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Abstract: This is a continuation of a recent study (Doruk RO, Zhang K. Fitting of dynamic recurrent neural network
models to sensory stimulus-response data. J Biol Phys 2018; 44: 449-469), where a continuous time dynamical recurrent
neural network is fitted to neural spiking data. In this research, we address the issues arising from the inclusion of
sigmoidal gain function parameters to the estimation algorithm. The neural spiking data will be obtained from the same
model as that of Doruk and Zhang, but we propose a different model for identification. This will also be a continuous
time recurrent neural network, but with generic sigmoidal gains. The simulation framework and estimation algorithms
are kept similar to that of Doruk and Zhang so that we can have a solid base to compare the results. We evaluate
the estimation performance in two different ways. First, we compare the firing rate responses of the original and the
estimated model. We find that responses of both models to the same stimuli are similar. Secondly, we evaluate variations
of the standard deviations of the estimates against a number of samples and stimulus parameters. They show a similar
pattern to that of Doruk and Zhang. We thus conclude that our model serves as a reasonable alternative provided that
firing rate is the response of interest (to any stimulus).
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1. Introduction
1.1. General neuron modeling

Regardless of being mammalian or nonmammalian, a neuron is the fundamental component of the nervous
system of a living being. Understanding the operation of these complicated structures is an integral part of
theoretical and computational neuroscience research. Thus, neuron modeling has proven to be an indispensable
tool in that research field.

Single compartmental models such as the classical Hodgkin–Huxley equation [2] describe the contribution
of various ionic currents (sodium and potassium) to subthreshold behavior and to generation of spikes. Similar
models such as [3–5] are all extensions of the Hodgkin–Huxley equation and incorporate the dynamics of calcium
channels. It should be noted that these and also the original Hodgkin–Huxley equation are highly nonlinear.
Thus, it is difficult to implement an efficient system identification procedure for them.

Several simplification attempts are seen in the literature. If emphasis is only given to dynamical behaviors
such as phasic spiking, bursting, or spike frequency adaptation [6], then reduced order models such as Fitzhugh–
Nagumo [7] or Hindmarsh–Rose [8] may be of concern. These models have fewer parameters to estimate.
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When information coding and transmission are the primary research objectives, one can refer to models
of moderate complexity. Linear-nonlinear cascades (or nonlinearity+linear filter combination) [9–11] and black-
box models [12–15] fall under this category. The latter may reveal the statistical properties of a neural response
to a given stimulus.

Stochasticity is crucial in neuron modeling [16]. Due to the random processes in ion channels, the
reliability and precision of neural signaling are limited. Because of this, some statistical components should be
integrated into the models. That will be a major factor in degradation of computational complexity and thus
the deterministic component of the model should be chosen such that it has a good approximation capability.

In this respect, generic neural network models may be a reasonable choice. Static feedforward [17],
dynamic feedforward [18], and recurrent neural networks [19] are well-known examples. They seem to have very
few applications in computational neuroscience (see Section 1.2).

The recurrent neural networks have self-excitatory and self-inhibitory connections, which may be thought
of as being equivalent to autapses (autaptic synapses). Neural behaviors due to autaptic connections attracted
several researchers to the problem. One can refer to the references [20–22] as examples.

In addition, generic neural networks may have multilayered structures. With their universal approxima-
tion capability [23], those appear as a reasonable medium to model biological complexity [24, 25].

1.2. Neural spiking issue

The information transmitted through biological neural networks (especially the sensory subsystem) are hidden
in the temporal locations of individual action potentials fired in a burst [26]. The phenomenon involving a series
of action potentials (appearing in bursts) is called neural spiking. Due to the stochasticity of ion channels and
synapses (Section 1.1), it is not a deterministic process [27].

First spike latency is a known phenomenon in this respect. One can refer to [28, 29] to investigate the
effects of channel stochasticity on the first spike latency in Hodgkin–Huxley neurons.

Moreover, recent research suggests that the spiking activity of sensory neurons obeys an inhomogeneous
Poisson process (IPP). Here, the event rate of an IPP is equivalent to the firing rate of the generated spikes
[30].

Statistical identification techniques such as maximum likelihood (ML) [31] or maximum a posteriori
(MAP) [32] estimation may be utilized to identify models from neural spiking data. DiMattina and Zhang
[33, 34] applied these methods to train the parameters of a static feedforward neural network to describe the
behavior of the auditory cortex in the brains of marmoset monkeys. In [1], one can see a theoretical study aiming
at the estimation of the weights of an excitatory-inhibitory network from neural spiking data. One advantage
of [1] over [33, 34] is that it takes the dynamical properties of a neuron into consideration. The models in those
studies are rather computational and provide the firing rate of the excitatory neuron as output (which is vested
in the spikes).

