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Abstract: Connecting multiple electric vehicles (EVs) to a power system network for the purpose of charging has major
setbacks like decrease in power quality, instability in voltage profile, and increase in power losses and thus electricity
price. This paper focuses on devising an optimal charging scheme to reduce the negative impacts of EVs’ presence in
the distribution network by limiting the charging process to only off-peak demand periods when the electricity price is
comparatively lower. The salp swarm algorithm, an efficient, fast, and reliable optimization technique, is used to obtain
the optimal locations for the EVs and their charging schedule in a residential 107-bus radial distribution system (RDS).
The proposed optimization technique minimizes the total charging cost of the EVs within the framework of operational
constraints of a residential RDS and parking availability. This charging scheme takes care of benefit maximization from
both consumer and power supply operators’ perspectives by controlling the starting time of EV charging as well as the
EV charging rate in order to arrive at the objective.
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1. Introduction
Environmental pollution, changes in climate, and decreasing fossil fuel reserves continue to motivate researchers
for finding new transportation solutions. As such, electric vehicles (EVs) have become a clean and green
solution for these problems [1–3]. The main advantage of EVs is that they do not cause any environmental
pollution, unlike internal combustion engine (ICE) vehicles [4,5]. However, the acceptance of EVs depends on
charging time and cost, availability of charging stations, and the EV owner’s convenience. Charging of EVs
deteriorates power quality issues like voltage fluctuation and voltage unbalance as well as leading to overloading
and high power losses in the distribution system. Several methods have been proposed to mitigate the impact
of EV charging on distribution systems. Islam et al. used a binary gravitational search algorithm to optimally
allocate a rapid charging station for EVs with the objective of minimizing daily EV charging cost [6]. Li
et al. discussed a single objective program to process the investment, operation, and transportability cost
[7]. Masoum et al. coordinated the charging of multiple plug-in electric vehicles (PEVs) using a real-time
load management method [8]. Moradi et al. proposed a multiobjective optimization technique for allocation
of charging stations and renewable energy sources [9]. Hajimiragha et al. proposed a planning method for
charging PHEVs considering different uncertainties [10]. Finn et al. discussed an optimization technique for
demand-response strategy to improve the flexibility of distribution networks [11]. Soares et al. suggested that
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EVs can be used as flexible loads, which can be charged throughout the day instead of on a rigid charging
schedule [12]. The main contributions of the paper are as follows:

(a) It identifies, understands, and mitigates the impacts of EV charging on a residential radial distribution
system (RDS).

(b) It identifies the EV location and its charging schedule, which affect the residential distribution voltage
quality and transformer loading.

(c) A smart charging scheme is proposed to directly control EV charging rates and charging time while
minimizing the total cost of charging using the salp swarm algorithm (SSA). The proposed scheme shifts
the EV load demand to off-peak hours, thus mitigating loading concerns as well.

(d) The smart charging scheme mitigates the EV load impacts and potentially benefits the EV owners and
power supply operators.

The rest of the paper is organized as follows. Section 2 describes the distribution system model and
Section 3 presents the electric vehicle model. The problem formulation and the SSA are described in Section
4 and Section 5, respectively. The results and discussion are presented in Section 6. Finally, the conclusion is
presented in Section 7.

2. Distribution system model
The proposed method is applied to the low-voltage RDS of the Bhubaneswar electrical division, CESU, Odisha,
India. The residential RDS has 107 buses with a main substation transformer in which 75 individual houses are
present. Each house is connected to one bus. The specifications of substation transformer are given in Table 1.
The load and line data for the 107-bus RDS are given in Figures 1–3. Hourly weight factors are used to model
the load demand of the RDS, as shown in Figure 4. The hourly purchase rates of electrical energy for a day are
given in Table 2.
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Figure 1. Line data of 107-bus RDS. Figure 2. Active load of 107-bus RDS.

Table 1. Specifications of three-phase substation transformer.

