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Abstract: This paper evaluates six classification algorithms to assess the importance of individual EEG rhythms in
the context of automatic classification of infant sleep. EEG features were obtained by Fourier transform and by a
novel technique based on the empirical mode decomposition and generalized zero crossing method. Of six evaluated
classification algorithms, the best classification results were obtained with the support vector machine for the combination
of all presented features from four EEG channels. Three methods of attribute ranking were assessed: relief, principal
component analysis, and wrapper-based optimized attribute weights. The outcomes revealed that the optimal selection
of features requires one feature from every significant frequency band, either a spectral feature or a frequency dynamic
feature. This means that reducing the number of features will have a minimal impact on the classification accuracy.

Key words: Empirical mode decomposition, generalized zero crossing, sleep classification, feature selection, support
vector machine

1. Introduction
Sleep has a strong influence in numerous areas of life, for infants as well as for children and adults. Sleep struc-
tures reflect predispositions or a state of the whole organism. To support visual sleep stage classification, experts
have been working on developing the methods of automatic sleep stage classification for years. Polysomno-
graphic (PSG) recordings including electroencephalogram (EEG), electrooculogram (EOG), electromyogram
(EMG), and electrocardiogram (ECG) recordings [1] are visually scored by experts using the Rechtschaffen
and Kales guidelines [2]. As the literature indicates, the EEG signal is one of the most important and fre-
quently used signals for analyzing sleep staging, regardless of whether the scoring is manual or automatic. The
recording is first divided into 20- or 30-s epochs, which are subsequently classified as wakefulness (W), rapid
eye movement (REM) sleep, and non-REM (NREM). NREM sleep can be further divided into stages S1, S2,
S3, and S4. Because PSG recordings include multiple signal channels and are visually examined, sleep stage
scoring is expensive, prone to human error, and often tedious and time-consuming [1]. The extensive literature
could be viewed through three criteria: papers oriented towards the evaluation of a certain feature extraction
method, papers oriented towards finding the optimal set of features from a large variety of features, and papers
oriented towards the evaluation of classifiers. In recommendations for the visual scoring of sleep, sleep stages
are characterized with predominant frequency waves, but it is possible to directly connect one sleep stage with
one EEG feature [3]. There are papers that address EEG characteristics over specific frequency bands together
with some other measures, but it is not possible to reach a definite conclusion about the significance of each
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EEG frequency band. The spectral characteristics of the EEG signal together with the fractional dimension
and nonlinear measures were derived in [4], where the authors studied all possible combinations of the charac-
teristics on a single EEG channel. They found that the most suitable characteristics for sleep stage separation
are the spectral entropy, the fractional dimension, and the delta power (power in 0.5–4 Hz frequency band).
A single channel EEG-based automated sleep scoring method was also proposed in [5], where the authors first
decomposed EEG signal segments into subbands using tunable-Q wavelet transform (TQWT). In [6] the authors
chose five research papers and practically implemented appropriate methods on a publicly available sleep EEG
dataset. According to the achieved results, entropy of wavelet coefficients along with the random forest classifier
were chosen as the best feature and classifier, respectively. The mentioned feature and classifier provide 87.06%
accuracy for healthy subjects. Review paper [1] summarizes the variety of methods that have been used for
the detection of sleep stages using EEG signals, including an overview of the processing techniques. Compar-
ing different studies is very difficult mainly because different EEG databases were used in them. In addition,
many studies used fewer than 10 recordings, which makes it difficult to properly implement machine learning
methods. It should also be mentioned that deep learning algorithms have been used recently, in studies where
the classification is based on the visualization of the EEG signal (e.g., by spectrogram). The obtained results,
such as in [7], show that this approach still does not yield better results compared to classical methods.

