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Abstract: Recent studies have shown, contrary to what was previously believed, that by exploiting correlation in
stochastic computing (SC) designs, more accurate SC circuits with low area cost can be realized. However, if these basic
SC circuits or blocks are cascaded in series to form a large complex system, correlation between stochastic numbers
(SNs) from one block to the next would be lost; thus, inaccuracies are introduced. In this study, we propose correlating
circuits to be used in building complex correlated SC systems. One of the circuits is the correlator that restores lost
correlations between two SNs due to previous processing. In addition, a correlated SN generator is introduced to
generate SN correlated to a specific SN. Experimental results show that our methods have improved the accuracy of
stochastic computation and preserved the stochastic computing correlation without the need for conversion from SC
to the conventional binary-encoded computing, and vice versa. Consequently, lower latency and lower area cost are
achieved.
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1. Introduction
Stochastic computing (SC) is a reemerging computing paradigm that was first introduced by Gaines [1] in the
1960s as an alternative to the conventional binary-encoded deterministic computing (DC) technique. In SC,
data being processed are represented by random number bit-streams (referred to as stochastic numbers), and
the value of the data is encoded as the probability of 1s appearing in the bit-stream. For example, the data
bit-stream X = 1001 encodes the value of 0.5 since the probability of 1s appearing in X is 0.5 (=2/4; there are
two ones and the bit-stream is 4 bits long).

The main advantage of an SC-based design is its low hardware cost and high tolerance for soft errors.
Hence, today there is renewed interest in SC for applications in mobile and embedded devices that usually
demand error-tolerant solutions with low area and low power. Consequently, in recent years, there has been
more active research conducted to adopt SC in a wide range of embedded solutions for image processing [2],
neural networks [3], and digital filters [4].

However, SC has significant drawbacks that have to be addressed before it can be viable for application
in designing complex practical circuits [5]. One key weakness is that an SC implementation can have a long
latency arising from long input bit-streams. Data precision depends on bit-stream length; hence, higher precision
requires a longer bit-stream. The second key drawback of SC is due to the fact that, unlike DC computation,
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SC operations (which are based on random numbers) do not necessarily yield consistent results, giving rise to
the issue of accuracy.

Aside from quantization errors, correlation between stochastic numbers (SNs) is also a source of inaccuracy
in SC circuits. To operate correctly, some SC circuits require uncorrelated data inputs; others require correlated
inputs. Hence, the inaccuracies due to correlation arise because of overcorrelated operands in the former case,
and in the latter case, because of operands that are not sufficiently correlated. Research work in [6] has shown
that circuits that exploit correlation can result in improved accuracy in SC-based designs. It has also shown
that, by exploiting correlation, further gains can be made in area savings and latency reduction.

However, previous works on utilizing correlation in SC circuit design were limited to the design of basic
circuits or functional blocks, such as an edge detection filter in [7]. Typically, a large complex system would be
a cascade or pipeline of a number of these basic functional blocks. For example, an image processing pipeline
would consist of a series of circuits that include a median filter block, a smoothing filter, an edge detector, and,
finally, a thresholding stage. Such a system could not be realized previously, because the SC-based functional
blocks with correlated input bit-stream produced uncorrelated output bit-streams. Consequently, correlation
among SNs between the blocks was reduced or lost, resulting in significant errors. To prevent these errors from
occurring, correlation has to be maintained across the complete system, end-to-end. We will refer to such a
system whereby correlation is maintained as a correlated stochastic computing (CSC) system.

One may think that there is an on-the-fly solution. The designer simply inserts conversion circuits
whenever inputs have to be correlated to restore any lost correlation. However, this solution is infeasible since
it introduces long conversion latency and significantly increases area cost (or resource utilization). This paper
proposes a methodology to build a design in which correlation across a CSC system is maintained without
utilizing multiple conversion circuits. Our contributions are as follows: 1) An SN correlator that restores the
lost correlation between SNs and eliminates the need for conversion circuits between the functional blocks. It
utilizes a novel SC-based comparator. 2) A correlated stochastic number generator (CSNG) that can generate
an SN that is correlated to a specific SN, allowing both to be employed in a circuit that exploits correlation. 3)
A design methodology for building a more compact, accurate, low-latency CSC system that utilizes SC circuit
blocks that exploit correlation. 4) This work classifies the SC processing elements concerning their effect on
correlation. This is an extension of the study on correlation sensitivity classification introduced in [6].

The rest of this paper is organized as follows. Section 2 reviews related previous works and presents the
basics of SC. It then addresses the correlation problem. Section 3 presents the SC correlator and the CSNG.
Section 4 discusses the experimental work done and results obtained to demonstrate the effectiveness of the
proposed methods in terms of accuracy. Section 5 concludes the paper.