Rated voltage & rated power 10 kV / 0.4 kV & 0.4 MVA
Nominal frequency 50 Hz
Short-circuit voltage 4.45%
Copper losses 4.721 kW
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Figure 3. Reactive load of 107-bus RDS. Figure 4. Hourly weight factor in a day.

Table 2. Prices for electricity.

Hour
of the
day

Electricity
price

(INR/kWh)

Hour
of the
day

Electricity
price

(INR/kWh)

Hour
of the
day

Electricity
price

(INR/kWh)

Hour
of the
day

Electricity
price

(INR/kWh)
1 2.0005 7 1.7371 13 3.2949 19 3.1014
2 1.8498 8 3.1397 14 3.2122 20 2.8174
3 1.69959 9 3.3545 15 3.1055 21 3.1428
4 1.6994 10 3.3997 16 3.2495 22 3.1501
5 1.6995 11 3.7258 17 3.2796 23 1.8171
6 1.7644 12 3.6996 18 3.2047 24 1.6994

3. Electric vehicle model
3.1. Electric vehicle user behavior
In this paper the charging hours are the hours during which EVs are parked at home. Thus, available charging
time is the time the EV stays at home, i.e. between arrival and departure. However, the problem of predicting
the mobility behavior of EVs is significant when they are integrated with the RDS as it depends on each
individual EV owner’s requirements [13]. Here, the driving patterns are studied and then used to obtain the
hourly stochastic energy demand of each EV. The arrival/departure times of EVs are taken into consideration
to evaluate the available charging time. In this proposed method, EVs are assumed to consume 0.15 kWh of
energy per kilometer. Total energy needed for 1 day can be calculated as:

E = 0.15kWh/km×D, (1)

where D is the distance covered in a day.
The Weibull distribution is used to generate the driving distance with the distribution parameters ‘a’

and ‘b’ as 33.4061 and 0.798717, respectively. The stochastic data for driving distance and energy requirement
of each EV are shown in Figure 5. A normal distribution function is used to generate arrival and departure
times for each EV. From stochastic data it is observed that most of the EVs arrive home between 1400 hours
and 2200 hours and leave between 0400 hours and 1200 hours, as shown in Figure 6. The parameters used in
normal distribution are given in Table 3.

3.2. Electric vehicle battery charging

The rate of charge, power demand, and charging time are the main parameters for EV modeling [14,15].
Information of initial state of charge (SOCinitial) of EV batteries for each day is considered. A maximum

687



KASTURI and NAYAK/Turk J Elec Eng & Comp Sci

0 10 20 30 40 50 60 70 80
Number of EVs

0

100

200

E
n

er
gy

 (
k

W
h

)

D
rivin

g d
istan

ce (k
m

)

0

10

20
Energy
Driving distance

0 10 20 30 40 50 60 70 80

Number of EVs

0

5

10

15

20

25

30

H
o

u
r 

o
f 

th
e 

d
ay

 (
h

r) Arriving time
Leaving time

Figure 5. Stochastic data of driving distance and energy
needed for each EV.

Figure 6. Stochastic data of arriving time and leaving
time.

Table 3. Parameters of new fitted distribution.

Parameters For arriving time For leaving time
Mu (µ) 16.8461 8.8360
Sigma (δ) 8.8461 3.6019

charging rate of 11 kW is considered for this method. The state of charge (SOC) of the EV battery is updated
as

SOC(t+ 1) = SOCinitial +

T∑
t=1

SOC(t), (2)

where SOC(t) is the state of charge at time t and T is the total time period (24 h).

3.3. Charging schemes

In this paper two different charging schedules are addressed.
(a) Dumb charging scheme
In this method, the EV owners are allowed to charge their vehicle as per their requirements [16]. When

the EVs are plugged into mains, the charging starts at its maximum rate. With no control over the charging
scheme it could affect the distribution system parameters. The flow chart for the dumb charging scheme is
illustrated in Figure 7.