The capacities of 74 individual features to differentiate among various sleep stages were evaluated in [8].
The most successful features were the fractal exponent and delta/beta power ratio. On the basis of the same
extracted features, the authors aimed to identify an optimal mix of several of these 74 features in [9]. In a
comparative study on the classification of sleep stages based on EEG signals [10], the 25 listed features included
entropy-based features, nonlinear features, statistical features of time characteristics, and Hjorth parameters.
Another 16 features were obtained over four frequency bands by discrete wavelet transform. In three conducted
experiments, only the 4–8 Hz band was selected to be among the first 10 features. We also looked for proof of the
importance of EEG frequency bands from investigations of EEG signals in other areas. In the largest systematic
study of seizure detection features [11], 65 different features were derived. The best performing features were line
length and relative power in the 12.5–25 Hz frequency band. Another example is a comprehensive comparison of
features for the cue-based brain–computer interface (BCI) [12]. The band power was the best feature for many
BCI subjects, because the standard alpha (8–12 Hz) and beta (16–24 Hz) bands are not necessarily optimal for
all subjects. It is obvious that, in these papers, different EEG frequency bands were selected to be placed among
the most suitable features. The aim of this paper is to assess the importance of individual rhythms of EEG
signals in infant sleep through the evaluation of six machine learning algorithms and three feature relevance
ranking methods.

2. Materials and methods
In our previous paper [13] we established a novel approach for EEG signal quantification based on the empirical
mode decomposition (EMD) process. Following the established approach, in this work features are calculated
for every frequency band and taken independently, so that the significance of the individual frequency band
can be assessed through a method for ranking the relevance of attributes. The results then could point toward
the importance of individual rhythms of EEG signals that would mark out an optimal set of EEG features
for automatic sleep stage classification. A method for a sleep stage classification was created through the
following steps: 1) EEG signal recording, filtering, and artifact removing; 2) feature extraction; 3) sleep stage
classification; 4) feature attribute selection; 5) final evaluation.
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2.1. EEG signal

In this study, the features were evaluated from EEG sleep signals of 32 healthy babies aged 3 months. Informed
parental consent was obtained and the procedure was approved by the Ethics Committee of the Clinical Hospital
Split (Croatia). An EEG was recorded during one sleep cycle, in the absence of the wake phase. The dataset
was created separating the EEG signal in segments of 30-s nonoverlapping periods (epochs). Artifact segments
and outliers were removed during the preprocessing step. Sleep was visually scored in REM and NREM sleep
stages, as a baby’s brain is not yet fully matured at this age. The EEG channels were sampled at 256 Hz. A
high-pass filter of 0.3 Hz, a low-pass filter of 70 Hz, a notch filter of 50 Hz, and sensitivity of 7 µV/mm were used
to record the EEG. EEG caps with 12 gold electrodes, placed according to the International ‘10–20’ system,
were used. In [14], the authors reported that quiet sleep was perceptible mainly on the C3 and C4 electrodes
and other states on the T3 and T4 electrodes. Thus, the measured signals were analyzed only from channels
Fp1–C3, Fp2–C4, Fp1–T3, and Fp2–T4. This dataset contained 1988 segments per EEG channel, where 572
segments belonged to the NREM sleep stage, so stratified sampling was used.

Here is a brief description of three types of EEG features: two features based on EMD, and the power
spectral density (PSD) feature based on Fourier transform.

2.2. Empirical mode decomposition (EMD)

The EMD method [15] is an adaptive decomposition method with which any signal can be disassembled to
the intrinsic mode functions (IMFs) and the residue. An IMF function has the following two properties: 1)
the number of extrema and zero crossings are either equal or differ at most by one; 2) the mean value of two
envelopes associated with the local maxima and minima is zero.

To decompose the signal into IMF functions, a procedure known as sifting is performed in four iterative
steps [13]:

1) Identifying all local maximums and minimums of the input signal,

2) Creating the upper envelope by interpolation between the maximums and lower envelope by interpolation
of the minimums,

3) Calculating the mean value of the upper and lower envelopes,

4) Subtracting the signal obtained after step three from the input signal.

