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Abstract: The prey-predator algorithm is a metaheuristic algorithm inspired by the interaction between a predator
and its prey. Initial solutions are put into three categories: the better performing solution as the best prey, the
worst performing solution as a predator, and the rest as ordinary prey. The best prey totally focuses on exploiting
its neighborhood while the predator explores the search space searching for a promising region in the search space. The
ordinary prey will be affected by these two extreme search behaviors of exploration and exploitation. The algorithm has
been tested and found to be effective in solving different problems arising from different disciplines including engineering,
tourism, and management. Originally, the algorithm was designed to deal with continuous problems. However, many
problems arising from real aspects are not continuous. Hence, in this paper the prey-predator algorithm will be extended
to suit discrete problems. Examination timetabling is used to test the approach. The simulation results with appropriate
statistical analysis show that the approach is as good as the cumulative best performance of results recorded in the
literature for the selected benchmark problems.

Key words: Prey-predator algorithm, discrete prey-predator algorithm, metaheuristic, combinatorial optimization,
examination timetabling

1. Introduction
A mathematically formulated decision-making problem of finding the best action in order to optimize a given
objective(s) is called an optimization problem. It can be categorized in different ways. These include as
categories based on the number of objectives; as single-objective and multiobjective problems, based on the
behavior of the decision variables; as continuous, discrete, and mixed problems; and also based on the nature
of the variables as deterministic and nondeterministic problems. Due to resource limitations (for example,
the number of staff and number of products like cars), many real problems can be formulated as constrained
discrete optimization problems. A combinatorial optimization problem is an optimization problem that has a
finite and discrete, usually large, solution space [2]. Different real scenarios that are formulated as combinatorial
optimization problems can be mentioned, including the exam timetabling problem [3], travel salesman problem
[1], and bin packing problem [4].

Different exact optimization methods are introduced to solve optimization problems based on their
properties; for instance, if the problem is linear and continuous, then one can use a simplex algorithm. However,
these exact methods are shorthanded when dealing with difficult real problems that do not fall into the categories
introduced for exact methods. In such cases, a metaheuristic algorithm will become an ideal choice. Even though
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metaheuristic algorithms do not guarantee optimality, they are tested and found to give reasonable solutions
under appropriate implementations. Since the introduction of evolutionary algorithms, different metaheuristic
algorithms have been introduced. The prey-predator algorithm is one of the these metaheuristic algorithms,
which mimics the scenario of a predator that runs after its prey. Adjusting the degree of exploration and
exploitation is one of the challenging issues and has been in the forefront of research issues in the field [5]. The
prey-predator algorithm gives a clear way of controlling exploration and exploitation [15, 17]. It has also been
studied and tested in different problems and is found to be effective [6–10, 14, 15, 18, 20, 21]. In addition,
it is a generalized swarm-based algorithm where some well-known algorithms occur as a special case of this
algorithm, including the particle swarm algorithm and modified firefly algorithm [11]. Furthermore, the success
of the algorithm motivates researchers to propose a generalized version of the algorithm by incorporating a
hyperheuristic approach [17], which in turn leads researchers towards proposing a generalized swarm framework
[19].

Along with continuous optimization problems, metaheuristic algorithms are also used for combinatorial
optimization problems. Many of these algorithms were originally proposed for continuous problems and later
modified to be used for discrete optimization problems. The “no free lunch” theorem proves that there is
no superior metaheuristic algorithm for combinatorial optimization problems. Therefore, modifying the newly
introduced prey-predator algorithm for the use of solving constrained combinatorial optimization problems is
one contribution to the solution methods of these problems. Hence, in this paper, the prey-predator algorithm
will be extended to suit discrete problems and used to solve an examination timetabling problem. The simulation
results along with the statistical analysis suggest that the discrete prey-predator algorithm performs as well as
the collection of the best performances of algorithms from the literature. For the simulation six uncapacitated
examination timetabling problems are used. The advantage of easily controlling capability and tuning of the
degree of exploration and exploitation of the prey-predator algorithm gives the extended version a significant
performance improvement over other approaches.

The paper is organized as follows. In the next section basic concepts will be discussed on the constrained
combinatorial optimization problem along with a brief explanation of the prey-predator algorithm. In Section 3
the proposed approach will be given, followed by a discussion on the timetabling problem in Section 4. Finally,
the conclusion will be presented in Section 6, after a simulation-based discussion in Section 5.

