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Abstract: A support vector machine (SVM) is not a popular method for a very large dataset classification because
the training and testing time for such data are computationally expensive. Many researchers try to reduce the training
time of SVMs by applying sample reduction methods. Many methods reduced the training samples by using a clustering
technique. To reduce its high computational complexity, several data reduction methods were proposed in previous
studies. However, such methods are not effective to extract informative patterns. This paper demonstrates a new
supervised classification method, multiseed-based SVM (MSB-SVM), which is particularly intended to deal with very
large datasets for multiclass classification. The main contributions of the paper are (i) an efficient multiseed technique
for selection of seed points from circular/elongated class training samples, (ii) adjacent class pair selection from the set
of multiseeds by using the minimum spanning tree, and (iii) extraction of support vectors from class pair seed equivalent
regions to manage multiclass classification problems without being computationally expensive. Experimental results on
a variety of datasets showed better performance compared to other sample-reducing methods in terms of training and
testing time. Traditional support vector machine (SVM) solution suffers from O(n 2) time complexity, which makes
it impractical for very large datasets. Here, multiseed point technique depends on the estimated density of each data,
and the order of computation is O(n log n) . Using the estimated density, the computational cost of the seed selection
algorithm is O(n) . So, this is the only burden for reducing the sample. However, reducing the sample takes less time
with the proposed algorithm compared to the clustering methods. At the same time, the number of support vectors has
been abruptly reduced, which takes less time to find the decision surface. Apart from this, the classification accuracy of
the proposed technique is significantly better than other existing sample reduction methods especially for large datasets.

Key words: Remote sensing, support vector machine, supervised learning, image processing, sample reduction tech-
niques/methods, multiple classifications

1. Introduction
Image classification is extremely helpful for classifying satellite images. Different classification procedures are
described in the literature; for example, nearest neighbor classifiers, artificial neural networks, and support
vector machines (SVMs). Among the available techniques, SVMs give better classification accuracy due to
their optimization solution and ease of use [1–3]. Recently, various SVM-based classification techniques have
been reported in the literature [4–8]. Despite the popularity of SVMs, they are not preferred for large-scale
datasets. The main reason is that the training complexities of SVMs vary according to the size of the training
dataset. Traditional SVMs take too much running time when trained with a large dataset rather than with a
∗Correspondence: imran_ietk@rediffmail.com
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set of fine quality samples. Researchers have proposed several solutions for SVMs to be able to handle immense
data while avoiding memory capacity and computational cost problems by using sample reduction techniques.
However, these solutions are expensive and not generally suitable because they require multiple calls of the
SVM or multiple scans of the data [9,10].

There are various sample reduction techniques which reduce the computational burden of SVMs, such
as selective sampling, random sampling, and clustering-based SVMs but they are themselves very complex for
large datasets [11]. Selective sampling attempts to choose the training data shrewdly in more than one scan of
the dataset [12]. Smaller quadratic programming problems can be solved by reduced support vector machines
(RSVM) [13] through the selection of important, high-quality training samples as SVs. Genetic programming
[14] can manage very large datasets which cannot be accommodated in computer memory. Neural network
techniques [15] can likewise be implemented for SVMs to modify the training process. Tresp [16] proposed the
Bayesian committee machine technique for SVM training on very large datasets. Cervantesa [17] introduced
SVMs for grouping voluminous data utilizing minimum ball clustering. Li [18] proposed a random selection
method and a two-phase SVM classification approach for large datasets. This decreases the training dataset, yet
it requires twice the number of classifications. Selection of important data from a big data bank, especially when
nonstationary, combined of both old and new data samples, is a very critical problem due to computational
complexity. In this context, Lin et al. [19] proposed a representative data detection methodology based on
pattern recognition techniques. Liu et al. [20] proposed a new methodology using the centroid and its distance
from samples to get the geometrical center of the class from labeled datasets without drastically demeaning
the accuracy of SVM classification. Gonzalez et al. [21] presented a computational efficient algorithm by using
families of locality-sensitive functions (LSH) for selecting the effective data from the big dataset. Feng et al.
[22] suggested a novel ensemble classifier to handle imbalanced datasets and compared it with other existing
ensemble margin-based methods. Wang et al. [23] suggested a training data reduction method in two major
steps; the first step was training for data cleaning and the second step was extracting the important training
data using a novel entropy-based algorithm.

The current paper presents a new supervised classification method, i.e. multiseed-based SVM (MSB-
SVM), that scans the whole dataset only once and returns the samples that have a high probability of support
vectors for the SVM. The MSB-SVM classification technique reduces the computational cost in two ways:
firstly, an efficient training sample selection method is implemented based on the multiseed technique without
clustering the data, and secondly, multiclass problems are handled using the minimum spanning tree (MST)
to improve the cost efficiency of the proposed classification technique. The multiseed technique is explained in
Section 2. In Section 3, the proposed MSB-SVM method is described. Experimental results and analysis are
presented in Section 4. Finally, a summary of the paper is given in Section 5.