(b)Smart charging scheme
The smart charging scheme enables the system to control the charging of EVs with an aim to maximize

the benefits for both EV owners and aggregators. Charging time includes both peak and off-peak hours. The
charging process is delayed to avoid peak demand periods. From available charging hours, hours having lower
electricity price are chosen to charge the EVs. From the generated stochastic arrival and departure time it is
observed that most of the EVs are parked from 1900 hours to 0500 hours, implying that these 10 h are available
charging time. The flow chart for the smart charging scheme is shown in Figure 8.

4. Electric vehicle model
4.1. Objective function

The objective function of minimizing the charging cost of EVs is defined as

fobj = min(Ccp), (3)
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Figure 7. Flow chart for dumb charging scheme.

Ccp =

T∑
t=1

(Ct ×
N∑

n=1

pnt), (4)

where Ccp is the total cost of charging, N is the number of EVs (= 75), Ct is the price of electricity at time t
in INR, and pnt is the power required to charge an EV at time t in kW. The annual cost reduction obtained in
the case of the smart charging plan can be calculated as

Cbenefit = 365× (Ccp−dump−Ccp−smart), (5)

where Ccp-dumb and Ccp-smart are the total cost of charging for the dumb and smart charging schemes, respec-
tively.

4.2. System operational constraints

The system operates within the framework of some equality and inequality constraints, which are explained
below:

EVch ≤ EVavailable−charging−hour, (6)

EVdemand =

N∑
n=1

(SOCmax − SOCinitial), (7)

SOCmin ≤ SOC(t) ≤ SOCmax, (8)
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Figure 8. Flow chart for smart charging scheme.

Psub(t) = PLoad(t) + PLoss(t) + PEV (t), (9)

Qsub(t) = QLoad(t) +QLoss(t) +QEV (t), (10)

PLoad(t) + PLoss(t) + PEV (t) ≤ trmax(t), (11)

V min
i ≤ Vi(t) ≤ V max

i , (12)

Iij(t) ≤ Imax
ij , (13)

Str(t) ≤ Snominal, (14)
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where EVch is the EV charging demand, EVavailable-charging-hour is the available charging hours, EVdemand is
energy demand of the EV batteries, SOCmax and SOCmin are the maximum and minimum state of charge of
the EV batteries, Psub(t) and Qsub(t) are respectively the active and reactive power injection of the substation
at time t, PLoss(t) and QLoss(t) are the active and reactive power losses of the branch at time t, PLoad(t)and
QLoad(t) are the active and reactive loads of the bus at time t, PEV(t) and QEV(t) are active and reactive
charging capacity of the EV, trmax(t) is the peak load demand of the transformer substation at time t, Vi

min

and Vi
max are the minimum and maximum voltage of the bus, Iij

max is the maximum current at branch ij, Iij(t)
is the current at branch ij at time t, Str(t) is the apparent power of the substation transformer, and Snominal is
the nominal apparent power of the line.

5. Salp swarm algorithm (SSA)

Salps are oceanic creatures from the family Salpidae having transparent barrel-shaped bodies. Salp tissues and
their movements are similar to those of jellyfish. Water is pumped through their bodies, propelling them to
move [17]. Salps often form a swarm called a salp chain to achieve better locomotion using rapid coordinated
changes and foraging. This swarming behavior of salps can be mathematically modeled. The salp chain can be
broadly divided into two groups, i.e. the leader and followers. The salp at the front of the chain is the leader
and the others are followers. As the name suggests, the leader guides the swarm and the others follow each
other, thus following the leader directly or indirectly.