The resulting signal is an IMF candidate. Next, the IMF candidate is tested to determine if it satisfies
the two IMF properties mentioned above. If it does not satisfy the properties of an IMF, the process is repeated
with the resulting signal as the input. After the IMF properties have been fulfilled, the obtained function is
declared an IMF and it is subtracted from the input signal. The residue of the subtraction constitutes a new
input signal, and the sifting process begins again. Because each subsequent IMF contains lower frequencies than
the previous IMF functions, the EMD procedure can be continued until all IMFs are found, or stopped when
a satisfying number of IMFs is obtained. In this study, the EMD procedure was stopped when an EEG signal
segment had been decomposed into seven IMFs, discarding the IMFs of frequencies less than 0.3 Hz.
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2.3. Generalized zero crossing (GZC)

The GZC method [16] was employed to calculate the instantaneous frequencies. The GZC method defines all
zero crossings and local extrema points as critical points. Their numbers and positions are used for signal
analysis and decision-making as follows. For each series of signal points between two successive critical points,
seven different period values are calculated [13]:

1) The time between two consecutive zero crossings of the same type (positive to negative or negative to
positive) or between two consecutive maximum or minimum values can be treated as a single period. For
any point on the time axis, four different values of this type of period can be determined and marked as
P1 .

2) The time between two consecutive zero crossings or two consecutive extrema points (maximum to minimum
or vice versa) is considered a half-period. For any point on the time axis, two different values of the half-
period can be calculated and marked as P2 .

3) The time between the extrema point and zero crossing (or vice versa) can be considered a quarter-period,
which can be calculated and marked as P4 .

For a given series of signal points between two critical points, the instantaneous frequency can be
computed as follows:
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2.4. EMD-based feature extraction using GZC
As mentioned above, the EMD decomposition method was applied to every 30-s epoch, so the result is seven
IMFs per epoch. Each IMF lasts 30 s. Two types of features were extracted from these seven IMFs: median
frequency (IMFmed) and number of instantaneous frequency changes (IMFch) . The GZC method was used
for calculating instantaneous frequencies for each IMF. The average for instantaneous frequencies for each IMF
represents 7 IMFmed features and the number of instantaneous frequency changes for each IMF represents
7 IMFch features. Justification for the second feature are Rechtschaffen and Kales rules that illustrate the
frequency characteristics of each sleep stage. The different frequency dynamics of an EEG signal in the NREM
and REM sleep stages can be correlated with instantaneous frequency changes in IMFs.

2.5. Relative power spectral density (RSD)

In standard frequency bands, known as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–16 Hz),
and beta (16–24 Hz), the power of the EEG signal was calculated in the frequency domain using the following
equation:
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Here, N is 7680 recorded samples in one epoch, M is 8192 points for fast Fourier transform, and Xk (e jω) are
samples of EEG signals in the frequency domain. For each segment, five RSD features were calculated by
dividing the obtained power with the sum of powers in all five standard frequency bands. These five RSD
features represent the energy distribution among the standard frequency bands.
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2.6. Combined features
Three combined features were created by joining the spectral features and the time-frequency features. The first
combined feature was the combination of all three types of used features: RSD, IMFmed , and IMFch (altogether
19 features, “all” for short). The second combination was RSD and IMFmed and the third combination was
RSD and IMFch .

2.7. Classification algorithms
In this paper we studied the performances of six commonly used classification algorithms, which are well known
and were described in detail in the referenced literature. The original support vector machine (SVM) algorithm
was proposed by Vapnik and the standard implementation was published by Cortes and Vapnik [17] in 1995.
The basic idea is to find the best hyperplane (the one with the largest margin) that separates n-dimensional data
into two classes introducing transformed kernel induced feature space, which translates the data into a higher
dimensional space where the data are separable. Random forests (RFs) are a combination of tree predictors, such
that each tree depends on the values of a random vector sampled independently and with the same distribution
for all trees in the forest [18]. An artificial neural network (NN) is defined as a computing system made up
of a number of simple, highly interconnected processing elements (neurons) with linear or nonlinear transfer
functions. These elements process information by their dynamic state response to external inputs [19]. K
nearest neighbors (k-NN) is a type of instance-based learning [20], or lazy learning, where the function is only
approximated locally and all computation is deferred until classification. A case is classified by a majority vote
of its neighbors, where the case is assigned to the class most common among its K nearest neighbors measured
by a distance/similarity function. A naive Bayes (NB) classifier [21] is based on Bayes’ theorem with (naive)
independence assumptions between predictors. The repeated incremental pruning to produce error reduction
(rule induction) algorithm incrementally generates rule sets directly from training datasets [22].