1.3. About this work
The purpose of this research is to address a major issue associated with the estimation of the parameters of
sigmoidal gain functions in the recurrent neural network models of [1]. Those parameters are the maximum firing
rate, threshold level, and slope. In [1], it is assumed that they are known. However in a realistic application,
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these parameters are not known. In addition, a recent study [35] suggested that the algorithm presented in [1]
is very inefficient if the sigmoidal gain function parameters are taken into consideration.

In this work, the problem is revisited. The neural spiking data are obtained from the simulation of the
model in [1] with its nominal parameters. However, the sigmoidal gain functions of the original model in [1] are
replaced by generic sigmoids with a predefined slope parameter. The same estimation procedures and stimulus
(a truncated Fourier series) as that of [1] are applied to the problem.

As the data generator and the estimated models are different in form, we will not be able to talk about
any true parameters. However, the accuracy of the estimation may be evaluated by comparing the firing rates
obtained from the original data generator and from the estimated models. The firing rate outputs of the models
against two different stimuli (square wave and Fourier series) will be compared.

The performances of estimation against the number of samples, the amplitude, and frequency and number
of harmonic components of stimulus will also be investigated.

2. Materials and methods
2.1. Neural model in consideration
Like that of [1], the model considered in this research is also an excitatory-inhibitory recurrent neural network,
as shown below:

ẋe = −βe [xe + weeg(xe)− weig(xi) + ceu] ,

ẋi = −βi [xi + wieg(xe)− wiig(xi) + ciu] ,
(1)

where xe and xi are dimensionless variables representing the activities of the excitatory ‘e’ and inhibitory ‘i’
units, respectively. The functions g(xe) and g(xi) are generic logistic sigmoid functions:

g(x) =
1

1 + e−αxk
, (2)

where k is either e or i . The parameter α is a small scaling constant. It should be a small positive real
number such as α = 0.001 . Eq. (2) is the major difference of our model from the corresponding one in [1]. In
[1], sigmoids have three parameters (maximum firing rate, threshold, and slope) and they may have different
parameters for excitatory and inhibitory units. In the original model, one thus has six parameters other than
the network weights. These were assumed as known parameters in [1]. In this research, we will not have any
tunable parameters other than the scaling factor α . It is not required to estimate this parameter. In fact, we
preassign this factor to relax the estimation (to prevent unreasonably large values, etc.).

Since we are collecting neural spiking data, we will need to map the firing rate of the neurons in the
network to its activities (i.e. to the variables xe or xi ). In this work, we use the data from the excitatory
neuron. Because of that, we will need to map the activity of the excitatory unit xe in Eq. (1) to its firing rate
re as shown below:

re =
Fe

1 + exp(−αxe)
. (3)

The above is also a logistic sigmoid function with additional parameter, which is the maximum firing rate of
the excitatory neuron: Fe . In the above, we again have a small scaling factor similar to Eq. (2). It can also
be chosen as α = 0.001 . There are a total of nine parameters to be estimated in the whole system defined by

905



DORUK/Turk J Elec Eng & Comp Sci

Eqs. (1), (2), and (3). These are θ = [βe, βi, we, wi, wee, wei, wie, wii, Fe] . One can refer to Table 1 for their
definitions and units. Similar to that of [1], the stimulus u will be modeled as a periodic signal such as a phased
cosine Fourier series.

Table 1. Definitions and units of estimated parameters in Eqs. (1), (2), and (3). It should be noted that these are all
positive.

Parameter Definition Unit
βe Excitatory unit time constant s−1

βi Inhibitory unit time constant s−1

wee Self-excitation (autaptic) coefficient None
wii Self-inhibition (autaptic) coefficient None
wei Inhibitory to excitatory synaptic weight None
wie Excitatory to inhibitory synaptic weight None
ce Excitatory presynaptic weight None
ci Inhibitory presynaptic weight None
Fe Maximum firing rate of the excitatory unit s−1

The needed neural spiking data will be generated by a data generator model. As mentioned in Section 1.3,
we will obtain these data from simulation of the original excitatory-inhibitory network in [1] with its nominal
parameters. The details are discussed in Section 2.3.

2.2. Neural spiking and Poisson processes
2.2.1. Inhomogeneous Poisson processes
IPPs are stochastic point process models that are widely used in computational neuroscience. An IPP is related
to the famous Poisson distribution [36] that defines the probability of detecting K occurrences in an interval
of [t, t+∆t) as:

Prob [N (t+∆t)−N (t) = k] =
e−λλk

k!
, (4)

where the average number of occurrences (or the so-called event rate) λ is given by:

λ =

∫ t+∆t

t

r (τ) dτ. (5)