In this optimization technique, the salps’ position is defined in an n-dimensional search space where n is
the number of variables of a given problem. Hence, the positions of all salps are stored in a two-dimensional
matrix called x. A food source f is assumed to be the swarm’s target. The following equation is used to update
the position of the leader:

xj,1 =

{
fj + c1((vbj −mbj)c2 +mbj , c3 ≥ 0

fj − c1((vbj −mbj)c2 +mbj , c3 < 0,
(15)

where j is the dimension, xj,1 is the first slap position, fj is the food source position, vbj and mbj are respectively
the upper and lower bounds of the dimension, and c1, c2, and c3 are random numbers. c2 and c3 are uniformly
generated between [0,1], and c1 can be derived as follows:

c1 = 2e−(4i/I)2 , (16)

where i and I are the current and maximum iteration, respectively. The position of a follower is updated as
follows:

xk
j =

1

2
at2 + u0t, (17)

a =
ufinal

u0
, (18)

u =
x− x0

t
, (19)
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where xj
k is the position of the kth follower salp in dimension j with k ≥ 2 , u0 is the initial speed, and t is the

time period. If u0 = 0, then Eq. (17) can be written as

xk
j =

1

2
(xk

j + xk−1
j ). (20)

After the first iteration, a swarm can be formed and it moves effectively using the proposed model. The
leading salp changes its position around the food source and the follower salps gradually follow it over subsequent
iterations. The food source is updated during the optimization because the salp chain model is able to find the
space around it and exploit it. It is also observed that the salp chain is able to chase a moving food source.
Hence, the salp chain has the potential to find the global optimum that changes over iterations.

The SSA algorithm saves the best solution obtained so far and assigns it to the food source variable.
Thus, it never gets lost even if the whole population deteriorates. The leader salp updates its position with
respect to the food source only, which is the best solution obtained so far. The follower salps update their
positions with respect to each other, moving gradually towards the leading salp. The gradual movements of
follower salps prevent the SSA from being stagnant at local optima. The adaptive decrease of c1 over the course
of iterations helps the SSA first to explore and then to exploit the search space. This algorithm has only one
controlling parameter, (c1). The SSA is simple and easy to implement.

This makes the SSA a theoretically and potentially viable algorithm to solve single-objective optimization
problems with unknown search spaces. The adaptive mechanism of the SSA allows it to avoid local solutions
and eventually find an accurate estimation of the best solution. Therefore, it can be applied to both unimodal
and multimodal problems. These advantages allow the SSA to potentially outperform recently developed
optimization algorithms.

6. Simulation and result analysis

The proposed technique is tested in a low-voltage 107-bus RDS. The parameters of the SSA used in simulation
are number of search agents = 30 and maximum number of iterations = 200. Power flow calculation is performed
using a base value of 100 MVA and 1 kV. The load bus is considered as the charging location for EVs. The bus
voltage variation is limited to a maximum of 5%. Connecting all 75 EVs of rated charging power of 11 kW is not
practically viable as the total load (houses’ load and EVs’ load) may exceed the transformer capacity. As per
the rated capacity of the transformer, the maximum number of EVs that the grid can support is 22 during peak
hours. The same locations for 22 EVs are considered for both dumb and smart charging schemes. SOCinitial,
SOCmax, and SOCmin of EV batteries are considered as 90%, 90%, and 30%, respectively. The charging costs
of the EVs along with their placements are illustrated in Table 4, which shows that the charging cost for the
smart charging scheme is 44.7% less. Figures 9 and 10 show the charging schedules for 22 EVs in a day for the
dumb and smart schemes, respectively.

Variation of power loss and variation of the voltage profile for the available charging time are shown
in Figures 11 and 12, respectively. It is observed that due to the penetration of EVs, the substation service
transformer is overloaded during peak hours in the case of dumb charging. During this period, most of the EVs
are supposed to be plugged into the RDS after their arrival at home, which is between 2000 and 2400 hours,
and the electricity price is much higher during these periods. In the case of smart charging, most of the EVs
are charged between 0300 and 0400 hours as the electricity price is lowest then, which benefits both EV owners
and power supply operators. Thus, the peak hour demand is shifted to off-peak hours, resulting in peak load

692



KASTURI and NAYAK/Turk J Elec Eng & Comp Sci

Hour of the day (hr)

C
h

ar
gi

n
g 

p
o

w
er

 (
k

W
)

Number of EVs

0
80

5

60 25

10

2040 15

15

1020
50 0

C
h

ar
gi

n
g 

p
o

w
er

 (
k

W
)

Number of EVs Hour of the day (hr)

0
80

5

60 25

10

2040 15

15

1020 50 0

Figure 9. Charging schedules for 22 EVs in a day for
dumb charging scheme.