2. Stochastic computing

2.1. Stochastic computing basics

Stochastic computing is a computing paradigm that represents and processes information in the form of digitized
probabilities. In SC, an SN is a binary bit stream with the probability p of 1s [5]. An SN has neither fixed
length nor structure; SNs 1001, 1010, and 10100101 all encode the value of 1

2 since probability p of 1s appearing
in the SN is 1

2 . SNs either use unipolar (UP) or bipolar (BP) encoding. Bipolar encoding allows negative values
while unipolar does not. Table 1 defines the UP and BP encoding. In the table, N0, N1, and N represent
the number of zeros, number of ones, and total number of bits in the SN, respectively. Examples of SNs are
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SN1 = 11001111 and SN2 = 10100110, with UP values p1 = 6
8 and p2 = 4

8 . The corresponding BP values are
x1 = 6−2

8 = 4
8 , which satisfies x1 = 2× p1 − 1 and x2 = 0 .

Table 1. SN encoding.

Encoding type Value Interval Relation
UP p = N1

N [0,1] p = 1+x
2

BP x = N1−N0

N [-1,1] x = 2p− 1

To convert from binary to stochastic, a stochastic number generator (SNG) is used. The SNG comprises
a random number generator (RNG) and a comparator. To produce correlated SNs, one RNG is shared among
the SNGs. On the other hand, to convert from stochastic to binary, a counter is used. Figure 1a gives the block
diagrams of these conversion circuits.
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Figure 1. SC basic circuits.

A major advantage of SC is that it employs very low-complexity arithmetic units [5]. The AND gate
in Figure 1b performs the multiplication of two uncorrelated UP-encoded SNs, X and Y , with probabilities
px = 6

8 and py = 4
8 . The output Z has probability pz = 3

8 as expected. If the independence (uncorrelated)
condition between the inputs is not met, the accuracy of the output is degraded. As a result, Gaines [1] stated
that SNs should be independent. If the input SNs are BP-encoded then SC multiplication is performed using
an XNOR gate.

It is clear that when UP-encoded SNs are applied, the values are constrained between 0 and 1. Arithmetic
operations such as addition or subtraction may produce a probability that is under 0 or exceeds 1. Thus,
there is no direct addition in SC, but instead scaled addition is used. A 2-to-1 multiplexer (MUX) performs
scaled addition with probability of the selector bit-stream ps = 1

2 . The MUX operates according to pz =
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pspx + (1 − ps)py where the value of the selector acts as a weight for the inputs. For the case ps = 1
2 ,

pz = 1
2 (px + py) . In Figure 1c the MUX acts as a scaled adder where pz = 1

2 (px + py) = 3
8 . It should

be noted that the MUX selector should be uncorrelated with the MUX inputs to prevent correlation-induced
error. However, the MUX inputs are correlation-insensitive and can have any value of correlation. To perform
subtraction, a NOT gate is used to negate the subtracted value before it is added to the other input by 2-to-1
MUX as shown in Figure 1d. In the subtraction example, BP encoding is used to represent the negative value.
The stochastic number X is subtracted from Y . Thus, the BP output value z should be 1

2 (y−x) = − 2
8 , which

is the case as z = N1−N0

N = − 2
8 .

According to [8], SNs should be independent and uncorrelated bit-streams. The independence definition in
probability theory is P (∩iϵSAi) =

∏
iϵS P (Ai) . The N events A1 , A2 , …, and AN are said to be independent

if the probability of their intersection equals the multiplications of their probabilities for every subset S of
{1, 2, ..., N} [9]. However, a recent study [6] stated that unlike what was formerly believed, the correlation can
serve as a resource in designing stochastic circuits. For edge detection, after taking advantage of correlation,
the circuit area was reduced 2.1× and 2.57× compared to independent inputs SC and conventional binary DC,
respectively [10]. Also, the latency is reduced by 3× compared to independent inputs SC.

2.2. Related work
The main advantage of SC is the cheap hardware footprint. Many applications such as digital filters, image
processing, and neural networks have been implemented successfully in SC. These applications share the fact
that they possess a high error tolerance and require a massive number of low-precision operations [11]. However,
there are still limitations in SC, especially in accuracy, latency, and circuit size. In our work, we emphasize the
accuracy of SC and the hardware footprint.

Although SC’s benefit is the low area cost, the conversion circuits can take up to 80% of the overall area,
particularly when independent RNGs are needed for SN generations [12]. Some works proposed sharing schemes
to share one RNG with different SNGs [4, 13–15]. For example, if k different SNGs share only one RNG as
in the case in the circular shifting in [4], the area cost of the RNGs is decreased by 1/k . On the other hand,
if the circuit is correlation-insensitive or requires correlated inputs, all SNGs could share one RNG, which also
reduces the cost of conversion circuits.