In the above, r(t) is the time-dependent event rate. In the context of neural spiking, it corresponds to the firing
rate of the neuron of interest. In that case, K will be the number of expected spikes in the same time interval.
IPPs may be compared to the local Bernoulli processes [37]. Let δt be a small time interval such that only one
spike can fit (in one bin). If the instantaneous firing rate of the spiking neuron is r(t) , the probability that a
spike may fire in [t, t+ δt) equals r(t)δt and the probability that no spike will be seen in the same interval is
1− r(t)δt . Suppose that K spikes occur at 0 ≤ t1 ≤ t2 ≤ . . . ≤ tK ≤ T . Assuming that these are independent,
one can write the following:

p (t1, t2, . . . , tK) = exp
(
−
∫ T

0

r (t, u, θ) dt

)
K∏

k=1

r (tk, u, θ) , (6)
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provided that δt → 0 . The above formulation describes how likely a particular spike train t1, t2, . . . , tK is
generated by a neural process with firing rate r(t, u, θ) . It should be noted that firing rate r(t, u, θ) depends
on the neuron parameters θ as well as the stimuluıs u .

2.2.2. Maximum likelihood methods and parameter estimation
Concerning the neural spiking processes modeled by IPPs, the likelihood as a function of neuron parameters θ

and stimulus u is given by Eq. (6). However, this function involves only a single recording of spikes detected
in [0, T ) . We know from estimation theory that maximum likelihood estimation is asymptotically efficient,
i.e. reaching the Cramér–Rao bound when the data sample size becomes larger. In order to improve the
statistical content of the obtained data, one will need to collect multiple data elicited from multiple stimuli.
Suppose that we have Nit independent stimuli that yielded Nit different spike trains and that the mth stimulus
(m = 1, . . . , Nit ) elicits a spike train with a total of Km spikes in the time window [0, T ] . Suppose also that

the spike timings are given by Sm =
(
t
(m)
1 , t

(m)
2 , . . . , t

(m)
Km

)
. Using Eq. (6), one can evaluate the likelihood for

the spike train Sm as:

p (Sm | θ) = exp
(
−
∫ T

0

r(m)(t) dt

)
Km∏
k=1

r(m)
(
t
(m)
k

)
. (7)

In the above, r(m) is the firing rate response to the mth stimulus. This function depends implicitly on the
model parameters θ and on the stimulus. The left-hand side of Eq. (7) emphasizes the dependence on network
parameter θ , which is convenient for parameter estimation. If the responses to each individual stimulus m are
independent (this will be a reasonable assumption especially when the durations between consecutive stimuli
are sufficiently large), the joint likelihood function for Nit spike trains can be written as shown below:

L (S1, S2, . . . , SM | θ) =
M∏

m=1

p (Sm | θ) . (8)

To ease the computation, one is recommended to evaluate the natural logarithm of Eq. (8) and derive the
log-likelihood function as:

l (S1, S2, . . . , SM | θ) = −
M∑

m=1

∫ T

0

r(m)(t) dt+

M∑
m=1

Km∑
k=1

ln r(m)
(
t
(m)
k

)
. (9)

The maximization of the above with respect to the parameter vector θ will yield the maximum likelihood
estimate. That is:

θ̂ML = arg max
θ

[l (S1, S2, . . . , SM | θ)] . (10)

The above operation can be performed by MATLAB optimization routines such as fmincon. A zero lower
bound should be assigned for each parameter so that positive values are obtained.

2.3. The data generator

Since the needed spiking data are obtained from simulations of the original model in [1], it will be convenient
to present a summary of that in the proceeding sections.
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2.3.1. Data generator model

The data generator is also a continuous time recurrent neural network model as shown below [1]:

v̇e = −βe [ve + weege(ve)− weigi(vi) + ceu] ,

v̇i = −βi [vi + wiege(ve)− wiigi(vi) + ciu] ,
(11)

where ve and vi represent the activities of the excitatory and inhibitory units, respectively. They can be
thought of as representing the membrane potential. The critical difference from Eq. (1) is that it has different
sigmoidal gain functions (ge(ve) and gi(vi)). These are shown below:

gj (vj) =
Γj

1 + exp (−aj (vj − hj)) ,
(12)

with j being either ‘e ’ for excitatory units or ‘i ’ for inhibitory units. Since we collect the spiking data from
the excitatory unit, it will be convenient to rewrite its firing rate re as:

re = ge(ve) =
Γe

1 + exp(−ae(ve − he)).
(13)

The true values of parameters in Eqs. (11) and (12) are presented in Tables 2 and 3.

Table 2. The true values of the parameters of the network model in Eq. (11). These will be used in the simulations
to generate neural spiking data.

Parameter βe βi we wi wee wei wie wii

Value 50 25 1.0 0.7 1.2 2.0 0.7 0.4

Table 3. The parameters of the sigmoidal gain functions gj(V ) in Eq. (12) for the excitatory (e) and inhibitory (i)
units of the data generator model of Eq. (11). These will be used in the simulations to generate neural spiking data.

