight of an edge or a node for instance, then according to Eqs. (2), (3), (4), (5), and (6) a different value
is calculated, and as a result a different number is calculated. We conclude that by changing weights of
each edge or node we cannot derive an identical value before the change.

• Putting it all together, assuming the previously defined variable ordering, there are fixed numbers of
nodes and edges in the model of a DFP number. The relation between nodes is also determined and fixed.
Changing either an edge connection or weight, and also changing either the existence or weight of a node
and changing the decomposition rule of a node, will result in a different value; thus, there will be no two
isomorph diagrams representing the same DFP number. Thus, our DFP number model is canonical.

6. Model extraction and verification
Verification of arithmetic circuits can be performed in two phases: 1- deriving a mathematical data structure
appropriate for arithmetic operations, and then 2- extracting a mathematical model from the circuit to be
compared with the model of phase 1. In this paper we present a method that models arithmetic operations
using the DFP data structure efficiently. Step 1 of verification is performed using the DFP data structure of
this paper. Extracting a similar model from a circuit for comparison with our model requires more research,
which is our next step. We are currently developing a model for model extraction from hardware. That is our
next step toward a complete formal verification methodology. Due to its complexity and variety it is out of
scope of this paper and will be covered in our next studies.

7. Experimental results

In this section we provide our implementation results regarding complexity and performance of the proposed
DFP data structure. In order to experimentally show that the proposed DFP data structure grows linearly for
a DFP number, we measure the memory consumption of our data structure. We also report the run time of our
modeling implementation, which supports the proven theorems in the preceding sections. The proposed model
was implemented in C++. All experiments have been run on a PC with Core2Duo CPU, operating at 2.4 GHz,
running Windows-7 x64 OS with 4 GB of RAM.

Modeling a single DFP number requires m + n + 3 nodes where m and n are the number of coefficient
and exponent bits, respectively. There are m+ n nodes for the coefficient and exponent part, one node for the
sign bit, and two leaves for 1 and 0. Our modeling supports all standard formats according to IEEE-754-R, i.e.
32-bit, 64-bit, and 128-bit format. For measuring memory usage, we generated sufficiently large sets of DFP
number data structures and monitored memory usage. In Figure 8 memory usage for all three formats is shown

479

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

for different numbers of DFP numbers. It is evident that memory consumption of DFP number modeling grows
linearly. Experimental memory usage for a single DFP number is reported in Table 1.

Table 1. Experimental memory usage of single DFP number.

Format length DFP number node count DFP number memory usage
32-bit 39 3.42 kB
64-bit 77 6.70 kB
128-bit 153 13.25 kB

Further illustration of the linear growth of our data structure can be accomplished by relative memory
usage of data structure implementation for different standard formats. Inspecting the numbers in Table 1 reveals
that for sufficiently large numbers of DFP data structures (minimizing implementation side effects) memory
consumption is doubled with doubling format length. For instance, when we build the 32-bit data structure
we create (28+8+3) nodes. Creating the 64-bit version requires (64+10+3) nodes. Thus, memory usage of
the 64-bit relative to the 32-bit data structure is 77/39 ≈ 1.97, which is very close to our experimental result
in Table 1, which is in fact 6.70/3.42 ≈ 1.96. Relative memory requirements of 128-bit and 32-bit formats
approach 13.25/3.42 ≈ 3.87, which is again close to (136+14+3)/(28+8+3) ≈ 3.92 as expected.

The run times of corresponding implementations are illustrated in Figure 9. It is obvious that for 128-bit
format a longer construction time is required. The time unit of the modeling implementation time is milliseconds.
All the experiments run in a short and reasonable amount of time.

0
20000
40000
60000
80000

100000
120000
140000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

)Bk(egas
U yro

me
M

DFP Numbers

128-bit Memory Usage
64-bit Memory Usage
32-bit Memory Usage

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000

)s
m(

e
mi

T
n

u
R

DFP Numbers

128-bit Run Time
64-bit Run Time

32-bit Run Time

Figure 8. Single DFP number experiments: memory
usage.

Figure 9. Single DFP number experiments: run time.

As described in the literature review, our presented model is the first that is capable of modeling DFP
representation, so we cannot compare our memory usage or run time speed with previous works. Nevertheless our
data structure can also model integer arithmetic. If we model integer multipliers with our DFP data structure,
then we can compare its performance with other methods. In such a case some of the DFP model capabilities will
be ignored, because there is no floating point number. However, we have still equal performance with *BMDs.
In essence, our diagram and *BMD perform equally in terms of memory for integer multipliers. However, keep in
mind that the DFP model can also represent floating point arithmetic, whereas *BMDs cannot. Thus, we have
equal performance with better expressive power when compared to integer level diagrams. Comparisons with
K*BMDs with Shannon decomposition are illustrated as well. It is obvious from Table 2 that our DFP diagram
outperforms K*BMDs with the Shannon rule. K*BMDs with positive Davio expansion make no difference from
*BMDs, so we do not mention numbers for that case.