2.8. Performance metrics
The sleep stage classification of babies is considered a two-class problem (REM and NREM stages). The
sensitivity and specificity are given for the REM stage. The performance metrics used in this paper are calculated
as follows:

Accuracy ACC = (TN + TP)/(TN + TP + FP + FN),
Sensitivity SE = TP/(TP + FN), and Specificity SP = TN/(TN + FP)
TP is the number of true positively classified segments of REM stage, TN is the number of true negative

classified segments (the number of accurately classified NREM segments), FP is the number of false positives,
and FN is the number of false negatives.

2.9. Feature selection
The process of selecting a subset of relevant features is performed to simplify the model, to make it more
comprehensible and easier to interpret by researchers. In addition, enhanced generalization can be obtained
by reducing overfitting along with shorter training times. Feature selection techniques imply that the dataset
contains features that are either not equally relevant or redundant. Our combined feature created from all
presented features has 19 (RSD(5), IMFmed (7), IMFch (7)) features for one EEG channel. In order to determine
the importance of frequency bands from all utilized features, three methods of feature ranking were assessed:
the relief algorithm, PCA, and wrapper-based approaches.
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The relief algorithm [23] estimates a feature according to its ability to discriminate instances based on
the relevance weight assigned to each feature. The algorithm randomly samples instances from the training set
and calculates the relevance values based on the distance between the selected instance and the two nearest
instances of the same and opposite class. The principal component analysis (PCA)-based approach [24] uses the
eigenvector corresponding to the eigenvalue with the highest magnitude to rank original features and to choose
the most sensitive features from the original set. These filter approaches are usually very efficient, but, in the
context of the target machine learning method, the selected feature subset may not perform well. Therefore, the
wrapper-based optimized attribute weights approach is introduced [25]. It determines the fitness of a feature
subset by actually training a classifier (in this case with an SVM algorithm), usually with better performances
at the cost of higher computational complexities.

3. Results and discussion
The first tests in this study were statistical analysis of features. One-way ANOVA analysis of variance revealed
a statistically significant difference (with significance level α = 0.001) in all extracted features between NREM
and REM sleep stages. The results in terms of the obtained F1,1986 values for each feature means of extracted
features for the whole EEG dataset are all F1,1986 > 18.46 for NREM and REM sleep stages at four EEG
channels. Thus, the corresponding P-value for all features is zero. These results indicate the ability of the
extracted features to distinguish between sleep stages. In this study each of the described feature types was
fed into the classifiers separately and jointly, seriatim: five RSD features, seven IMFmed features, seven IMFch

features, the combination of RSD and IMFmed features, the combination of RSD and IMFch features, and
the combination of all 19 features. The Figure shows 10-fold cross-validation accuracy results of combined
features for the Fp2–T4 channel. The best results in all three evaluation parameters were obtained with the
SVM classifier (from 81.94% to 89.09% accuracy).
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Figure. Accuracy of the six classification methods for all features at Fp2–T4 channel.

Combining the IMFch with the RSD feature, the NN was able to classify sleep stages with 87.48%
accuracy, which is an even better result than that obtained with the SVM algorithm (86.92%). The best result
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of 89.09% accuracy was achieved by the SVM with the combination of all types of features (RSD, IMFmed , and
IMFch) .