Parameter Γe ae he Γi ai hi

Value 100 0.04 70 50 0.04 35

2.3.2. Spike generation for data collection
The data will be representative of in vivo neural spiking data. Because of that, they should be generated by a
reliable algorithm.

Since neuronal spiking activity often has Poisson-like noise (see Section 2.2), for a better comparison with
extracellular neurophysiological recording data, we consider spike trains generated by an IPP. In other words,
we will simulate an IPP with re as its event rate.

There are several algorithms to simulate an IPP. The local Bernoulli approximation [37] (also discussed
in Section 2.2), thinning [36], and time scale transformation [38] can be shown as examples.

The approach based on the local Bernoulli approximation is a reasonable choice when the neuron models
are integrated by discrete solvers such as Euler or Runge–Kutta methods. However, one should keep the time
bins very narrow (such as δt = 1 ms) so that the statistics of the spikes are closer to those of an IPP.
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In this work, we also implement local Bernoulli approximation. One can see a summary of the related
algorithm below [1]:

1. Given the firing rate of a neuron as r(t)

2. Find the probability of firing at time ti by evaluating pi = r(ti)δt where δt is the integration interval. It
should be a small real number such as 1 ms.

3. Draw a random number xrand = U [0, 1] , which is uniformly distributed in the interval [0, 1] . Here, U

stands for a uniform distribution.

4. If pi > xrand fire a spike at t = ti , else do nothing.

5. Collect spikes as S = [t1, . . . , tNs
] , where Ns will be the total number of spikes collected from one

simulation.

2.4. Stimulus model
Like that of [1], we will have a periodic phased cosine Fourier series stimulus, which is defined as:

u =

NU∑
n=1

An cos (ωnt+ ϕn) , (14)

where An is the amplitude, ωn = 2πf0n is the frequency (in rad/σ ), and ϕn is the phase (in radians) of the
nth Fourier component in the above equation. Here the amplitude An and the base frequency f0 (in Hz) are
fixed but the phase ϕn will be randomly drawn from U [−π, π] (i.e. uniformly distributed between −π and
π ). The amplitude parameter An will also be fixed as An = Amax (for all mode n).

One can see the variations of Eq. (14) for different configurations in Figure A (see the explanation of the
figure for details). Similarly, one can see the typical firing rate response patterns of the data generator model
in Eqs. (11), (12), and (13) in Figure B. Here, the model is simulated with the parameters in Tables 2 and 3
against the stimuli in Figure A. Finally, in Figure C one can see the neural spiking responses of the excitatory
unit against the stimuli in Figure A.

3. Application
3.1. Description of the example problem
We can summarize the example problem as shown in the following:

1. A single run of simulation will last for Tf = 3 s.

2. The data generator neuron model in Eqs. (11), (12), and (13) will be simulated with the parametric values
given in Table 2 and Table 3. The firing rate of the excitatory unit is stored as rme (t) , where m is an
index for the current trial of simulation.

3. Using the approach presented in Section 2.3.2, the spike train Sm of the mth trial is generated from the
firing rate rme (t) . The number of spikes will be Km at the mth trial.

4. Repeat the simulation Nit times to collect several statistically independent spike trains.
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Figure. A The variation of cosine stimulus for different number of components NU . The sizes are a) NU = 5 , b)
NU = 10 , c) NU = 20 , d) NU = 30 , e) NU = 40 , and f) NU = 50 . The amplitude parameters are An = 100 and
f0 = 3.333 Hz, and ϕn are randomly assigned from a set uniformly distributed between [−π, π] . As the number of
components increases, the magnitude of the stimulus also increases.
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Figure. B The variation of the firing rate of the excitatory unit against the stimuli shown in Figure A. Note that the
firing rates cannot exceed the upper limit imposed by the maximum firing rate parameter Fe , which equals 100 here.
However, since the stimulus amplitude stays at larger values when one has a larger NU , corresponding firing rates have
more jumps to regions near the maximum limit set by Fe .
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Figure. C Excitatory neural spiking against the stimuli shown in Figure A. Here the spikes are treated in a binary
fashion, logged as a ‘1’ when a spike exists and ‘0’ when there is no spike. As expected, larger numbers of spikes will be
seen in the regions where the firing rate stays at larger values (or with more jumps to high rate regions).

5. The neural spiking data needed by Eq. (9) will be obtained in the 4th step. However, the firing rate rme (t)

in Eq. (9) should be computed at the current iteration of the optimization.

6. Run an optimization algorithm (such as fmincon) on the joint likelihood function of Eq. (9) to obtain
the maximum likelihood estimates of the parameters (θML in Eq. (10)).