Table 3 reports memory consumption of the DFP structure versus *BMD for several adders. In Table 3
memory usages for three adders are reported. It is evident that our data structure requires less memory than

480

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

*BMD. This is mainly due to negation and multiplicative powers of DFP diagram edges, which result in a more
compact representation. This comes at the cost of more complex data structure and more processing time.

Table 2. Integer multiplier memory usage (number of nodes.

Circuit DFP model *BMD K*BMD (Shannon)
Mult 16-bit 32 32 65551
Mult 32-bit 64 64 Blow-up
Mult 64-bit 128 128 Blow-up

Table 3. Integer adder memory usage comparison.

Circuit DFP model *BMD
Add 16-bit 0.37 MB 0.7 MB
Add 64-bit 0.93 MB 1.1 MB
Add 256-bit 5.23 MB 6.5 MB

8. Conclusion
In this paper we proposed a data structure that is able to model DFP numbers and DFP arithmetic operations.
The proposed model made use of Shannon and positive Davio decomposition rules in order to increase expres-
siveness and size reduction of the model. We provided the model complexity for representing a DFP number. It
was shown that the presented model grows linearly for a DFP number. Experimental results support our claim.
It is obvious that our proposed data structure can be implemented in a short amount of time for DFP number
modeling. The memory requirement for this modeling is also negligible, in the order of several kilobytes. It is
evident that our experimental results agree with the provided mathematical discussions on the linear growth
when format size is increased. We also showed that our model is canonical, so it can be used for formal veri-
fication purposes efficiently. In order to formally verify a DFP DSP system, a model extraction from a DFP
arithmetic hardware is necessary. Then the extracted model and the proposed model can be checked for design
errors. This is out of scope of this paper and will be our next step.

References

[1] Price D. Pentium FDIV flaw-lessons lLearned. IEEE Micro 1995; 15: 86-88.

[2] Sharangpani HP, Barton ML. Statistical Analysis of Floating Point Flaw in the Pentium Processor. Santa Clara,
CA, USA: Intel Technical Report, 1994.

[3] IEEE Computer Society. IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. New York,
NY, USA: IEEE, 1985.

[4] IEEE Computer Society. IEEE Std 754-2000: IEEE Standard for Floating-Point Arithmetic. New York, NY, USA:
IEEE, 2008.

[5] Duale AY, Decker MH, Zipperer HG, Aharoni M, Bohizic TJ. Decimal floating-point in z9: an implementation and
testing perspective. IBM J Res Dev 2007; 51: 217-227.

[6] Lipetz D, Schwarz E. Self checking in current floating-point units. In: IEEE 2011 20th Symposium on Computer
Arithmetic; 25–27 July 2011; Tubingen, Germany. New York, NY, USA: IEEE. pp. 73-76.

[7] Corena M. IEEE 754-2008 decimal floating-point for Intel architecture processors. In: IEEE 2009 19th Symposium
on Computer Arithmetic; 8–10 June 2009; Portland, OR, USA. New York, NY, USA: IEEE. pp. 225-228.

481

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

[8] Gao S, Al-Khalili D, Langlois JMP, Chabini N. Decimal floating-point multiplier with binary-decimal compression
based fixed-point multiplier. In: IEEE 2017 30th Canadian Conference on Electrical and Computer Engineering;
30 April–3 May 2017; Windsor, Canada. New York, NY, USA: IEEE. pp. 1-6.

[9] Ray S. Scalable Techniques for Formal Verification. Berlin, Germany: Springer, 2010.

[10] Camilleri A, Gordon M, Melham T. Hardware Verification Using Higher-Order Logic. Technical Report UCAM-
CL-TR-91. Cambridge, UK: University of Cambridge, 1986.

[11] Bryant RE. Graph-based algorithms for Boolean function manipulation. IEEE T Comput 1986; C-35: 677–691.

[12] Fujita M, McGeer PC, Yang JCY. Multi-terminal binary decision diagrams: an efficient data structure for matrix
representation. Form Method Syst Des 1997; 10: 149-169.

[13] Drechsler R, Theobald M, Becker B. Fast OFDD-based minimization of fixed polarity Reed-Muller expressions.
IEEE T Comput 1994; 45: 1294-1299.

[14] Kebschull U, Schubert E, Rosenstiel W. Multilevel logic synthesis based on functional decision diagrams. In:
Proceedings of the European Conference on Design Automation; 16–19 March 1992; Brussels, Belgium. New York,
NY, USA: IEEE. pp. 43-47.

[15] Drechsler R, Sarabi A, Theobald M, Becker B, Perkowski MA. Efficient representation and manipulation of switching
functions based on ordered Kronecker functional decision diagrams. In: Proceedings of 31st Design Automation
Conference; 6–10 June 1994; San Diego, CA, USA. New York, NY, USA: IEEE. pp. 415-419.