After the systematic testing of different classifiers, three methods for an optimal feature combination
assessment were evaluated. As can be seen in the Figure, the SVM classification method provided the highest
values; therefore, the optimized attribute weights (forward selection) wrapper method was implemented for the
SVM algorithm. Ranking of the features acquired through this method, as well as through relief and PCA, is
presented in Table 1. From the gained results we discerned that, for a computationally not demanding set and
yet a set that would bring more accuracy than visual scoring, the optimal set could include the seven features.
For such a set of features that would suitably differentiate sleep stages, two of the reduction methods selected
five features from IMF frequency characteristics and only two features from the power spectral density feature
type. This confirms the quality of our method for describing the EEG frequency dynamics based on the EMD
process.

Table 1. The seven best ranked features from tree methods.

Relief PCA Optimized attribute weight
1 theta sigma IMF1 med
2 delta beta IMF3 ch
3 IMF1 med alfa beta
4 IMF3 ch delta IMF5 med
5 IMF1 ch IMF1 ch IMF6 ch
6 IMF2 ch theta IMF7 ch
7 IMF3 med IMF6 ch sigma

Of the three evaluated methods, the optimized attribute weight method selected the set of seven features
that achieved the best SVM classification accuracy of 87.33% (Table 2), which is the result with an only 2%
lower value than the best SVM result achieved with the combination of all 19 features. Looking at the frequency
details of the selected set, two chosen RSD features represent sigma and beta frequency bands, i.e. frequencies
greater than 12 Hz, and which carry a smaller amount of spectral power compared to any of the three remaining
bands. However, the IMF frequency characteristics were taken from the 1st, 3rd, 5th, 6th, and 7th IMFs, whose
ranges spread over the whole EEG frequency spectrum.

Table 2. The classification results (accuracy, sensitivity, and specificity) for the SVM classification with the use of the
seven best ranked features, at Fp2–T4 channel.

Relief PCA Optimized attribute weight
acc 86.77% 86.52% 87.33%
sp 72.55% 80.42% 78.32%
se 92.51% 88.98% 90.96%

The set of the seven features gained through the relief method enclose the frequency dynamic charac-
teristics from the 1st to the 4th IMF, which constitute the higher part of the EEG frequency range. However,
two selected RSD features represent theta and delta frequency bands (frequencies lower than 4 Hz), thus sup-
plementing the part of the EEG frequency range not covered with IMFs. The set of the seven features gained
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through the PCA method enclose all five RSD features, taking into account the whole EEG frequency range.
Two features of IMF frequency dynamics are of the 1st and 6th IMF.

All these results indicate the importance of the whole EEG signal frequency spectrum. The seven features
gained through the optimized attribute weight method listed in Table 1 were evaluated through six classification
algorithms. The results in Table 3 show the same ranking of the algorithms in terms of the classificatory success
in accuracy. The SVM algorithm again achieved the best results, with 2.22% enhancement in accuracy with
regard to NN, k-NN, or the rule induction algorithm.

Table 3. The performance details of the six classification methods for the best ranked seven features gained through
optimized attribute weight method, at Fp2–T4 channel.

Classifier acc sp se Statistical difference P-value
Naive Bayes 72.99 41.43 85.73 extremely stat. signif. less than 0.0001
Random forest 84.36 61.01 93.79 extremely stat. signif. less than 0.0001
Rule induction 85.21 72.55 90.32 not statist. significant 0.2678
k-NN 85.11 74.65 89.43 not statist. significant 0.7713
NN 85.11 80.07 87.15 extremely stat. signif. less than 0.0001
SVM 87.33 78.32 90.96 not statist. significant 0.8501

The EEG signal analysis from four channels obtained the best SVM classification result from the Fp1–C3
channel and showed similarity of results over channels in the values of accuracy, specificity, and sensitivity
with standard deviation of 0.6%, 1.87%, and 0.86%, respectively, as presented in Table 4. Additionally, the
classification methods were tested for the selection of the entire feature space. The feature vector was generated
from all three feature types containing 19 features and for all four EEG channels, thus becoming a vector of
76 (19 ×4) features. Again, the best results were obtained with the SVM method (91.45% accuracy, 95.13%
sensitivity, and 82.34% specificity).

