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Abstract: A novel control protocol design, via integral sliding mode control with parameter update laws, for synchro-
nization and desynchronization of a chaotic nonlinear gyro with unknown parameters is the focus of this work. The
error dynamics of the actual system are substructured into nominal and uncertain parts to employ adaptive integral
sliding mode (AISM) control. The uncertain parameters are estimated via devised adaptive laws. Then the disagreement
dynamics are guided to origin via AISM control. The stabilizing controller is also designed in terms of nominal control
along with a compensating component. The control and the parameter update laws are constructed to ensure the strictly
negative derivative of a Lyapunov function. Graphical results related to synchronization, desynchronization, and chaos
suppression are displayed to demonstrate the potential of the proposed control.

Key words: Chaotic gyro, synchronization, desynchronization, adaptive backstepping method, AISM control, Lyapunov
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1. Introduction
One of the fascinating areas among researchers is the study of chaotic systems. It has been focused on since
the innovative chaos control of Ott et al. [1] and synchronization protocol of Pecora and Carroll [2]. In this
context, the methodologies devised in [3–5] attracted a wide number of researchers and, consequently, this area
became an active topic in nonlinear science. In [6] only a partial state of the chaotic system, accompanied
by the inherent dynamic properties of the chaotic systems, was utilized to synchronize coupled systems. An
adaptive backstepping approach accompanied by a tuning function was proposed in [7] to synchronize uncertain
continuous time chaotic systems and to confirm global asymptotic synchronization. A recursive adaptive
backstepping technique was proposed in [8] and the control law was constructed, which supported the chaotic
system to synchronize asymptotically. The active control technique in [9] regulated the synchronization error
of two dissimilar chaotic systems. A very similar problem was solved in [10] by applying stability theory and
the gain area of the controller was determined. A finite time stability theory-based controller was designed in
[11] and the synchronization of two dissimilar chaotic systems was reached. The finite time stability results in
precision; however, the robustness degrades in this strategy. An advanced backstepping oriented control was
proposed to achieve synchrony of uncertain chaotic systems [12] and antisynchronization was reached in [13]. A
∗Correspondence: qudratullah@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
675

https://orcid.org/0000-0002-4650-8956
https://orcid.org/0000-0002-9051-5627
https://orcid.org/0000-0003-0660-2312


RAHMAN et al./Turk J Elec Eng & Comp Sci

neural network (NN)-based strategy was proposed in [14], where the NNs are synthesized with dynamic surface
control. This control strategy confirms the robust asymptotic synchronization. It is worth mentioning that in
real applications chaotic systems work under external disturbances and unmodeled dynamics. In such cases,
the influence of the aforementioned strategies is degraded.

In order to deal with chaotic systems’ synchronization/antisynchronization more suitably, some re-
searchers have focused on sliding mode control (SMC)-based solutions to the aforesaid problems (see, for in-
stance, [15–18]). SMC remains sensitive to disturbances in reaching phase and it also suffers from the famous
chattering phenomenon in sliding. In order to get rid of these issues a number of researchers have focused on
reaching phase-free SMC with alleviated vibrations and provoked robustness [19–22]. In this work, the authors
have focused on robustness enhancement against the parametric uncertainties of a nonlinear gyro system. The
contribution of this work is twofold: first, the development of the adaptive law for the parameter estimations,
which confirms the asymptotic convergence of the parameters to their actual values, and second, the develop-
ment of an integral sliding mode strategy for the referred chaotic nonlinear system. Closed-loop stability in
the presence of parametric variations and matched disturbances is verified in the form of two theorems, which
are further verified via simulation results. The problem of chaos suppression, synchronization, and antisynchro-
nization are handled in this work via the proposed control law. In addition, the simulation results for chaos
suppression and synchronization are compared with the standard literature [23] to highlight the benefits of our
proposed strategy. In Section 2, the system description of the gyro system is presented. In Section 3, chaos
suppression is considered under the action of the proposed adaptive control law. In Section 4, the synchroniza-
tion and desynchronization of a master and slave system subjected to the newly proposed strategy is discussed.
The system under study is simulated with the designed control laws and the results are presented in Section 5.
In Section 6, conclusive remarks are presented.