3.2. Optimization algorithm

To perform a maximum likelihood estimation (i.e. the problem defined in Eq. (10)), one needs to use an
optimizer. In this work, we will utilize MATLAB’s fmincon routine. This is a gradient-based local optimizer
that allows the user to set a bound on the solution. A zero bound can ensure positively valued estimates. In
addition, fmincon can evaluate the gradient of the objective function using finite difference approximations.

Of course, fmincon is not the only optimization routine available from MATLAB. There are other
alternatives such as fminunc. That is similar to fmincon but it does not allow any bounds to be set on
the solution. Thus, it is not applicable to our problem, although it is faster than fmincon (no lower bounds can
be set).

In addition to those, there are gradient-free techniques such as pattern search, simulated annealing, and
genetic algorithms. Although elimination of gradients may be considered as an advantage, these routines appear
to have slower convergence in multivariable problems.

The computational complexity of the problem is considerably high. Thus, additional improvement of the
optimization performance is necessary. That is obtained by using high-performance computing (HPC) systems.
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Figure. D The variations of the standard deviations of the estimated parameters against increasing sample size Nit . The
settings of the other simulation parameters are as follows: NU = 5 , Amax = 100 , and f0 = 3.3333 Hz. As expected, the
standard deviations decrease with increasing number of samples. This is a fundamental property of maximum likelihood
estimation.

3.3. Simulation scenarios
The information related to simulation scenarios is presented in Table 4.

Table 4. Typical data related to a nominal simulation scenario.
Parameter Symbol Value
Simulation time Tf 3 s
Number of trials Nit 25, 50, 100, 200, 400
# of components in stimulus NU 5, 10, 20
Method of optimization N/A Interior-point gradient descent (fmincon)
# of parameters estimate Size(θ) 9
Stimulus amplitude (µA) Amax 25, 50, 100, 200
Base frequency f0 1/3, 1, 7/3, 10/3, 5 Hz
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Figure. E The variations of the standard deviations of the estimated parameters against stimulus component size NU .
The settings of the other simulation parameters are as follows: Nit = 100 , Amax = 100 , and f0 = 3.3333 Hz. We are
unable to see a definite pattern associated with the changing stimulus component count, but one can say that NU = 5

is a reasonable choice.

In order to evaluate the estimation performance under different conditions, it will be convenient to analyze
the effects of changes in the number of samples Nit , stimulus component size NU , amplitude level Amax , and
base frequency f0 . That is why we have more than one entry for those simulation parameters in Table 4.

The initial conditions of the excitatory and inhibitory activity variables in Eq. (1) will be assumed as
xe(0) = 0 and xi(0) = 0 . This is a reasonable choice as we do not have any information about them.

4. Results
In this section, one will be able to examine the results of our example problem. The maximum likelihood
estimates (θML) of the parameters (θ ) of Eqs. (1), (2), and (3) are obtained by maximizing Eq. (8) using
MATLAB’s fmincon routine. The relevant results fall into three categories, which are shown below:
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Figure. F The variations of the standard deviations of the estimated parameters against maximum amplitude parameter
Amax . The settings of the other simulation parameters are as follows: Nit = 100 , NU = 5 , and f0 = 3.3333 Hz. In
general, Amax seems to have a similar effect as Nit . However, for some parameters such as wee large values like
Amax = 200 show no improvement, so Amax = 100 should be a good compromise.

1. The variations of mean estimated values of θ (θML) against varying sample size Nit , amplitude level
Amax , stimulus component size NU , and base frequency f0 (see Section 4.1).

2. The variations of standard deviations of the estimated parameters against varying sample size Nit ,
amplitude level Amax , stimulus component size NU , and base frequency f0 (see Section 4.2).

3. The variations of the mean square error between excitatory firing rates (re ) of the data generator (Eqs.
(11) and (12)) and the estimated (Eqs. (1), (2), and (3)) models. This is required to validate the
estimation’s accuracy as we cannot know the true values of the parameters of Eqs. (1), (2), and (3) (see
Section 4.3).
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Figure. G The variations of the standard deviations of the estimated parameters against base frequency f0 . The settings
of the other simulation parameters are as follows: Nit = 100 , NU = 5 , and Amax = 5 . It appears that dependency
on base frequency does not show a definite pattern. However, the deviations are smaller in the midrange. As a result,
f0 = 3.3333 Hz is a good choice of base frequency.

4.1. Mean values obtained from maximum likelihood

One can see the variations of the maximum likelihood estimates of the parameters (θML) against sample size
parameter Nit in Table 5.

4.2. Change in the standard deviation of the estimates

One can see the variations of the standard deviations of the estimates (θML) against the sample size Nit ,
stimulus component size NU , maximum amplitude parameter Amax , and stimulus base frequency f0 in Figures
D, E, F and G respectively.
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Figure. I Fourier series test stimulus. This is a smooth
test signal.
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Figure. J Response of Eq. (1) to square wave stimulus
in Figure. The model parameters are taken from the last
row of Table 5. The responses show a small deviation at
the discontinities of the stimulus. However, the responses
are synchronized most of the time.