2. The multiseed technique

Clustering techniques, for example K-means and Forgy, as well as their enhanced variant ISODATA, are based
on single seed points. For noncircular classes, these methods do not work properly since in these cases more than
one seed is required. Here, we needed a multiseed selection algorithm for handling noncircular classes which
would later be used for support vector extraction. Chaudhuri and Chaudhuri [24] proposed a parameter-free
seed point detection approach and we used this method in our study.
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3. The proposed MSB-SVM technique

In this section, we show another technique for authentic SVM classification. According to this, the sample set
should be small and represent the original training sample set sufficiently in order to reduce the cost of the
training time. There are four steps in our approach. We begin with the training samples of all classes and
the seed points of each class are detected by the seed point detection (SPD) algorithm which was proposed by
Chaudhuri and Chaudhuri [24]. For simplification, we expect that there are just two classes. Figure 1a shows,
training sample of two classes, and due to the elongated nature of both classes, more than one seed is required.
First, the seed points are found for both classes by using the SPD algorithm. Suppose that there are two and
three seed points (H) which are detected for the classes S 1 and S 2, respectively. These are denoted as {C11 ,
C12 }and {C21 , C22 , C23 }for S 1 and S 2, respectively. The next step is to find the MST between all these
seed points. The seed points of these classes and the MST between these seed points are shown in Figure 1b.
We then find the equivalent point set between the two seed points {C12 , C21 }from these two different classes,
which form an edge in the MST. Figure 1c shows the equivalent points set between the two classes and those
points are marked by a red plus (F) and a green plus (F). The equivalent point set is the condensed training
data of fine quality for support vector extraction. Finally, we find only four support vectors (■), which are
necessary to define the optimal decision hyper-plane as shown in Figure 1d. We now describe our approach step
by step.

S 1  

S 2  

(a) 

!

S 1  

S 2  

C 11  

C 12  

C 21  

C 22  

C 23  

(b) 

!

S 1  

S 2  

(c)  

!

S 1  

S 2  

(d) 

Figure 1. Two-class problem. (a) Two training classes, (b) Multiseed points and MST between seed points, (c)
Equivalent points of the two seed points of both the classes which are connected by MST edge, and (d) Support vector
and the discriminant function.

3.1. Seed point detection (SPD) algorithm

Seed points are represented as the highest density point of a cluster. If the pattern is circular (homogeneous),
then a single seed is sufficient to cluster all the data. If the pattern is elongated (nonhomogeneous), then
multiseeds of that cluster are required. Earlier, we proposed a seed point detection based on border points of
the pattern [24]. Here, however, training samples of a particular class are collected from different images and
do not form an object. In such cases, seed point detection using a border point is not possible. Hence, here, we
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detected seed points from training classes and we did not consider border points.

3.2. MST-based seed point connectivity

For n0 numbers of seed points, n0C2 seed pairs are chosen for finding transfer n0(n0 − 1)/2 decision planes,
which represents a huge computation. For two nearby classes, we form an MST using n0 seed points. Two
nearby classes may be considered for the SVM training decision plane if these classes are connected by an edge
in the MST.

3.3. Equivalent point detection
In this section, we discuss the choice of possible pair seeds from the MST-connected seed in order to find the
equivalent point set. The pair (C12, C21) in Figure 1b is considered for the equivalent point set for three reasons:
(1) C12 ∈ S1 and C21 ∈ S2 and hence, they belong to different classes, (2) the seed points C12 and C21 form
an edge in the MST, and (3) they are the border region seed points between the two classes. Now, in Figure
1b, the equivalent point set is denoted as EQPS and defined by the union of two border point sets as follows:
The border point set of S1 is denoted as BPS1

and defined by:

BPS1 = {(xiyi) : d {(xi, yi), C21} ≤ d(C12, C21)∀(xi, yi) ∈ S1} .

Similarly, the border point set of S2 is denoted asBPS2 and defined by:

BPS2
= {(xiyi) : d {(xi, yi), C12} ≤ d(C12, C21)∀(xi, yi) ∈ S2} ,

where d(A,B) represents the Euclidian distance between the two points, A and B . Therefore, the equivalent
point set is defined as EQPS = BPS1

∪BPS2
.

3.4. Support vector extraction
The equivalent point set is detected from the MST connected interclass seed points. It is true that EQPS =

(S1 ∪ S2) in Figure 1b, and #EQPS ≪ #(S1 ∪ S2) where “#N ” refers to the number of points in the set
N . The set EQPS has a much smaller number of training points than the whole dataset (S1 ∪ S2) . EQPS is
represented as the condensed training points for finding probable support vectors and decision planes using the
SVM training method.