2. System description of a nonlinear gyro

The nonlinear gyroscope model, which is employed in aerospace engineering [24], generally exhibits chaotic
behavior. Its usage is also observed heavily in smart brakes systems of current automotive vehicles. The
equation governing the dynamics of the nonlinear gyro, enriched with linear and nonlinear smoothening terms
[24], is given by

ẋ1 = x2,

ẋ2 = −α(1− cosx1)
2

sin3 x1

− ax2 − bx3
2 + β sinx1 + f sin(ωt) sin(x1), (1)

where x1 represents the angular position and x2 represents the angular velocity of the given system, and α ,
β , a , b , and f are the unknown parameters. Note that the dynamic system of Eq. ((1)) demonstrates chaotic
behavior when α = 100 , β = 1 , a = 0.5 , b = 0.05 , ω = 2 , and f = 35.5 . Therefore, while assuming
this system with different initial conditions, i.e. (x1, x2)=(1,−1) and (x1, x2)=(1,−1.02) , the phase portraits
are displayed in Figures 1 and 2. These figures show that the chaotic system’s behavior varies as the set of
initial conditions varies. The control and parameter update expressions are designed in detail in the subsequent
section.
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Figure 1. The phase portrait of the system with initial
conditions (x1, x2) = (1,−1) .

Figure 2. The phase portrait of the system with initial
conditions (x1, x2) = (1,−1.2) .

3. Controlling chaos in gyroscope system

An adaptive integral sliding mode for suppressing chaos in the given gyroscopic mode is worked out in this
section. A control signal u(t) is introduced in Eq. ((1)) subject to the following assumption.

Assumption 1 Assume that the parameters are unknown.

Let â , b̂ , f̂ , β̂ , α̂ be estimates of the parameters a , b , f , β , α , and ã = α − â , b̃ = b − b̂ , f̃ = f − f̂ ,
β̃ = β − β̂ , α̃ = α − α̂ be the errors in estimations of a ,b ,f ,β , α , respectively. Now the system of Eq. ((1))
in the presence of a control input u can be written as:

ẋ1 = x2,

ẋ2 = − (α̂+ α̃)(1− cosx1)
3

sin3 x1

− (â+ ã)x2 − (b̂+ b̃)x3
2 + (β̂ + β̃) sinx1 + (f̂ + f̃) sin(ωt) sin(x1) + u+ δ, (2)

where δ is matched uncertainty that enters through the input channel. Now the main task is to choose the
input u . Therefore, choosing

u =
α̂(1− cosx1)

2

sin3 x1

+ âx2 + b̂x3
2 − β̂ sinx1 − f̂ sin(ωt) sin(x1) + v, (3)

the system of Eq. ((2)) under the influence of input v takes the following form:

ẋ1 = x2,

ẋ2 = − α̃(1− cosx1)
2

sin3 x1

− ãx2 − b̃x3
2 + β̃ sinx1 + f̃ sin(ωt) sin(x1) + v + δ. (4)

To employ integral sliding mode, choose the nominal system for Eq. ((3)) as:

ẋ1 = x2,

ẋ2 = v0, (5)
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where v0 is the control input, which drives the nominal system. The first objective is to stabilize the nominal
system of Eq. ((5)). Therefore, by defining a sliding surface σ0 = x1 + x2 and calculating its time derivative
along Eq. ((5)), one may have σ̇0 = ẋ1 + ẋ2 = x2 + v0 . Now, by choosing v0 = −x2 − kσ0, k > 0 , one may
obtain σ̇0 = −kσ0 , which proves asymptotic regulation of Eq. ((5)). Having stabilized Eq. ((5)), we proceed
to the stabilization of Eq. ((4)) by defining an integral manifold of the following form:

σ = σ0 + z = x1 + x2 + z. (6)

The time derivative of Eq. ((6)) along Eq. ((4)) yields

σ̇ = ẋ1 + ẋ2 + ż

= x2 −
α̃(1− cosx1)

2

sin3 x1

− ãx2 − b̃x3
2 + β̃ sinx1 + f̃ sin(ωt) sin(x1) + v0 + vs + δ + ż. (7)

Note that z represents an integral term whose computation will be elaborated latter. Furthermore, the initial
condition z(0) will be chosen such that one may obtain σ(0) = 0 . The control input is subdivided into two
parts, i.e. v = v0 + vs , where v0 and vs are the nominal and compensating inputs, respectively. Their design
will be outlined later. Now the problem we want to solve is the design of an adaptive protocol that ensures the
asymptotic convergence of Eq. ((4)). This can be confirmed by stating the following theorem while choosing a

Lyapunov function v = 1
2 (σ

2 + ã2 + b̃2 + f̃2 + α̃2 + β̃2) , with the adaptive laws for ã , â , b̃ , b̂ , f̃ , f̂ , β̃ , β̂ , α̃ ,
α̂ and a mathematical expression for vs which may result in v̇ < 0 .

Theorem 1 The states of the system of Eq. ((4)) approach the origin asymptotically if the adaptive laws for
ã , â , b̃ , b̂ , f̃ , f̂ , β̃ , β̂ , α̃ , α̂ and the value of vs are chosen as follows:

ż = −x2 − v0, vs = −K1(σ +Wsign(σ))

˙̃a = σx2 − k1ã, ˙̂a = − ˙̃a

˙̃
b = σx3

2 − k2b̃,
˙̂
b = − ˙̃

b

˙̃
f = −σ sin(ωt) sinx1 − k3f̃ ,

˙̂
f = − ˙̃

f

˙̃
β = −σ sinx1 − k4β̃,

˙̂
β = − ˙̃

β

˙̃α = σ
(1− cosx1)

2

sin3 x1

− k5α̃, ˙̂α = − ˙̃α, k, ki > 0, i = 1, 2, ...5 (8)

Proof To prove the aforesaid claim, consider a Lyapunov function v = 1
2 (σ

2 + ã2 + b̃2 + f̃2 + α̃2 + β̃2) .
Calculating the time derivative of this function along Eq. ((7)), one may have

v̇ = σσ̇ + ã ˙̃a, b̃
˙̃
b+ f̃

˙̃
f + α̃ ˙̃α+ β̃

˙̃
β

= σ{x2 −
α̃(1− cosx1)

2

sin3 x1

− ãx2 − b̃x3
2 + β̃ sinx1 + f̃ sin(ωt) sinx1 + v0 + vs + δ + ż}+ ã ˙̃a+ b̃

˙̃
b+ f̃

˙̃
f + α̃ ˙̃α+ β̃

˙̃
β
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= σ
(
x2+v0+vs+δ+ż

)
+ã{ ˙̃a−σx2}+b̃{ ˙̃b−σx3

2}+f̃{ ˙̃
f+σ sin(ωt) sinx1}+α̃{ ˙̃α−σ

(1− cosx1)
2

sin3 x1

}+β̃{ ˙̃
β+σ sinx1}.