Many research works have been conducted to increase the accuracy of SC circuits. There are three
main methods in the literature to improve SC accuracy. The first approach is exploiting SC’s progressive
precision property by using other types of RNGs instead of the linear feedback shift register (LFSR) [16–18].
This approach decreases the random fluctuations and enables the designer to use part of the SNs to obtain
acceptable results that improve the latency. Secondly, accuracy is improved by using circuits with correlated
inputs (CSC) [6, 19], which reduce the area cost. Thirdly, accuracy can be enhanced by performing SC operations
using deterministic bit-streams [20, 21]. These works obtained accurate arithmetic operations, but the entire
bit-stream should be processed to avoid significant truncation error [22]. The three preceding approaches hold
the same drawback in that they are not appropriate for multilevel designs [23]. If SC functional blocks are
cascaded, outputs of the first block cannot be directly applied as an input of the second block. However, our
work solves this problem for CSC circuits by proposing a methodology to create a multilevel CSC system.

Other works can be found in the literature addressing SC accuracy. The work in [24] dealt with random
fluctuation errors by eliminating the constants by introducing memory in the SC circuits. To decorrelate the
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SN to obtain more accurate results, [25] proposed the isolation-based decorrelator. Accurate SC operations
were proposed in [23, 26]. These works obtained accurate results, but they introduced more latency as they
increased the output bit-stream length. Also, a scaling-free accurate SC adder was proposed in [14]. The main
selling point of SC is the cheap hardware footprint. Although these works are cheaper than conventional DC,
CSC circuits are much cheaper with acceptable accuracy.

The accuracy in SC is affected by multiple sources. The sources of these inaccuracies are the low precision,
random number fluctuations, conversion error, and correlation-induced inaccuracies [19]. In this work, we
concentrate on the correlation-induced inaccuracies. The other sources of inaccuracies are mostly removed by
using uniform RNG and the SN length L = 2n where n is the conventional DC precision.

2.3. Stochastic computing correlation problem

Alaghi and Hayes [6] introduced a parameter that determines the significance of the correlation between two
SNs called stochastic computing correlation (SCC), as shown in Eq. (1). Also, they argued that correlation
can be exploited to obtain more efficient circuits. They proposed an XOR gate for UP absolute subtraction.
Then they categorized the basic processing elements according to their correlation sensitivity. Our work extends
the categorization further to show that some elements have an effect on correlation and certain methods are
proposed to allow cascading circuits to utilize correlation or create complex CSC circuits without accuracy loss,
although the correlation will be lost.

SCC(X,Y ) =


pX∩Y −pXpY

min(pX ,pY )−pXpY
pX∩Y − pXpY > 0

0 pX∩Y − pXpY = 0
pX∩Y −pXpY

pXpY −max(pX+pY −1,0) pX∩Y − pXpY < 0

(1)

If we want to realize the equation pZ = 1
2max(pA+pB , pC +pD) using correlated inputs, generated using

the same RNG, we would use 2-to-1 MUX to perform scaled addition. Then an OR gate is used to perform the
max operation. The OR gate is SCC-sensitive; hence, when SCC varies, its functionality changes. For example,
if SCC = 0, pOR,SCC=0 = p1 + p2 − p1p2. However, if SCC = 1, pOR,SCC=1 = max(p1, p2) . Figure 2 shows the
circuit that computes pz . The four inputs A, B, C, and D are correlated. After the scaled addition operation,
the correlation is lost. As a result, the OR operation does not perform the max operation, obtaining a wrong
result. Thus, when a designer wants to create a CSC circuit, the SCC variation due to processing elements
should be taken into consideration. In Table 2, the sensitivity to correlation and variation of correlation for
basic SC processing elements are indicated.

If SC bit-stream length L = 256 bits are used, the mean absolute error generated due to the correlation
loss is 5.45% in the example shown in Figure 2. The mean SCC of OR gate inputs is 0.75 in 10,000 iterations
of randomly generated inputs. In this experiment, other inaccuracy sources such as conversion and correlation
with MUX selector are almost eliminated by using uniform RNG and independent RNGs for the selector.

From previous discussion, to design a CSC block that utilizes correlation, the following order of processing
elements should be used:

1. The processing elements that do not vary the correlation.

2. The processing elements that vary correlation but are correlation-sensitive.

3. The correlation-insensitive processing elements.
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Figure 2. Correlation loss problem.

Table 2. Correlation sensitivity and variation.