2. Preliminaries
2.1. Combinatorial optimization problem

A combinatorial optimization problem is an optimization problem with discrete and finite solution space [12].
It has an objective function, f(x) , along with the feasible region, S . If the values that can be assigned to the
decision variables are from a discrete set E then the problem can be given as shown in Eq. (1).

min f(x)

s.t. x ∈ S ⊆ En
(1)

Note that a solution x is a vector of n dimensions with entries from E ; for example, E can be integers
between 1 and 100. In constrained optimization problems, the variables may be restricted so as not to take
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some values from set E . Hence, a general formulation for a constrained optimization problem can be given by:

min f(x)

s.t. x ∈ S ⊂ En
(2)

A particular example will be the examination timetabling problem. For each exam you can assign a time
slot, which is arranged as 1, 2, and so on. However, there should not be a clash between exams, which means
that exams with common students should not be arranged in the same slot. Hence, assigning the exams to the
slots randomly may possibly create a clash by assigning two exams with common students in the same slot. In
addition to the exam clash constraint, exam room capacity or number of available invigilators, etc., can be used
as constraints to be considered while generating initial solutions as well as solving the problem.

A vector x∗ is said to be a solution for a combinatorial optimization problem if and only if x∗ ∈ S and
f(x∗) ≤ f(x) for all x ∈ S .

2.2. Prey-predator algorithm

The prey-predator algorithm (PPA) is one of the swarm-based metaheuristic algorithms introduced for contin-
uous problems [11, 16]. It mimics the interaction between a predator (which runs after its prey) and its prey
in the natural environment. In the algorithm a randomly generated set of feasible solutions will be put into
three categories: a predator, ordinary prey, and the best prey, based on their performances in the objective
function. In each iteration of the algorithm the predator tends to explore the solution space with bigger step
length and also run after the weak prey, which is the prey with the worst performance in the objective function.
However, the best prey will only do a local search and totally focuses on the exploitation of the neighborhood.
On the other hand, the ordinary prey will run away from the predator or follow better prey, prey with better
performance in the objective function. This updating move of an ordinary prey is done based on the algorithm
parameter called probability of follow-up.

Hence, probability of follow-up is one of the algorithm parameters that control the movement of the
ordinary prey. High probability follow-up means ‘following better prey’ will have a higher chance than ‘randomly
run away from the predator’. If a randomly generated number is under the probability of follow-up then it
will follow better prey and do a local search as well, but if the randomly generated number is greater than
the probability of follow-up then the prey will randomly run away from the predator. The other algorithm
parameter is step length. There are two step lengths, λmax and λmin . λmax is a step length for exploration,
whereas λmin , which is shorter than λmax , is a step length for exploitation. m is another algorithm parameter,
which determines the number of random unit directions used for exploitation or local search purposes. The
algorithm is summarized in Table 1.

3. Discrete prey-predator algorithm
As presented in Section 2, a combinatorial optimization problem is an optimization problem with discrete values
for the decision variables. When there are cases that need to be fulfilled, the problem becomes challenging and
finding a feasible solution by itself will be another challenging task because a random solution within the
boundary may not always feasible. In order to construct a feasible solution to proceed with the PPA, different
problem-specific methods can be used. Even after generating initial feasible solutions, the other biggest challenge
in applying the PPA for discrete problems is in the updating process. Unlike the continuous case, while updating

952



TILAHUN/Turk J Elec Eng & Comp Sci

Table 1. Prey-predator algorithm.

Step 1 Generate random and feasible N solutions
Step 2 Sort the solutions based on their performance in the objective function from worst to best and

Assign x1 to be the predator, xN to be the best prey, and the rest ordinary prey
Step 3 Move the predator randomly and also towards x2

i.e. x1 := x1 + (λmaxrand)u+ (λminrand)u1,2

where rand is a random number from uniform distribution between 0 and 1, u is a random unit vector, and

u1,2 =

{ x2−x1

∥x2−x1∥ , ifx1 ̸= x2

0, otherwise
Step 4 Move the best prey using a direction chosen from randomly generated m unit directions and zero vector

i.e. xN := xN + (λminrand)u
where u = min

ui∈u1,u2,...,um,0
f(xN + (λminrand)ui)