(9)
By using Eq. ((8)) in Eq. ((9)), we get the following:

v̇ = −K1(σ2 +W |σ|)− k1ã
2 − k2b̃

2 − k3f̃
2 − k4β̃2 − k5α̃2, (10)

where K1 > |δ| and 0 < W < 1 . Note that Eq. ((10)) guarantees that the variables and errors of the parameters
converge to zero, or precisely σ , ã , b̃ , f̃ , β̃ , α̃ → 0 . This confirms the overlap of estimated parameters with
true values. In addition, when σ → 0 , it ensures the establishment of integral sliding modes. In integral sliding
modes, the system is under the action of the nominal control law v0 and the uncertainties are compensated
via the parameters of the update laws and the control component vs . As already mentioned, in sliding mode,
the nominal system works under the influence of v0 , can confirms that Eq. ((4)) approaches the origin, i.e.
x1 → 0 and x2 → 0 . In the next section, the aforesaid strategy is employed for the synchronization and
desynchronization of two monovular systems. 2

4. Synchronization (desynchronization) in the case of unknown parameters

The synchronization and desynchronization of two monovular nonlinear gyroscopes with uncertain parameters
is achieved by employing an AISM control method. Take the master system with the governing dynamics of
the form

ẋ1 = x2,

ẋ2 = − (α̂+ α̃)(1− cosx1)
2

sin3 x1

− (â+ ã)x2 − (b̂+ b̃)x3
2 + (β̂ + β̃) sinx1 + (f̂ + f̃) sin(ωt) sin(x1), (11)

and the slave system’s dynamics as follows:
ẏ1 = y2,

ẏ2 = − (α̂+ α̃)(1− cos y1)2

sin3 y1
− (â+ ã)y2 − (b̂+ b̃)y32 + (β̂ + β̃) sin y1 + (f̂ + f̃) sin(ωt) sin(y1) + u+ δ. (12)

The disagreement variables between Eqs. ((11)) and ((12)) are clearly characterized as:

e1 = y1 − qx1,

e2 = y2 − qx2. (13)

Note that in Eq. ((13)), when one chooses q = 1 , it results in synchronization, whereas the choice q = −1

comes up with antisynchronization. Based on the error variable defined in Eq. ((13)), the error dynamics can
be calculated as follows:

ė1 = ẏ1 − qẋ1 = y2 − qx2 = e2,

ė2 = ẏ2 − qẋ2
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= − (α̂+ α̃)(1− cos y1)2

sin3 y1
− (â+ ã)y2 − (b̂+ b̃)y32 + (β̂ + β̃) sin y1 + (f̂ + f̃) sin(ωt) sin(y1) + u+ δ

−q{− (α̂+ α̃)(1− cosx1)
2

sin3 x1

− (â+ ã)x2 − (b̂+ b̃)x3
2 + (β̂ + β̃) sinx1 + (f̂ + f̃) sin(ωt) sin(x1)}. (14)

Now, following the same procedure as outlined in Section 3, one can choose the control laws as follows:

u =
α̂(1− cos y1)2

sin3 y1
+ ây2 + b̂y32 − β̂ sin y1 − f̂ sin(ωt) sin(y1) + q{− α̂(1− cosx1)

2

sin3 x1

− âx2 − b̂x3
2

+β̂ sinx1 + f̂ sin(ωt) sin(x1)}+ v. (15)

Now the new control input v is responsible for governing the following dynamic system:

ė1 =e2,

ė2 =v + δ − α̃(1− cos y1)2

sin3 y1
− ãy2 − b̃y32 + β̃ sin y1 + f̃ sin(ωt) sin(y1)− q{− α̃(1− cosx1)

2

sin3 x1

− ãx2

− b̃x3
2 + β̃ sinx1 + f̃ sin(ωt) sin(x1)}

or
ė1 =e2,

ė2 =v + δ − α̃{ (1− cos y1)2

sin3 y1
− q

(1− cosx1)
2

sin3 x1

} − ã{y2 − qx2} − b̃{y32 − qx3
2}+ β̃{sin y1 − q sinx1}

+ f̃{sin(ωt) sin y1 − q sin(ωt) sinx1}. (16)

The nominal system corresponding to the system of Eq. ((16)) is given by

ė1 = e2,

ė2 = v0. (17)