3.5. SVM for multiclass classification
Originally, SVMs were developed to perform binary classification while in remote sensing applications, multiclass
classification handles more than one class. There are a number of methods for multiclass classification proposed
by researchers. Two of the most widely adopted multiclass classification strategies [25–27] are one-against-all
and one-against-one. In the one-against-all procedure, N binary SVM classifiers are required for N class
classifications, where each classifier trains one v/s rest class while the one-against-one strategy requires N(N

- 1)/2 binary SVM classifiers. A drawback of the one-against-all approach is that the ratio of the training
sample of one class to the rest of the classes is unbalanced, and in the one-against-one approach, the number
of classifiers and the number of classes increase proportionally. The idea behind the SVM-based classifier is to
find the optimal hyper-plane between two classes which are very near to each other. Previously, in multiclass
problems there has been no mechanism for finding the most possible pairs of closer classes. If there are N
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classes with total n0(n0 >> N) seed points (by the SPD algorithm), then also there are (N -1) edges formed in
the MST, which are interclass edges. Hence, in the proposed multiclass architecture only (N -1) hyper-planes
H : y = ⟨W,X⟩ + b = 0 using the SVM paradigm are computed. The classification criteria for labelling an
unknown pattern X will be as follows:

i. Compute (N -1) distances from the pattern X to the (N -1) hyper-planes fi(X) = ⟨W.X⟩+ b = 0, i =

1, 2, ..., N − 1 i.e. Di(X) = ⟨W.X⟩+b
∥W∥ , i = 1, 2, ..., N − 1 .

ii. If Di(X) is unique positive then find the hyper-plane and corresponding class for which it is positive.
Then assign X to that class.

iii. If Di(X) is not unique, i.e. there is more than one hyper-plane which is positive, then find the minimum
distance hyper-plane from the pattern X and assign X to the corresponding class.

Figure 2 shows the flowchart of the proposed algorithm. We reduce the computational cost of the MSB-
SVM classification technique through two means. First, an efficient training sample (equivalent point set)
selection method based on the multiseed technique is used. The equivalent set is the condensed training sample
and the balanced set between the two MST connected interclasses. Second, handling multiclass problems by
using MST is another contribution to the cost efficiency of data classification. A maximum of (N -1) hyper-
planes are required among N classes and the ratio of the training samples of one class to another class is also
balanced.
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Figure 2. The flowchart of the proposed classifier.
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4. Experimental results and discussion

In this paper, we assessed the execution of our approach with a scene obtained from IRS-1D, IKONOS imageries.
We investigated the outcomes of the proposed algorithm compared with the existing algorithms in the literature
using real-life benchmark data. Numerical experiments were conducted in the C++ language with 2-GB RAM
memory in the Intel Xeon 2.0 GHz hardware environment using LIBSVM. Our purpose was to examine the
potential of the proposed method in handling large datasets in terms of training and testing time.

Table 1 shows the execution of the different techniques using an IRS-1D image of size 512 × 512 pixels.
The scene was classified into six different vegetation, concrete, and natural classes using the multiseed, SVM,
and MSB-SVM techniques. The classes obtained were concrete, water, sand, forest, soil, and rock. We took a
total of 3003 training samples of the above classes using a guidance map. We applied a linear kernel multiclass
(one-against-one architecture) SVM classifier on these training samples and the parameters were generated
using ten-fold cross-validation. We obtained a total of 219 support vectors and the time taken by the SVM
classifier was 80.3 s. A total of only 360 points (equivalent point set) were obtained between the MST connected
interclass edges of the training samples by the proposed algorithm. A total of 32 support vectors were obtained
by the proposed algorithm; this number is close to one seventh of the number of total support vectors obtained
using the SVM classifier. In addition, the time taken by the proposed technique was 22.57 s, which is close to
one quarter of the time taken using the SVM classifier. Although the time taken by the multiseed supervised
classifier was less (15.06 s), the accuracy was poorer. The accuracy of the performance using the proposed
algorithm is better than those of the other two methods because it has a high probability of retaining the
support vector in the reduced training dataset.

Table 1. Comparison of different classifiers on IRS-1D data.