Step 5 Update the ordinary prey either by following better performing prey if probability of follow-up is met
or randomly away from the predator
i.e. if rand ≤ Probability of follow-up

xi := xi + (λmaxrand)uf + (λminrand)u where uf =
∑N

j=i+1(xj−xi)

∥∑N
j=i+1(xj−xi)∥

and u is similar to the one in step 4
else (if rand > Probability of follow-up)

xi := xi + (λmaxrand)urand

where urand =

{
u if ∥x1 − (xi + u)∥ ≥ ∥x1 − (xi − u)∥
−u otherwise

for a random unit direction u

Step 6 If a termination criterion is met stop else go back to step 2

a solution, using the updating equations presented in Table 1, the updated solution may become infeasible.
Hence, the updating process should be modified while mimicking the same scenario. In this paper we propose a
version of the PPA for constrained combinatorial optimization problems with a new updating and local search
mechanism. Consider the following problem:

We want to minimize f(x) by choosing n dimensional vector value for x in such a way that x fulfills
the conditions given as set S , feasibility. Without loss of generality we can also assume that each component
or entry of vector x can be assigned an integer between 1 and a natural number D , for D > 1 .

First, by using problem domain-based methods (like saturation degree for exam timetabling problems
[13]), a random set of feasible solutions will be generated, say x1, x2, ...xN . The number of solutions should
be more than two as we have three categories of solutions in the PPA. Among these solutions, based on their
performance in the objective function, f(x) , they will be put into three categories: the one with the worst
performance will be called the predator, represented by xp ; the one with the best performance is called the best
prey; represented by xb , and the rest are ordinary prey. Unlike in the continuous case, the local search will be
done by changing only a number of entries of the solution based on a new algorithm parameter called probability
of change (pc ). In this context a local search is when solutions try to look for another better solution by changing
only a small number of its components. Hence, for each component, if a randomly generated number is less
than or equal to pc , then that entry will be changed as long as the solution remains feasible. However, if the
change results in infeasibility, it will be rejected. Hence, a small number of pc means exploitation, whereas a
larger number of pc leads to exploration. As discussed in the previous section, the other algorithm parameter
in the continuous optimization case is m , the number of random directions for the local search of the best prey.
Similarly, we can do m local updates and choose the one with the best performance; we add the original best
prey in this comparison. The updating process of the best prey is summarized in Table 2.
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Table 2. Updating process for the best prey (randperm(D) is a random arrangement of D natural numbers).

Input pc,m,D
for k = 1 : m

yk = xb

for i = 1 : n
if rand ≤ pc

T = randperm(D)
for j = 1 : D

if yk(i) ̸= T (j)
if making yk(i) = T (j) does not make yk infeasible

then yk(i) = T (j)
break the j loop (or update j = D)

end if
end if

end for
end if

end for
end for
Compare y1, y2, ..., ym, xb and take the best to update xb

The updating process of an ordinary prey xi depends on the probability of follow-up (pf ). If a randomly
generated number between zero and one from a uniform distribution is at most equal to the probability of
follow-up then a ‘following-up’ updating will be performed. The update is done for each component based on
the probability of change (pc ), and here pc should be higher than the value used for the local search. That is,
for each component, a random number is generated and compared with the probability of change to check if
that component needs to be updated by moving it towards promising solutions. The updating equation is given
in Eq. (3).

xi(k) := round[xi(k) + (2rand)sign(
∑
j

(xj(k)− xi(k)))] (3)

For each better prey j and components k , rand is a random number between 0 and 1, with round being
a rounding function to the nearest integer and sign a function that will return –1 if the input is negative, 1 if
the input is positive, and 0 otherwise.

Similarly, if the probability of follow-up is greater than a randomly generated number, then the prey will
randomly run away from the predator; that will be done again component-wise as given in Eq. (4).

xi(k) := round[xi(k) + (2rand)(xj(k)− xp(k))] (4)

For the predator xp and components k , rand is a random number between 0 and 1.
In Eqs. (3) and (4), a magnifying value of 2 is used, which allows the updating process to explore beyond

the point of interest, i.e. to explore regions other than those between the two points. The updating process of
an ordinary prey is summarized as follows in Table 3.

The predator focuses on exploration. That is done with a similar updating mechanism as used for the best
prey but with bigger pc . That leads the predator to have high probability of changing most of its components
to end up in a new solution neighborhood.
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Table 3. Updating of an ordinary prey xi .