Figure 10. Charging schedules for 22 EVs in a day for
smart charging scheme.

Table 4. Optimization results.

Dumb charging scheme Smart charging scheme

Bus location 3, 6, 7, 9, 14, 16, 27, 28, 30, 39, 40,
44, 53, 62, 63, 64, 65, 66, 70, 71, 73, 75

3, 6, 7, 9, 14, 16, 27, 28, 30, 39, 40,
44, 53, 62, 63, 64, 65, 66, 70, 71, 73, 75

Charging cost (INR) 906.05 500.99
Cbenefit (INR/year) - 147846.90

shaving and improving the voltage regulation. In Figure 11, it is evident that during peak hours, from 2000 to
2200 hours, the power loss in the system is lower in the case of the smart charging scheme. Figure 12 shows
that in the dumb charging scheme, the voltage drops distinctly during peak hours because many EVs start to
charge as soon as they arrive along with the peak demand of houses. Benefits offered by the smart charging
scheme for EV owners are peak shaving, to lower the peak demand charges, and price arbitrage in shifting peaks
to lower energy charges in buying cheap electricity from off-peak hours. Benefits offered by the smart charging
scheme for the power supply operator are peak shavings to reduce demand during peak hours and reduction of
investment in transmission and distribution lines and substations.
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Figure 11. Power loss for charging hours. Figure 12. Voltage profile for charging hours.

Figure 13 shows the voltage profile of the 107-bus RDS for maximum loading at 18.00. The voltage profiles
are noted to be enveloped within the desirable limits. Shifting from dumb charging to smart charging improves
the minimum bus voltage from 0.9578 p.u. to 0.9612 p.u., but EVs located closer to the service transformer
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decrease the additional voltage drops in comparison to the EVs located farther away. This is because a lower
short-circuit capacity at the farthest load bus results in larger additional voltage drops in the secondary service
voltages. Figures 14 and 15 show the voltage profiles of the 107-bus RDS in a day for the dumb and smart
charging scheme, respectively. The minimum voltages of the weakest bus, 105, are 0.9587 p.u. and 0.9612
p.u. for dumb and smart charging, respectively, at 1800 hours. It is observed that the voltages of all buses
are improved in the smart charging scheme, satisfying the secondary service voltage constraints. Variation of
power loss for dumb and smart charging in a day is shown in Figures 16 and 17. It is observed that the active
power loss of branch 56 at 1800 hours is the maximum for both dumb and the smart charging schemes. It is
0.2989 kW for dumb and 0.2446 kW for smart charging. The smart charging scheme helps to alleviate upstream
congestion by supplying power downstream, which gives rise to distribution upgrade deferral, demand charge
management, and voltage regulation improvement.
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Figure 13. Voltage profile of 107-bus RDS at 1800 hours. Figure 14. Variation of voltage profile of 107-bus in a
day for dumb charging scheme.
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Figure 15. Variation of voltage profile of 107-bus in a
day for smart charging scheme.

Figure 16. Variation of power loss in a day for dumb
charging scheme.
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Figure 17. Variation of power loss in a day for smart charging scheme.
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7. Conclusion
The impacts of EV charging on a residential RDS and techniques to mitigate them are thoroughly discussed in
this paper. The study shows that residential EV charging affects the secondary distribution voltages more than
the primary ones. Without the smart charging scheme the peak load demand may increase with the addition
of EV charging load, causing secondary service voltage to drop.

The SSA, a metaheuristic optimization technique, is used to find the optimal EV charging profile for
minimization of the total charging cost. The algorithm is found to be effective in mitigating peak loading and
voltage concerns. The proposed method significantly enhances the techno-economic benefits of power system
operators and EV owners.
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