Figure. K Response of Eq. (1) to square wave stimulus
in Figure. The model parameters are taken from the last
row of Table 5. Almost the same response is received from
the data generator and estimated model.
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Table 5. The variations of the maximum likelihood estimates (θML) against sample size Nit are presented. The settings
of other simulation parameters are as follows: NU = 5 , Amax = 100 , and f0 = 3.3333 Hz.

Nit βe βi we wi wee wei wie wii Fe

25 38.26 25.48 53.98 20.48 7725.53 13883.68 2796.59 4171.99 98.58
50 36.23 25.94 55.60 20.64 7640.84 13923.25 2637.48 4005.38 98.87
100 36.28 26.04 55.97 20.63 7427.70 13666.09 2533.39 3844.03 98.76
200 36.17 26.42 55.83 20.97 7539.17 13669.48 2555.44 3859.42 98.47
400 36.23 26.42 55.68 20.77 7252.09 13256.03 2428.22 3615.60 98.72

Table 6. The variations of the maximum likelihood estimates (θML) against stimulus component size NU are presented.
The settings of other simulation parameters are as follows: Nit = 100 , Amax = 100 , and f0 = 3.3333 Hz.

NU βe βi we wi wee wei wie wii Fe

5 36.28 26.04 55.97 20.63 7427.70 13666.09 2533.39 3844.03 98.76
10 37.64 26.61 53.21 18.88 6858.12 12768.65 2254.27 3339.32 99.39
20 37.81 26.76 53.29 19.56 7131.97 13046.52 2087.44 3300.90 99.01

Table 7. The variations of the maximum likelihood estimates (θML) against maximum amplitude Amax are presented.
The settings of other simulation parameters are as follows: Nit = 100 , NU = 5 , and f0 = 3.3333 Hz.

Amax βe βi we wi wee wei wie wii Fe

25 53.21 515.45 54.44 27.31 20896.08 38946.13 18011.48 33635.76 51.18
50 35.00 22.94 58.42 25.15 9653.59 18991.63 4407.25 7983.17 95.89
100 36.28 26.04 55.97 20.63 7427.70 13666.09 2533.39 3844.03 98.76
200 40.55 28.73 49.75 14.67 6537.35 11855.27 1528.09 2215.13 99.15

Table 8. The variations of the maximum likelihood estimates (θML) against base frequency f0 are presented. The
settings of other simulation parameters are as follows: Nit = 100 , NU = 5 , and Amax = 100 Hz.

f0 βe βi we wi wee wei wie wii Fe

1/3 30.84 26.69 69.63 31.65 8864.84 15372.76 3447.75 5210.14 98.58
1 34.69 27.65 59.15 23.10 7217.08 12867.85 2378.26 3385.87 98.97
7/3 36.48 26.71 56.04 19.90 6310.13 11976.28 1901.61 2735.95 98.46
10/3 36.28 26.04 55.97 20.63 7427.70 13666.09 2533.39 3844.03 98.76
5 38.36 23.57 52.57 18.71 7088.79 14886.53 2462.94 4750.91 99.14

4.3. Comparing the outputs of original and estimated models

In order to validate the success of our work, we will need to compare the firing rate outputs of the data generator
(Eqs. (11), (12), and (13)) and estimated models (Eqs. (1), (2), and (3)).

In Figure H and Figure I, one can see the test stimuli that are used to examine the firing rate outputs of
the two models. The former is a square wave stimulus, whereas the latter is a truncated Fourier series stimulus
that has smoother edges.

The responses are compared by plotting the responses of both models to the same stimulus in the same
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figure. The response of the estimated model is evaluated for the parameters obtained in the last row of Table
5. The response of the data generator is evaluated for its true parameters to the same stimulus. One can see
the related results in Figure J and K, respectively.

5. Discussion
5.1. Summary

In this research, we presented a theoretical study of model fitting to noisy stimulus/response data obtained
from a generic sensory neural network. In general, the purpose is similar to that of [1]. The main differences
were:

1. We desire a more generic model that has a smaller number of parameters. It will model the relationship
between stimulus and response of the neuron (i.e. the firing rate of the excitatory unit).

2. In [35], it was found that inclusion of sigmoidal gain function parameters in the estimation problem leads
to a very inefficient estimator. For example, no definite patterns of variance are seen.

Thus, we desired a model that does not have any unknown parameters in its sigmoidal gain functions.
That will decrease the level of parameter confounding and thus we expect a more efficient estimation. The neural
spiking data are collected from the results of simulations of the neural network model presented in [1]. Since
the data generator and estimated models are different, the validity of the approach is evaluated by comparing
their firing rate responses. In addition, the estimation performance is evaluated by comparing the standard
deviations of the estimates.