Input pf , pc, D
if rand ≤ pf

for i = 1 : n
if rand ≤ pc

if updating xi(k) using Eq. (3) does not make xi infeasible
then update xi(k) using Eq. (3)

end if
end if

end for
else

for i = 1 : n
if rand ≤ pc

if updating xi(k) using Eq. (4) does not make xi infeasible
then update xi(k) using Eq. (4)

end if
end if

end for
end if

Note that the step lengths, λmin and λmax , in the standard prey-predator algorithm are replaced by pc .

4. Examination timetabling problem
The examination timetabling problem is a problem of assigning a given number of exams to available time slots
in such a way that exams with common students should be arranged in different slots. There are two types
of exam timetabling problems, capacitated and uncapacitated. In capacitated exam time tabling problems the
capacity of the exam room will be taken into consideration, whereas in the uncapacitated case the room capacity
is not considered. With the constraint being that there is no clash between exams with common students, the
objective will be to spread the exams in such a way that students will have good gap of slots between exams, i.e.
the objective is to minimize a penalty for two exams with common students scheduled with a smaller number
of slots in between and is given by Eq. (5).

f(x) =
1

S

∑
(floor(25−|xi−xj |))Nij (5)

Here, S is total number of students, Nij is number of students taking exam i and exam j , and the floor

function rounds up the result to the smallest and nearest integer.
This means that the maximum penalty is when two exams with common students are scheduled in the

same slot and it will be 32 times the number of common students. If there is a slot in between then the penalty
will decrease by half. In a similar manner, the ideal will be to have the maximum possible slots between the
two exams, which is set to be 5, resulting in a zero penalty.

5. Simulation
5.1. The benchmark problems

Carter benchmark problems are well-known uncapacitated exam timetabling benchmark problems [22]. Six
benchmark problems from Carter uncapacitated timetabling problems found in [23] are selected. These bench-
mark problems are named HEC92, STA83, UTE92, TRE92, CAR92, and UTA92. The properties of these
datasets or problems are given in Table 4.
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Table 4. Properties of the benchmark problems [23].

Problem Exam number Student number Enrollment Density Time slots
HEC92 81 2823 10,632 0.42 18
STA83 139 611 5751 0.14 13
UTE92 184 2750 11,793 0.08 10
TRE92 261 4360 14,901 0.18 23
CAR92 543 18,419 55,522 0.14 32
UTA92 622 21,266 58,979 0.13 35

5.2. Wilcoxon signed-rank test
The Wilcoxon signed-rank test is a nonparametric test that does not assume the normality of the data, used to
test whether the population means of two data pools are the same or different. Suppose there are data A and
B with N observations, ai s for A and bi s for B . The null hypothesis is that the median difference between
the pairs of observations is zero. The test can be conducted as follows:

1. Step 1. For each pair of data compute the absolute difference and also the sign, i.e. ci = |bi − ai| and
si = sign(bi − ai) , where the sign function returns –1, 1, or 0 if the entry is negative positive, or zero,
respectively.

2. Step 2. Sort the resulting differences based on the absolute difference from smallest to largest and exclude
those entries with absolute difference of zero. Suppose there are t entries with absolute difference of zero.

3. Step 3. For the entries with nonzero difference, rank them starting from 1 increasingly. If there is a tie
the entries take the average ranks they span. That is, after an entry with rank k , if there are p entries
with the same absolute difference then their rank will be computed using Eq. 6.

R = k +
p+ 1

2
(6)

4. Step 4. Calculate the test statistics by taking the sum of the product of the sign, si , and the rank, R ,
using Eq. 7.

T =

N−t∑
i=1

siRi (7)

5. Step 5. Reject the null hypothesis if Eq. 8 is true, with a significance level of α .

|T | ≥ Tα,N−t (8)

Here, Tα,N−t will be read from the reference table.

5.3. Simulation results and discussion
The simulation is done using MATLAB R2011b on an Intel Core i5, 2400 CPU and 3.10 GHz, with 32-bit
operating system desktop machine. The algorithm parameters are tuned based on recommendations from [11]
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and [16]. The total number of initial solutions was set to be 20, with probability of follow-up, probability
of change for local search, and probability of change for exploration being 0.75, 0.2, and 0.6, respectively.
Furthermore, the number of random directions for local search, m , is set to be 100. The maximum number of
iterations, which was set to be 50, was used as a termination criterion. In addition, the number of best prey
was increased and set to be 8, to increase the local search behavior of the algorithm.