SC element Correlation sensitivity Correlation variation
NOT no yes
AND yes no
OR yes no
XOR yes yes
MUX inputs: no selector: yes yes
FF no yes

Following the above sequence is the best for designing a block, but sometimes it cannot be done to achieve the
required functionality. The designer thus achieves less accuracy due to correlation loss. Therefore, it is essential
to create SC circuits that maintain the correlation throughout the system to obtain more efficient SC systems
in terms of area and latency.

3. Correlating stochastic numbers method

To enable designing a more complex CSC circuit composed of multiple blocks that exploit correlation, a method
to correlate SNs is proposed. All components of the circuitry should preserve correlation. Also, they should
not introduce high latency or hardware footprint. It should be noted that the CSC circuit will use only one
RNG to minimize area cost. Also, using one RNG will avoid one of the drawbacks mentioned by Hayes [12],
which is conversion circuit area cost. In the case that requires an uncorrelated random number sequence such
as generating MUX selector SN, the circular shift RNG sharing scheme is used as proposed in [13].

3.1. The correlator
As discussed in Section 2.3, SC requires a method to restore any lost correlation. Suppose we have two SNs,
X and Y. According to Eq. 1, if we wish to obtain SCC(X,Y ) = 1 , the probability of X ∩ Y should be
equal to the minimum of the probabilities of X and Y, i.e. pX∩Y = min(pX , pY ) , so that the numerator and
denominator of Eq. 1 are equal.
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Since X and Y are Bernoulli sequences, pX∩Y = min(pX , pY ) cannot be attained unless, in all positions
for 1s in the minimum SN, the maximum SN also has 1 in the corresponding position. Otherwise, the SNs would
not be correlated. Figure 1 illustrates the relationship between 1’s position and SCC where X > Y . Figure
1a shows two correlated SNs while Figure 1b illustrates how SCC is lost due to one position misalignment. We
can see that a circuit varies the correlation if the processing elements have results where 1’s position changes
among SNs.

To recorrelate two uncorrelated SNs like in Figure 1c, two tasks should be performed. First, determine
the minimum between the two SNs. Then change the positions of the minimum SN ones to be in the positions
of maximum SN ones. Thus, a min relocate algorithm is required. It is important to note that in this work we
want to recorrelate; in other words, the SNs to be correlated are a result of an operation of correlated inputs,
which are generated initially from the same RNG, as in the example in Figure 2. In that figure, the two SNs
that we desire to recorrelate are the outputs of the MUXs. Those SNs still have a high correlation, SCC = 0.75 ,
if SC bit-stream length L = 256 bits are used.

To find the min SN, we propose a novel SC comparator. If we have two correlated SNs, the greater
SN would have ‘1’ in certain positions while the lower number has ‘0’. To find the smaller value we should
determine the position where X and Y are ‘1’ and ‘0’, respectively. This can be obtained by XORing X and Y,
so if Xi ⊕ Yi = 1 then we can find which is greater between X and Y by examining values at position i . The
comparator output should be ‘1’ if one number is greater than the other or ‘0’ otherwise. Thus, the second stage
in the comparator is to evaluate XiȲi to determine which input is smaller. The algorithm for this comparator
is shown in Algorithm 1, which will be combined with the relocate algorithm to obtain the correlator.

Algorithm 1 The min operation.
1: for i = 1 : L do
2: if Xi ⊕ Yi then
3: idx = i
4: if XiȲi then
5: Y is min
6: break
7: else
8: X is min
9: break

10: end if
11: end if
12: end for

Since we have two highly correlated SNs, the minimum can be determined when it has ‘0’ where the other
SN has ‘1’. The relocation of minimum ones is performed using a counter (CTR). This is a specially designed
counter that increments only when increment signal is ‘1’ and decrements only if the decrement signal is ‘1’;
otherwise, it remains in the same state. At a certain position, if max SN is ‘0’ and min SN is ‘1’, the min SN
is changed to ‘0’ and the counter increments by 1. On the other hand, at other specific positions, if max SN is
‘1’, min SN is ‘0’, and CTR > 0 (grt0), the min SN will be changed to ‘1’. As a result, we relocate the min
SN ‘1’ to a position where max SN is ‘1’. Therefore, the two SNs become completely correlated. The relocate
algorithm is shown in Algorithm 2. The relocate circuit is shown in Figure 4a. The correlator is obtained by
combining Algorithm 1 and Algorithm 2. We notice that the algorithm accuracy depends on the min operation
to find the correct bit position to ensure that the relocation part is 100% accurate.
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Algorithm 2 Relocate algorithm.
1: for i = idx : L do
2: if mini = 1 then
3: if maxi = 0 then
4: mini = 0
5: CTR = CTR+ 1
6: end if
7: else
8: if maxi = 1 and CTR > 0 then
9: mini = 1

10: CTR = CTR− 1
11: end if
12: end if
13: end for

To demonstrate the correlator, we use the example in Figure 2. If we use the correlator for the MUX
outputs, the absolute error will be decreased by 3.2% from 5.45% to 2.25%. The resource utilization of the
correlator when using a 4-bit precision counter is just 5 FFs and 7 LUTs when ZYNQ ZC706 FPGA is used.
The 4-bit counter is more than enough for this example for a very long bit-stream since the SNs have sufficient
amounts of correlation.