5.2. Discussion of the results
In Tables 5–8, one can see the variations of maximum likelihood estimates of the parameters of Eqs. (1), (2),
and (3) against varying sample size Nit , component count NU , maximum amplitude Amax , and base frequency
f0 of the stimulus. The values seem to remain in a narrow range. One caveat appears when Amax = 25 . The
values of parameters wei and wie appear different from the ones obtained when the stimulus amplitude is larger
than Amax = 25 . This result verifies that the nominal selection of Amax = 100 , NU = 5 , and f0 = 10/3 is a
good compromise.

The results associated with the variations of standard deviations against the simulation parameters are
available in Figures D, E, F and G. No unexpected situation exists in these results. The standard deviations of
the estimates decrease with increasing sample size Nit . This occurrence is similar to that of [1].

There is no definite pattern associated with changing stimulus component size NU . Thus, there is no
need to choose large NU values that bring unnecessary computational complexity.

Concerning the stimulus amplitude Amax , one can say that lower amplitudes should be avoided. Figure
F suggests that choosing a value like Amax = 25 may adversely affect the estimation performance. The same
graphical results also suggest that a selection of 100 ≤ Amax ≤ 200 should be a good compromise.

The changes in base frequency may also degrade the estimation performance. Figure G suggests that
midrange frequencies ( 7/3 ≤ f0 ≤ 10/3 Hz) should be preferred.

Concerning the comparison of firing rate responses, we can make the following comments:

1. One can say that under a smooth stimulus like a Fourier series, the data generator and estimated models
generate almost the same firing rate response (Figure K).

918



DORUK/Turk J Elec Eng & Comp Sci

2. When a discontinuous stimulus like in Figure H is applied, the responses elicited by both models have a
small deviation at the discontinuities in Figure K. However, the responses are mostly close to each other.

Based on the above findings one can state that the estimation algorithm completed its duty quite successfully.
With the completion of this work, we can show that one is able to develop a neural network model from noisy
stimulus/response data without any factors that degrade the efficiency of estimation (like the parametrized
sigmoidal gain functions).

Acknowledgment

The computational facilities needed by this research were provided by the TR-Grid/TRUBA framework
(www.truba.gov.tr), operated by the National Academic Center of Computing (ULAKBİM) of the Scientific
and Technological Research Council of Turkey (TÜBİTAK).

References

[1] Doruk RO, Zhang K. Fitting of dynamic recurrent neural network models to sensory stimulus-response data. J Biol
Phys 2018; 44: 449-469.

[2] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and
excitation in nerve. J Physiol-London 1952; 117: 500. https://doi.org/10.1113.

[3] Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J 1981; 35: 193-213.

[4] Ermentrout B, Pascal M, Gutkin B. The effects of spike frequency adaptation and negative feedback on the
synchronization of neural oscillators. Neural Comput 2001; 13: 1285-1310.

[5] Booth V, Rinzel J, Kiehn O. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and
plateau potentials under pharmacological treatment. J Neurophysiol 1997; 78: 3371-3385.

[6] Koch C. Biophysics of Computation: Information Processing in Single Neurons. Oxford, UK: Oxford University
Press, 2004.

[7] FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1961; 1: 445-466.

[8] Hindmarsh JL, Rose R. A model of neuronal bursting using three coupled first order differential equations. Proc R
Soc Lond B 1984; 221: 87-102.

[9] Rust NC, Schwartz O, Movshon JA, Simoncelli EP. Spatiotemporal elements of macaque v1 receptive fields. Neuron
2005; 46: 945-956.

[10] Hosoya T, Baccus SA, Meister M. Dynamic predictive coding by the retina. Nature 2005; 436: 71.
https://doi.org/10.1016

[11] Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M. Independence of luminance and contrast in natural scenes
and in the early visual system. Nat Neurosci 2005; 8: 1690. https://doi.org/10.1038/nn1556.

[12] Borst A, Theunissen FE. Information theory and neural coding. Nat Neurosci 1999; 2: 947.
https://doi.org/10.1038/14731.

[13] Barlow H. Possible principles underlying the transformation of sensory messages. In: Rosenblith W, editor. Sensory
Communication. Cambridge, MA, USA: MIT Press, 1959, pp. 217-234.

[14] Fairhall AL, Lewen GD, Bialek W, van Steveninck RRR. Efficiency and ambiguity in an adaptive neural code.
Nature 2001; 412: 787. https://doi.org/10.1038/35090500.

[15] Hassenstein B, Reichardt W. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der
bewegungsperzeption des rüsselkäfers chlorophanus. Z Naturforsch B 1956; 11: 513-524 (in German).

919



DORUK/Turk J Elec Eng & Comp Sci

[16] Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and
precision of spike timing. Neural Comput 1998; 10: 1679-1703.