In order to generate feasible initial solutions, saturation degree was used with minimum penalty. The
simulation is done 30 times in order to compute the mean and standard deviation of the results and is reported
in Table 5.

Table 5. Simulation results of the PPA for the benchmark problems.

Problem HEC92 STA83 UTE92 TRE92 CAR92 UTA92
Best result 11.5432 151.1554 24.0767 9.6676 5.9065 5.0671
Mean 11.9801 154.3231 24.3879 9.7568 6.0203 5.1418
Standard deviation 0.0231 2.0369 0.1692 0.0496 0.0824 0.0631
Average CPU time 52.6511 69.5811 203.5500 1331.1000 1145.0000 44448.0906

Exam timetabling has been one of the applications of combinatorial optimization problems and different
studies have been conducted especially using Carter benchmark problems. Table 6 summarizes the solution
ranges of the selected problems in the literature.

Table 6. Solutions for the benchmark problems from the literature.

Problems Best results using PPA Best results from literature Worst results from literature
Results References Results References

HEC92 11.5432 9.2 [26] 13.8 [29]
STA83 151.1554 157.3 [24] 168.3 [25]
UTE92 24.0767 24.4 [26] 29 [27]
TRE92 7.9679 7.87 [28] 10 [29]
CAR92 5.9065 3.9 [30] 6.2 [22]
UTA92 3.5671 3.1 [30] 4.2 [29]

Hypothesis testing based on the Wilcoxon signed-rank test is used to compare the simulation results with
previously known best results from the literature. Hence, there are two data sets, as given in Table 7, for the
statistical analysis.

Table 7. The set of data for hypothesis testing (A is a datum from simulation and B is the best result from the literature
for each problem).

A 11.5432 151.1554 24.0767 7.9679 5.9065 3.5671
B 9.2 157.3 24.4 7.87 3.9 3.1
B −A 2.3432 6.1446 0.3233 0.0979 2.0065 0.4671
sign –1 1 1 –1 –1 –1

The null hypothesis states that the median difference between the two datasets is zero, i.e. the perfor-
mance of the proposed approach when compared to the best results known in the literature has same median.
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The rank of the data entries is given in Table 8.

Table 8. Ranked datasets.

A 7.9679 24.0767 3.5671 5.9065 11.5432 151.1554
B 7.87 24.4 3.1 3.9 9.2 157.3
c –1 1 –1 –1 –1 1
R 1 2 3 4 5 6

Based on the discussion given in Section 5.2, the test statistics T is found to be –5. For α = 0.05 :

Tα,6 = 21 (9)

Since |T | = 5 < 21 = T0.05,6 (as presented in Eq. (8)), the null hypothesis is accepted under the given
level of significance. Hence, there is no significant difference between the medians of the collective results of the
best performing algorithms and the proposed approach.

The proposed algorithm indeed outperforms existing algorithms for some of the problems and is outper-
formed by some for the other problems. It should be noted that based on the ‘no free lunch theorem’ there does
not exist a single algorithm to outperform all existing algorithms over all sets of problem domains. Furthermore,
the comparison here is done not with each of the proposed algorithms separately but with the best performance
of the algorithms over the problems. Hence, the proposed algorithm is a promising algorithm to be among the
pool of solution methods of discrete problems. Testing it on problems from other problem domains can be done
in the future along with enhancing and modifying to boost the performance of the algorithm.

6. Conclusion
With the success of solving different problems and the advantage of easily controlling the ratio of exploration
and exploitation, the prey-predator algorithm has been applied and used in different applications. These
applications mainly focus on continuous problems, and hence in this paper the discrete version of the algorithm
with a suitable local search mechanism to suit discrete search space is introduced. Examination timetabling
has been used to test the proposed approach. Six uncapacitated timetabling problems are taken from Carter
benchmark problems. Based on the statistical analysis, with a two tailed t-test, the simulation results show that
the proposed approach is as good as the collective best results of the benchmark problems from the literature.
In addition, the simulation results show that the approach is stable with smaller standard deviation. Hence,
the algorithm can be a promising addition for discrete problems. The performance of the approach can further
be checked by applying it on problems from other problem domains as future work.
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