There should be a systematic way to choose the bit-width of the correlator counter. The bit-width of
the correlator counter is of log2(Nr) where Nr is the number of ones in the minimum bit-stream that should
be relocated. Suppose we have two bit-streams A and B with probabilities a and b , respectively. If the SN
length is L , then Nr = (min(a, b)− pA∩B)× L , which is equivalent to Eq. 2 where NA , NB , and NA∩B are
the number of ones of A , B , and A ∩B bit-streams, respectively. From Eq. 1, taking into consideration that
SCC > 0 , we get Eq. 3. Substituting Eq. 3 in Eq. 2, we get Eq. 4. To find the maximum value for Nr , we first
set SCC = 0, which corresponds to the worst case scenario, i.e. A and B are uncorrelated. Also, L is fixed to
a certain value per iteration. Then NA and NB are varied from 0 to L . For all values of L the maximum is
Nr = L/4 if SCC = 0 . Thus, the maximum counter bit-width (BWctr ) is given in Eq. 5. However, the counter
bit-width is dependent on the SCC value estimate, since the term log2(1− SCC) is negative if SCC > 0 . For
the previous example where SCC = 0.75 and L = 256 , BWctr = 4 according to Eq. 5.

Nr = min(NA, NB)−NA∩B (2)

NA∩B = min(NA, NB)× SCC +
NANB

L
(1− SCC) (3)

Nr = (1− SCC)(min(NA, NB)−
NANB

L
) (4)

BWctr = log2(1− SCC) + log2(L)− 2 (5)

3.2. Generating correlated stochastic number

Many algorithms require parameters to be processed with the intermediate data that have been processed earlier.
In SC, if we generate those parameters using the initial SNGs, the correlation will be low. Hence, CSNG is
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required to generate a correlated SN to a specific SN. Algorithm 3 describes CSNG operation. Different from
correlating two SNs, CSNG does not need to find the max or min SN. The CSNG is a special local down-counter
(LCTR) with initial state defining the number of 1s (N1 ) to be generated. This LCTR decrements if decrement
signal is ‘1’; otherwise, it does not change state. Suppose X is the SN to be generated using the CSNG with
UP probability pX where X is to be correlated with Y . Then N1 = pX ×L , where L is the SN length. From
discussion of Figure 3, CSNG generates ‘1’ when Y is ‘1’. However, if X > Y , the number of 1s in X is greater
than that of Y . Therefore, if the remaining number of X 1s to be generated is equal to the remaining bits in
the bit-stream L− i , all the remaining bits in X bit-stream will be 1s. The CSNG always generates correlated
bit-streams. The global counter is a down counter that counts the bit-stream length L .

Algorithm 3 CSNG.
1: N1 = pXL
2: for i = 1 : L do
3: if N1 = 0 then
4: Xi = 0
5: else if N1 = L− (i− 1) then ▷ useful when X > Y
6: Xi = 1
7: N1 − 1
8: else if Yi = 1 then
9: Xi = 1

10: N1 − 1
11: else
12: Xi = 0
13: end if
14: end for

X = 1 1 0 1 0 1 0 1 

Y = 0 1 0 1 0 1 0 0 

 
SCC(X,Y) = 1 

(a) Totally correlated

X = 1 1 0 1 0 1 0 1 

Y = 0 1 0 1 0 0 1 0 

 
SCC(X,Y) = 0.1111  

(b) Correlation lost due to one position misalignment

Figure 3. SCC and relation to 1’s position.

We propose two types of CSNG. The first one is the constant CSNG that always generates an SN with a
fixed probability, as shown in Figure 4b. Resource utilization for this CSNG is 9 FFs and 13 LUTs for 256-bit
SN. On the other hand, the variable CSNG is shown in Figure 4c. This CSNG generates SN with the specified
probability, and its hardware cost is 25 FFs and 43 LUTs for 256-bit SN. However, more resources can be saved
if the counter bit width is reduced, which entirely depends on the values to be generated. The type of CSNG
to be used depends on the application.