Now, by defining a new variable σ0 = e1+e2 and calculating its time derivation along Eq. ((17)), one may have
σ̇0 = ė1 + ė2 = e2 + v0 . By selecting v0 = −e2 − kσ, k > 0 , one may have σ̇0 = −kσ0 , which guarantees the
asymptotic convergence of Eq. ((17)). Now, to move ahead to the controlled input design, an integral manifold
is furnished as follows:

σ = σ0 + z = e1 + e2 + z, (18)

where z is an integral term that helps in the reaching phase elimination. To observe sliding mode at time t = 0 ,
the initial condition of the integral term dynamics, i.e. z(0) , will be chosen in such a way that it results in
σ(0) = 0 . The time derivative of Eq. ((18)) along Eq. ((16)), while substituting v = v0 + vs , looks as follows:

σ̇ =ė1 + ė2 + ż

=e2 − α̃{ (1− cos y1)2

sin3 y1
− q

(1− cosx1)
2

sin3 x1

} − ã{y2 − qx2} − b̃{y32 − qx3
2}+ β̃{sin y1 − q sinx1}

+ f̃{sin(ωt) sin y1 − q sin(ωt) sinx1}+ v0 + vs + ż.
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At this stage, the main objective is the enforcement of the sliding mode along with the estimation of the
uncertain parameters. This can be confirmed by stating Theorem 2.

Theorem 2 The states of the system of Eq. ((16)) approach the origin asymptotically if the adaptive laws for
ã , â , b̃ , b̂ , f̃ , f̂ , β̃ , β̂ , α̃ , α̂ and the value of vs are chosen as follows:

ż =− e2 − v0, vs = −K1(σ +Wsign(σ)) ˙̃a = σ(y2 − qx1)− k1ã, ˙̂a = − ˙̃a

˙̃
b =σ(y32 − qx3

2)− k2b̃,
˙̂
b = − ˙̃

b

˙̃
f =− σ(sin(ωt) sin y1 − q sin(ωt) sinx1)− k3f̃ ,

˙̂
f = − ˙̃

f

˙̃
β =− σ(sin y1 − q sinx1)− k4β̃,

˙̂
β = − ˙̃

β

˙̃α = σ[
(1− cos y1)2

sin3 y1
− q

(1− cosx1)
2

sin3 x1

]− k5α̃, ˙̂α = − ˙̃α, k, ki > 0, i = 1, 2, ...5. (19)

Proof To prove the aforesaid claim, consider a Lyapunov function v = 1
2 (σ

2 + ã2 + b̃2 + f̃2 + α̃2 + β̃2) .
Calculating the time derivative of this function along Eq. ((19)), one may have

v̇ =σσ̇ + ã ˙̃a+ b̃
˙̃
b+ f̃

˙̃
f

+ β̃
˙̃
β + α̃ ˙̃α

σ{e2 − α̃
(1− cos y1)2

sin3 y1
− q

(1− cosx1)
2

sin3 x1

} − ã{y2 − qx2} − b̃{y32 − qx3
2}+ β̃{sin y1 − q sinx1}

+ f̃{sin(ωt) sin y1 − q sin(ωt) sinx1}+ v0 + vs + δ + ż + ã ˙̃a+ b̃
˙̃
b

+ f̃
˙̃
f + α̃ ˙̃α+ β̃

˙̃
β

=σ{e2 + v0 + vs + δż}+ ã{ ˙̃a− σ(y2 − qx2)}+ b̃{ ˙̃b− σ(y32 − qx3
2)}+ f̃{ ˙̃

f + σ(sin(ωt) sin y1 − q sin(ωt) sinx1)}
(20)

+β̃{ ˙̃
β + σ(sin y1 − q sinx1)}+ α̃{ ˙̃α− σ[

(1− cos y1)2

sin3 y1
} − q

(1− cosx1)
2

sin3 x1

.]} (21)