[17] Haykin S. Neural Networks and Learning Machines. 3rd ed. Upper Saddle River, NJ, USA: Pearson, 2009.

[18] Arulampalam G, Bouzerdoum A. A generalized feedforward neural network architecture for classification and
regression. Neural Networks 2003; 16: 561-568.

[19] Funahashi KI, Nakamura Y. Approximation of dynamical systems by continuous time recurrent neural networks.
Neural Networks 1993; 6: 801-806.

[20] Guo DQ, Chen MM, Perc M, Wu SD, Xia C, Zhang YS, Xu P, Xia Y, Yao DZ. Firing regulation of fast-
spiking interneurons by autaptic inhibition. Europhys Lett 2016; 2016: 114. https://dx.doi.org/10.1209/0295-
5075/114/30001.

[21] Guo DQ, Wu SD, Chen MM, Perc M, Zhang YS, Ma JL, Cui Y, Xu P, Xia Y, Yao DZ. Regulation of irregular
neuronal firing by autaptic transmission. Sci Rep 2016; 6: 26096. https://dx.doi.org/10.1038/srep26096.

[22] Yilmaz E, Ozer M, Baysal V, Perc M. Autapse-induced multiple coherence resonance in single neurons and neuronal
networks. Sci Rep 2016; 6: 30914. https://dx.doi.org/10.1038/srep30914.

[23] Schäfer AM, Zimmermann HG. Recurrent neural networks are universal approximators. In: International Conference
on Artificial Neural Networks. pp. 632-640.

[24] Gosak M, Markovic R, Dolensek J, Rupnik MS, Marhl M, Stozer A, Perc M. Network science of biological systems
at different scales: a review. Phys Life Rev 2018; 24: 118-135. .

[25] Jalili M, Perc M. Information cascades in complex networks. J Complex Networks 2017; 5: 665-693. .

[26] Rieke F, Warland D, Bialek W. Coding efficiency and information rates in sensory neurons. Europhys Lett 1993;
22: 151. https://doi.org/10.1209/0295-5075/22/2/013.

[27] Herz AV, Gollisch T, Machens CK, Jaeger D. Modeling single-neuron dynamics and computations: a balance of
detail and abstraction. Science 2006; 314: 80-85.

[28] Ozer M, Uzuntarla M, Perc M, Graham LJ. Spike latency and jitter of neuronal membrane patches with stochastic
Hodgkin-Huxley channels. J Theor Biol 2009; 261: 83-92. https://dx.doi.org/10.1016/j.jtbi.2009.07.006.

[29] Uzun R, Ozer M, Perc M. Can scale-freeness offset delayed signal detection in neuronal networks? Europhys Lett
2014; 2014: 105. https://dx.doi.org/10.1209/0295-5075/105/60002.

[30] Shadlen MN, Newsome WT. Noise, neural codes and cortical organization. Curr Opin Neurol 1994; 4: 569-579.

[31] Myung IJ. Tutorial on maximum likelihood estimation. J Math Psychol 2003; 47: 90-100.

[32] Hsiao T. Identification of time-varying autoregressive systems using maximum a posteriori estimation. IEEE T
Signal Process 2008; 56: 3497-3509.

[33] DiMattina C, Zhang K. Active data collection for efficient estimation and comparison of nonlinear neural models.
Neural Comput 2011; 23: 2242-2288.

[34] DiMattina C, Zhang K. Adaptive stimulus optimization for sensory systems neuroscience. Front Neural Circuit
2013; 7: 101. https://doi.org/10.3389/fncir.2013.00101.

[35] Doruk O, Zhang K. An attempt to fit all parameters of a dynamical recurrent neural network from sensory neural
spiking data. PeerJ Preprints 2018; 6: e27015v1. https://dx.doi.org/10.7287/peerj.preprints.27015v1.

[36] Lewis PA, Shedler GS. Simulation of nonhomogeneous Poisson processes by thinning. Nav Res Logist Q 1979; 26:
403-413.

[37] Eden UT. Point process models for neural spike trains. Neural Signal Processing: Quantitative Analysis of Neural
Activity 2008; 2008: 45–51.

[38] Klein RW, Roberts SD. A time-varying Poisson arrival process generator. Simulation 1984; 43: 193-195.

920


	Introduction
	General neuron modeling
	Neural spiking issue
	About this work

	Materials and methods
	Neural model in consideration
	Neural spiking and Poisson processes
	Inhomogeneous Poisson processes
	Maximum likelihood methods and parameter estimation

	The data generator
	Data generator model
	Spike generation for data collection

	Stimulus model

	Application
	Description of the example problem
	Optimization algorithm
	Simulation scenarios

	Results
	Mean values obtained from maximum likelihood
	Change in the standard deviation of the estimates
	Comparing the outputs of original and estimated models

	Discussion
	Summary
	Discussion of the results