3.3. Correlated stochastic computing system design methodology

To develop a complete CSC system, first the functional blocks should be designed exploiting the correlation.
In the literature, many works proposed blocks that utilize correlation, such as image processing [7, 10, 27] and
digital filters [4]. In these previous works, for example, the SC image filter is proposed, but no multiple image
processing CSC blocks are tested together due to the correlation loss. In this work we propose a methodology
to design a complete CSC system using SC circuits exploiting correlation. The CSC design is more efficient
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Figure 4. The correlating circuits.

than SC with independent input SNs in terms of accuracy and area cost. Also, the correlating circuits can be
considered as the counter parts of the randomizers in conventional SC implementations.

The input SNs to CSC system are generated using SNGs sharing one RNG, so they are correlated.
There are three factors to be considered in this methodology: the SCC, correlation-sensitivity, and correlation-
variation. The methodology to build a complete CSC system is shown in Table 3. If the block is first in
the system, SCC would be 1, so the input SNs will be directly applied to the current block. Similarly, if the
previous block does not change the SCC, the input SNs would be directly applied to the current block. Also, if
the current block is correlation-insensitive, such as MUXs, the designer would not need any correlating circuits.
On the other hand, in the case of a block sensitive to correlation preceded by a block that changes correlation,
the correlator should be applied to the inputs before the current block. Finally, if an SN of a certain probability
has to be generated, the CSNG should be used to produce a correlated SN.

Table 3. CSC design methodology.

Previous block Current block Action
- Any -
No variation in SCC Any -
Variation in SCC Insensitive to SCC -
Variation in SCC Sensitive to SCC Apply correlator to the inputs
Any Certain probability required to be generated Generate SN using CSNG

First, the sequence mentioned in Section 2.3 to design a CSC functional block should be used to design
the basic blocks. Then, using the proposed methodology to obtain a CSC system, a more accurate and compact
system will be obtained compared to conventional SC circuits and systems. For the conversion circuitry, one
SNG stage is required at the start where all SNGs share the same RNG, and one counter stage is required at
the end of the stochastic computations to convert the result into DC format. However, sometimes uncorrelated
bit-streams are required, such as the MUX selector SN. In this case the circular shifting RNG sharing scheme
should be used as proposed in [13]. Therefore, a single RNG is enough for the complete CSC system.
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4. Experimental results

To evaluate the effectiveness of the proposed correlator or CSNG, they are tested in an image processing system
composed of multiple filters. The accuracy of the CSC filters and circuit area are the measured metrics. To
evaluate accuracy, the absolute error is computed. The applied SN length L is 256 bits. To assess the circuit
area of the correlator and CSNG designs, we synthesize the correlator and the CSNG circuits using the Vivado
design suite targeting Xilinx ZYNQ Z706.

The intention of this work is to build a complete CSC system that is composed of multiple functional
blocks. Suppose we have the system shown in Figure 5. The system receives a DC image as input and outputs
the edges of the input image. The emphasis is not on the image processing algorithm, but rather the ability
to design a complete system in stochastic computing maintaining the correlation to obtain accurate results.
Before starting the creation of the CSC circuit for the entire case study, the design of each function block is
elaborated. The blocks are cascaded according to the proposed methodology. Before applying the inputs to the
CSC circuits, SNGs are required to generate the input SNs. The SNGs share one RNG to generate correlated
SNs.

Smoothing 

Filter

Edge 

Detection
Median Filter !reshold

Figure 5. Image processing case study in testing the effectiveness of the proposed correlator and CSNG.

The complete experimental setup is shown in Figure 6. The input is in conventional DC, and the SNs
representing the input pixel values are generated by SNGs that share one RNG to obtain complete correlation.
At the output, a specially designed binary counter is utilized. Since the output after the threshold will be a
binary image, this binary counter will output 0 if all SN bits are zero; otherwise, the output will be 1. The
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Figure 6. Experimental setup for examining the effectiveness of correlator and CSNG proposed circuits.
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experimental setup contains three similar systems. In the middle system in Figure 6, the DC image processing
system is used to serve as a reference. The upper system in the same figure is a CSC system that uses the
methodology we proposed in this work to maintain the correlation. In this work, a complete CSC system is
realized by utilizing the proposed correlator and CSNG. The third system at the bottom of Figure 6 shows
the same CSC system without using the proposed correlator and CSNG. To compute the accuracy of the SC
circuits, the absolute error as specified by Eq. 6 is computed, where x is the output image pixel value from the
SC or DC filter, and R and C are the dimensions of the image. As shown in Figure 6, the error is calculated
after converting the SC filter output to DC using a counter.

e =
1

RC

R∑
i=0

C∑
j=0

| x(SC)
i,j − x

(DC)
i,j | (6)

Applying a good quality image to the system would not demonstrate completely the effectiveness of
either SC or the methodology proposed in this work. Before the image is supplied to the system, salt-and-
pepper and Gaussian noises are added to erode the quality of the image. Those two noises require the median
and smoothing filters to remove them. The original image and the noisy input image are shown in Figures 7a
and 7b, respectively.