Table 4. Accuracy, sensitivity, and specificity of SVM classification with the combined features of all 19 attributes, at
four EEG channels.

EEG channels acc sp se Statistical difference P-value
Fp2-T4 89.09 80.24 92.66 not statist. significant 0.5871
Fp1-T3 88.78 83.74 90.82 not statist. significant 0.1080
Fp2-C4 88.48 81.29 91.38 not statist. significant 0.3549
Fp1-C3 89.89 84.09 92.23 not statist. significant 0.2042

Finally, the optimized attribute weight forward method was applied to these 76 features. The sleep stage
classification results of the SVM method for the first seven features are 90.09% accuracy, 93.15% sensitivity,
and 82.52% specificity.

After executing the automatic classification of sleep stages, for testing the statistical significance of the
results, McNemar’s nonparametric test of the difference of the results for two dependent samples (visual scoring
and automatic classification) was performed. For the best ranked features, McNemar’s test P-values are provided
in relevant tables (Tables 3 and 4) with other performance metrics.

McNemar’s nonparametric test for statistical significance suggested that the NB, RF, and rule induction
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algorithms have extremely statistically significant differences in visual and automatic scoring results, which
gives them low priority as options for a sleep stage classification algorithm. The NN algorithm showed a not
statistically significant difference in results for IMFmed , IMFch , and the combination of all 19 features. The NN
algorithm showed a very to extremely statistically significant difference in results for RSD and the combinations
of frequency dynamic features with RSD. However, the SVM algorithm showed opposite results: a statistically
very significant difference in the results for individual feature types, and a not statistically significant difference
in the results for all tested combinations of features. Besides the different statistical significance of the results
for different algorithms, the results gained in this study bring new insights about the accuracy of the algorithms
used for sleep stage classification and about the significance of individual EEG frequency bands for sleep staging.
To highlight this, we cite two comparative studies on the classification of sleep stages based on EEG signals.

In [9], Krakowská and Mezeiová evaluated 74 features in the search for the optimal set, and in the end
they concluded that for different subject types a new search for the optimal selection of classifying measures
may be necessary. In [10], Şen et al. sought to determine a method for the identification of features that can
best represent the EEG data and they stated that a set of the selected features made it possible to identify
the classification algorithm that provides the highest accuracy. In contrast, our results show that for all the
presented features (relative PSD, IMF frequencies, and combined features), the ranking of the tested algorithms
in terms of the classificatory success in accuracy remained the same. This way, the study exposes feature
extraction as the most important phase of the complete signal classification process. The results of the feature
selection procedures in the literature showed a big difference in the set of the selected attributes depending on
the feature selection process, but in this paper the outcomes from three different selection methods bring an
analogous conclusions: the optimal set of seven features should spread over the whole EEG frequency range.

4. Conclusions

EEG features in this study were obtained in a classical way by Fourier transform and an EMD-GZC-based
method. The best result was obtained with all features from three presented types of features from four EEG
channels; the classification accuracy, sensitivity, and specificity were 91.45%, 95.13%, and 82.34%, respectively.
With seven features optimally selected from the set of 76 features from all analyzed channels, the classification
accuracy, sensitivity, and specificity were 90.09%, 93.15%, and 82.52%, respectively. High sensitivity reveals
that the proposed method is effective to classify REM and NREM stages using mixed types of features. The
study outcome shows that the reduction from 76 features to the optimal combination of seven features from
four channels does not significantly affect classification performance, and an assessment about the importance
of individual rhythms of EEG signals for sleep staging could be brought. The outcomes of the three different
feature selection methods emphasized that the optimal set of features requires one feature from every EEG
frequency band, either a spectral feature or a frequency dynamic feature to represent each frequency band.
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