Using Eq. ((19)) in Eq. ((21)) leads to

v̇ = −K1(σ2 +W |σ|)− k1ã
2 − k2b̃

2 − k3f̃
2 − k4β̃2 − k5α̃2. (22)

This expression, like the statement in Theorem 1, guarantees that the error variables and errors of the parameters
converge to zero, i.e. σ , ã , b̃ , f̃ , β̃ , α̃ → 0 . This confirms the true estimation of the parameters of the plant,
and when σ → 0 , it ensures the establishment of integral sliding modes. In integral sliding modes, the system
is under the action of the nominal control law v0 and the uncertainties are compensated via the parameter
update laws and the control component vs . Under the action of v0 error variables the system of Eq. ((16))
approaches the origin, i.e. e1 → 0 and e2 → 0 . Consequently, the synchronization and antisynchronization of
the two monovular systems occurs. The next section outlines the simulation results related to chaos suppression,
synchronization, and desynchronization. 2
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5. Numerical simulations
The chaos suppression, synchronization, and antisynchronization results are discussed here. In the case of chaos
suppression, the system is initialized with (x1(0), x2(0)) = (1,−1) . The states and parameter convergence
of the system of Eq. ((4)) under the influence of the control laws of Eqs. ((3)), v0 , and ((8)) are shown
in Figures 3–5. In Figure 3 the results of the proposed technique are compared with the standard literature
results [23]. It is evident that the response of adaptive ISMC is oscillation-free, whereas the chaos suppression
via the backstepping strategy [23] suffers from substantial oscillation. It is worth mentioning that adaptive
ISMC was employed for the chaotic system, which was operated with matched uncertainty, i.e. 0.5 sin(t) .
This shows the robust and oscillation-free behavior of adaptive ISMC. During the synchronization of the two
systems, the master system is excited from (x1(0), x2(0)) = (1,−1) and the slave system is activated from
(y1(0), y2(0)) = (1,−1.2) under the action of the aforementioned matched uncertainty. The disagreement
dynamics of Eq. ((16)) are simulated under the action of Eqs. ((15)), v0 and ((19)). By choosing the scaling
parameter q = 1 , the synchronization occurs and the disagreement becomes zero. The corresponding results
are pictured in Figures 6 and 7. In addition, the synchronization errors are compared in Figure 8 with results
of [23]. The developed results under the proposed adaptive ISMC show quite fast convergence even when being
initialized from the bigger values as compared to its counterpart [23]. This confirms the robust performance of
the proposed technique. The desynchronization results are achieved by choosing the scaling parameter q = −1 .
The corresponding results are demonstrated in Figures 9 and 10. Note that the true values of the parameters
in all simulation cases were set to be a = 0.5 , b = 0.05 , f = 35.5 , β = 1 , α = 100 , and ω = 2 .
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Figure 3. The chaos suppression via adaptive ISMC and
backstepping law [23] when the system is initialized from
(x1, x2) = (1,−1.5) .

Figure 4. The approach of estimated a, b, β to the true
values.

6. Conclusions
The chaos alleviation, synchronization, and desynchronization of two monovular chaotic gyros with uncertain
plant parameters were attained by utilizing an AISM control. The unknown parameters are estimated by
defining proper parameter update laws. To avoid the chattering phenomenon, a smooth continuous compensator
is designed instead of the traditional discontinuous control. The compensator-based controller and adaptation
laws were equipped to ensure Lyapunov function-based stability. The strength of this new control scheme was
validated by MATLAB-generated results.
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Figure 6. The synchronization of the state variables of
the two monovular systems via adaptive ISMC.
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Figure 7. The synchronization of the velocities of the two
monovular systems under the action of adaptive ISMC.

Figure 8. The error convergence via adaptive ISMC and
backstepping strategy [23].
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Figure 9. The antisynchronization of the position vari-
ables under the action of adaptive ISMC.

Figure 10. The antisynchronization of the velocities un-
der the action of adaptive ISMC.
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