(a)  e original image (b)  e noisy input image

Figure 7. The experimental setup input image.

The median filter is usually used in image processing to remove salt-and-pepper noise. The SC median
filter used in this study was previously proposed in [2] based on the sorting network shown in Figure 8a.
However, the SC median filter, by exploiting correlation in the sorting unit, could be more efficient in terms of
accuracy, area, and delay. The CSC median filter sorting unit was proposed in [10, 27], which consists of only
AND and OR gates as shown in Figure 8b. The CSC median filter has 9.56× and 4.68× area savings with
respect to the previous SC median filter [2] and DC median filter, respectively [10]. Since the median filter is
the first block, the input SNs are correlated. The CSC median filter is composed of elements that do not vary
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(a) �e original image (b) �e noisy input image

(c) �e SC edge detection
output with correlator

(d) CSNG threshold (e) �e CSC system out-
put when using correlat-
ing circuits

(f) DC median filter output (g) Conventional DC
smoothing filter output

(h) �e DC edge detection
filter output

(i) Conventional binary
threshold

(j) CSC median filter out-
put

(k) SC smoothing filter
output

(l) �e SC edge detection
filter output without cor-
relator

(m) �res hold output
when threshold SN is
obtained from the initial
SNG

Figure 8. The CSC median filter circuit and the median filter results of the experimental setup.

the correlation. Thus, the output SNs of this filter are correlated, and the correlator is not required after this
block. The output images of the SC and DC median filters in the experimental setup of Figure 6 are shown in
Figures 8c and 8d, respectively. The absolute error of the median filter em is zero since the two outputs are
exactly similar. This accuracy is achieved since the processing involves only correlated SNs; hence, the median
filter does not suffer from random or correlation-induced errors. In addition, there is no rounding error since
the DC image pixel values are 8 bits and the SN length is L = 28 = 256 .
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The second filter is the Gaussian smoothing filter to remove the Gaussian noise in the image. We used
the 3 × 3 SC Gaussian filter shown in Figure 9a based on the SC digital filter design methodology presented
in [4]. In that work, different orders of the SC digital filters were examined where the hardware footprint was
reduced 5× to 7.8× compared to DC filters. The output of this filter is the 2D convolution of the input image
with the Gaussian kernel. The selector values are derived from the kernel values. It should be noted that
the selector SNs are uncorrelated with the input SNs. Also, if the output of one MUX becomes the input for
another, the two MUX selector SNs should be uncorrelated. The uncorrelated SNs are generated by a RNG
sharing scheme. The sharing scheme used is the circular shift that creates a new random number sequence to
be fed to the SNG comparator without any hardware footprint. The outputs of the SC and DC Gaussian filters
are shown in Figures 9b and 9c, respectively. The absolute error of our SC Gaussian filter eg is 0.0065. The
output SNs are not correlated, since the MUX varies the correlation. Therefore, if the following CSC block is
correlation-sensitive, a correlator must be used, which is the case in the example system.
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Figure 9. SC Gaussian filter circuit and the Gaussian filter results in the experimental setup.

The first design of an image processing algorithm in stochastic computing exploiting correlation was
Robert–Cross (RC) edge detection by Alaghi et al. [7], shown in Figure 10a. The RC edge detection algorithm,
shown in Eq. 7, was implemented previously in SC by Li et al. [2]. The saving of area-delay factor was
470× when the correlations were exploited. Later works improved the implementation of Li et al. [2] and used
correlation to obtain more efficient implementations in SC for image processing algorithms.

zi,j =
1

2
× (| xi,j − xi+1,j+1 | + | xi,j+1 − xi+1,j |) (7)

According to our classification in Table 2, the XOR gate that performs absolute subtraction with correlated
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inputs varies the correlation causing the SNs SCC(a, b) ̸= 1 . However, the MUX is correlation-insensitive to
the inputs, and it performs the scaled addition for any value of SCC between the inputs with the condition
that they are uncorrelated with the selector. Therefore, the output zi,j fulfills Eq. 7. The design of the SC RC
block follows the arrangement we introduced. To evaluate the effectiveness of the correlator, we compare the
edge detection output with and without using the correlator, as shown in Figure 6. Since the image intensity
values are specified in 8 bits, the precision of the correlator is 6 bits only based on Eq. 5, where the worst case
scenario is assumed, i.e. the SNs are independent.