[16] Drechsler R, Becker B. Ordered Kronecker functional decision diagrams, a data structure for representation and
manipulation of Boolean functions. IEEE T Comput Aid D 1998; 17: 965-973.

[17] Lai YT, Sastry S. Edge-valued binary decision for multi-level hierarchical verification. In: Proceedings of 29th
ACM/IEEE Design Automation Conference; 8–12 June 1992; Anaheim, CA, USA. New York, NY, USA: IEEE. pp.
608-613.

[18] Lai YT, PedramM, Vrudhula SBK. Formal verification using edge-valued binary decision diagrams. IEEE T Comput
1996; 45: 247-255.

[19] Bryant RE, Chen YA. Verification of arithmetic circuits with binary moment diagrams. In: 32nd Design Automation
Conference; 12–16 June 1995; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 535-541.

[20] Bryant RE, Chen YA. Verification of Arithmetic Functions with Binary Moment Diagrams. Technical Report CMU-
CS-94-160. Pittsburgh, PA, USA: Carnegie Mellon University, 1994.

[21] Drechsler R, Becker B, Ruppertz S. K*BMDs: a new data structure for verification. In: Proceedings of European
Design and Test Conference; 11–14 March 1996; Paris, France. New York, NY, USA: IEEE. pp. 2–8.

[22] Clarke EM, Fujita M, Zhao X. Hybrid decision diagrams, overcoming the limitations of MTBDDs and BMDs. In:
Proceedings of IEEE International Conference on Computer-Aided Design; 5–9 November 1995; San Jose, CA,
USA. New York, NY, USA: IEEE. pp. 159-163.

[23] Ciesielski M, Kalla P, Zhihong Z, Rouzeyre B. Taylor expansion diagrams: a new representation for RTL verification.
In: IEEE 6th International High-Level Design Validation and Test Workshop; 9 November 2001; Monterey, CA,
USA. New York, NY, USA: IEEE. pp. 70-75.

[24] Ciesielski M, Kalla P, Askar S. Taylor expansion diagrams: a canonical representation for verification of data flow
designs. IEEE T Comput 2006; 55: 1188–1201.

[25] Lotfi-Kamran P, Massoumi M, Mirzaei M, Navabi Z. Enhanced TED: a new data structure for RTL verification.
In: 21st International Conference on VLSI Design; 4–8 January 2008; Hyderabad, India. pp. 481-486.

[26] Lotfi-Kamran P, Hosseinabady M, Shojaei H, Massoumi M, Navabi Z. TED+: A data structure for microprocessor
verification. In: Proceedings of Asia and South Pacific Design Automation Conference; 21 January 2005; Shanghai,
China. New York, NY, USA: IEEE. pp. 567-572.

[27] Alizadeh B, Fujita M. Modular datapath optimization and verification based on modular-HED. IEEE T Comput
Aid D 2010; 29: 1422–1435.

482

JAHANGIRY and SAFARI/Turk J Elec Eng & Comp Sci

[28] Alizadeh B, Fujita M. Modular equivalence verification of polynomial datapaths with multiple word-length operands.
In: IEEE 2011 International High Level Design Validation and Test Workshop; 9–11 November 2011; Napa Valley,
CA, USA. New York, NY, USA: IEEE. pp. 22–40.

[29] Chen YA, Bryant RE. *PHDD: An efficient graph representation for floating point circuit verification. In: Proceed-
ings of IEEE International Conference on Computer Aided Design; 9–13 November 1997; San Jose, CA, USA. New
York, NY, USA: IEEE. pp. 2-7.

[30] Chen YA, Bryant RE. An efficient graph representation for arithmetic circuit verification. IEEE T Comput Aid D
2001; 20: 1443-1454.

[31] Sayed-Ahmed AAR, Fahmy HAH, Kuhne U. Verification of the decimal floating-point square root operation. In:
IEEE 2014 19th European Test Symposium; 26–30 May 2014; Paderborn, Germany. New York, NY, USA: IEEE.
pp. 1-2.

[32] Sayed-Ahmed AAR, Fahmy HAH, Samy R. Verification of the decimal floating-point fused-multiply-add operation.
In: 9th IEEE/ACS International Conference on Computer Systems and Applications; 27–30 December 2011: Sharm
El-Sheikh, Egypt. New York, NY, USA: IEEE. pp. 255-262.

[33] Sayed-Ahmed AAR, Fahmy HAH, Hassan MY. Three engines to solve verification constraints of decimal Floating-
Point operation. In: Conference Record of the 44th Asilomar Conference on Signals, Systems and Computers; 7–10
November 2010; Pacific Grove, CA, USA. New York, NY, USA: IEEE. pp. 1153-1157.

483

	Introduction
	Decimal floating point standard
	Related work
	Proposed DFP data structure
	Exponent modeling
	Sign modeling
	Coefficient modeling
	DFP number comprehensive model

	Model canonicity
	Model extraction and verification
	Experimental results
	Conclusion