Algorithm Training Training Support Overall
sample time (s) vector accuracy (%)

SVM 3003 80.30 219 88.6070
Multiseed 3003 15.06 – 87.0438
Proposed 360 22.57 32 88.5743

(Equivalent
point set)

Table 2 shows combined confusion matrices for multiseed, SVM, and MSB-SVM techniques using
an IKONOS multispectral image with 4m ground resolution. The values are represented in the order of
multiseed/SVM/MSB-SVM. The scene is classified into seven different land-cover classes (water, building, road,
concrete, bare land, dark vegetation, and vegetation) using the multiseed, SVM, and proposed supervised clas-
sification techniques. We have seen that many concrete structures are classified as road pixels by multiseed and
SVM classifiers. However, fewer road structures are classified as concrete when using the proposed classifier,
which is reflected in the combined confusion matrices table. We have considered a total of 886 training samples
of seven classes, and among them, the training samples of water, building, road, concrete, bare land, dark
vegetation, and vegetation classes are 120, 100, 68, 274, 42, 69, and 213, respectively. We have classified the
training samples by using multiseed, SVM, and MSB-SVM classifier techniques. It is clear from the confusions
matrices table (Table 2) that the proposed technique yields significantly improved results. For example, all
120 water pixels of the training samples are classified as water class by using multiseed, SVM, and MSB-SVM
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classifier techniques and the classification result for methods multiseed, SVM, and MSB-SVM classifier is repre-
sented as 120/120/120, i.e. all the above methods are classified 120 water pixels as water pixels. Similarly, the
classification results of other classes are represented in similar fashion in the confusions matrices table (Table
2).

Table 2. Comparison of different classifiers on IKONOS data.

Class name Water Building Road Concrete Bare Dark Vegetation
land vegetation

Water 120/120/120 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Building 0/0/0 88/94/95 2/0/0 10/6/5 0/0/0 0/0/0 0/0/0
Road 0/0/0 1/1/0 62/63/67 5/4/1 0/0/0 0/0/0 0/0/0
Concrete 0/0/0 8/4/4 35/21/9 225/245/258 6/4/3 0/0/0 0/0/0
Bare land 0/0/0 4/3/2 0/0/0 4/1/3 34/38/37 0/0/0 0/0/0
Dark vegetation 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 65/62/61 4/7/8
Vegetation 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 7/12/4 206/201/209

We compared our proposed algorithm with other sample reduction techniques such as Kernel Bisecting
K-means and sample removal (KBK-SR) [28], sample reduction by data structure analysis (SR-DSA) [29], and
no sampling using the GERMAN and LIVER-DISORDERS benchmark datasets. We divided the datasets
into training and testing datasets and compared the time complexity and testing accuracies with the above-
mentioned techniques as shown in Table 3. We found that our algorithm performed well in terms of the sampling
time and test accuracy.

Table 3. Performance comparison of sampling methods.

Dataset Sampling
method

No. of
samples

Sampling
time (s)

Training
time (s)

Test
accuracy (%)

GERMAN

MSB-SVM
KBK-SR
SR-DSA
No sampling

700
700
700
700

4.8
7.1
83.2
0

26.01
62.31
38.61
180.71

78.93
72.81
72.12
75.01

LIVER-DISORDERS

MSB-SVM
KBK-SR
SR-DSA
No sampling

150
150
150
150

1.25
1.73
2.37
0

7.71
9.12
8.72
13.23

76.21
74.04
72.19
75.83

In order to test the effectiveness of the proposed method, a series of experiments for large datasets were
implemented. We tested methods on the four benchmark datasets obtained from UCI, Statlog, and other
collections. Table 4 shows the performance comparison results of different methods for large datasets. The
sample reduction percentage is much greater in the “USPS” and “Letter” datasets compared to the other two.
Due to the low number of samples and the data attributes, it takes less time for the support vector calculation.
In contrast, the forest cover type dataset had the more number of samples; hence, the time taken for the SVM
training was significant for the whole training set compared to the reduced training set. We have noticed that
the computational time was reduced and the accuracy of the classification was much closer to the traditional
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SVM for small and large datasets (Table 4). Therefore, the proposed technique is more effective for large
datasets.

5. Conclusion
We have presented a new approach for handling large datasets and authentic SVM classification. When the
size of the dataset is large, the classification performance is poor while using the SVM classifier. Here, we
have presented a new supervised classification method, MSB-SVM, which scans the entire dataset only once
and provides a high-quality training sample which has a greater probability of becoming a support vector
for SVM classification. The MSB-SVM classification technique reduces the computational cost in two ways.
First, an efficient training sample selection method based on the multiseed technique without clustering the
dataset, and second, handling of the multiclass problem by using the minimum spanning tree for decreasing
the computational complexity in terms of the testing time of the proposed classification technique. We have
also compared the results with other existing methods for small and large datasets and we have seen that the
accuracy of performance by the proposed algorithm is better than those of the other methods. The remarkable
feature is that the method can be used in both circular and elongated training datasets. Our proposed algorithm
has a faster sampling time compared to the other methods while maintaining classification accuracy.
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