The output images from CSC edge detection with and without correlator and DC edge detection are
shown in Figures 10b, 10c, and 10d, respectively. As can be observed, it is clear that the edge detection CSC
output using the correlator is more similar to the DC image. The absolute error of the SC edge detection when
using correlator e′rc is 0.0096 while that without correlator erc is 0.0201 . The error is reduced by more than 2× ,
and the error is reduced further if the complexity of the circuitry is increased by including the correlator. The
improvement in accuracy is obtained at the expense of a small increase in area cost due to the correlator. The
correlator resource utilization is shown in Table 4. However, if conversion circuits were used to recorrelate SNs,
more hardware footprint would be used, and higher latency by SN length L clock cycles would be introduced.
On the other hand, the correlator increases the overall system latency by one clock cycle.
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(a) SC Robert-Cross edge detection [7] (b) !e SC edge detection
output with correlator

(c) !e SC edge detection
output without correlator

(d) !e DC edge detection
output

Figure 10. The CSC edge detection circuit and the edge detection results.

The threshold is an image processing point operation that generates a binary image of ‘1’ when the image
is greater than the threshold. To do this operation, a comparator is used. If the input SNs are independent,
the SC comparator would be very complex. However, the threshold operation can be performed in CSC easily.
The novel SC comparator proposed in this work is used. The comparator outputs zeros if x < y ; otherwise,
the comparator outputs zeros until XiȲi = 1 , after which the output will be ones. It should be noted that
the threshold SN should be totally correlated with the input SNs. Thus, the CSNG is essential to generate the
threshold SN correlated with the input SN.

Suppose we want a threshold of 0.1 for the output of the RC edge detection. The DC threshold output
is shown in Figure 11a, which serves as the reference, as discussed earlier. Also, Figure 11a is the final output
of the DC system of the experimental setup shown in Figure 6. When CSNG is used to generate the threshold
SN, the output of the CSC threshold block is as shown in Figure 11b. As can be observed, the CSC threshold
output is similar to the DC output, but the edges is not that bright. The output image of the CSC threshold
block when using CSNG is not a binary image. This issue is resolved by utilizing the special binary counter to
be described later in this section. The error of the CSC threshold operation when using CSNG is e′th = 0.0507 .
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Table 4. Resource utilization comparison.

Approach Precision FF LUT

Correlator 4 4 7
6 8 11

Constant CSNG 8 9 13
Variable CSNG 8 25 43
SC - DC counter 8 8 7
DC - SC conventional SNG 8 8 9

Table 5. The absolute errors of each filter.

Median filter Gaussian filter Edge detection Threshold Output error
Proposed CSC 0 0.0065 0.0096 0.0507 <0.001
CSC 0 0.0065 0.0201 0.7346 0.76

For the CSC threshold without using the CSNG, the output is shown in Figure 11c, where major inaccuracies
due to the correlation loss can be observed. The threshold SN is generated using the same initial SNGs that
generate the input SNs. Although the threshold SN is correlated initially with the inputs, the correlation at the
threshold block is lost due to previous processing performed on the input SNs. The error value eth = 0.7346 is
very high, which proves the need for CSNG.

Finally, to produce the output of the CSC system utilizing the proposed correlating circuits, a special
binary counter is used. As discussed earlier, this counter will output 0 if all the SN bits are zero; otherwise,
the output will be one. The output of the CSC system using the methodology proposed in this work is shown
in Figure 11d with negligible error (< 0.001) . Table 5 summarizes the absolute error of each level in the CSC
systems. This result proves that the proposed work can be used to build accurate and compact CSC systems.

(a) Conventionalbinary
threshold

(b) CSNG threshold (c) !reshold output when
threshold SN is obtained
from the initial SNG

(d) !e CSC system out-
put when using correlat-
ing circuits

Figure 11. The thresholding and the experimental setup outputs.

5. Conclusion
In this paper, a design methodology for a CSC system using correlating circuits is proposed. Two correlating
circuits were designed to take advantage of correlation fully, especially when CSC circuits are cascaded to
build a bigger system. The first is the correlator, which is used to correlate two SNs by the proposed min-
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relocate algorithm. Secondly, a CSNG is proposed to generate an SN wholly correlated with a target SN. The
experimental results using an image processing case study showed that the proposed method increased the SC
system accuracy, eliminated the need for intermediate conversion circuits between the CSC blocks, and obtained
some hardware area savings. The proposed methodology will enable creation of efficient systems composed of
different consecutive blocks in CSC rather than conventional SC with independent SNs. SC systems built
using the methodology are more accurate and efficient in terms of area, power, and latency. Our future work
investigates CSC implementations for more complex algorithms like convolutional neural networks.
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