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Abstract: In this study, technical details of a Stewart platform (SP) based robotic system as an endoscope positioner
and holder for endoscopic transsphenoidal surgery are presented. Inverse and forward kinematics, full dynamics, and the
Jacobian matrix of the robotic system are derived and simulated in MATLAB/Simulink. The required control structure
for the trajectory and position control of the SP is developed and verified by several experiments. The robotic system
can be navigated using a six degrees of freedom (DOF) joystick and a haptic device with force feedback. Position
and trajectory control of the SP in the joint space is achieved using a new model-free intelligent PI (iPI) controller
and it is compared with the classical PID (proportional-integral-derivative) controller. Trajectory tracking experimental
results showed that the tracking performance of iPI is better than that of PID and the total RMSE of the trajectory
tracking is decreased by 17.64% using the iPI controller. The validity of the robotic system is proven in the endoscopic
transsphenoidal surgery performed on a realistic head model in the laboratory and on a cadaver in the Institute of Forensic
Medicine. The key feature of the system developed here is to operate the endoscope via the joystick or haptic device
with force feedback under iPI control. Usage of this system helps surgeons in long, fatiguing, and complex operations.
This system can generate new possibilities for transsphenoidal surgery such as fully automated robotic surgery systems.

Key words: Endoscope holder, endoscope positioner, endoscopic transsphenoidal surgery, haptic device, intelligent
PID, medical robotics, parallel manipulator, Stewart platform

1. Introduction
Robots have been started to be used in the field of medicine for solving problems as in every field and today
many studies on this subject continue extensively. The purpose of medical robotics can be defined as providing
new treatment options for surgeons rather than replacing surgeons with robots. Robots have been used to
enhance and complement surgeons’ capabilities or help surgeons in many medical areas [1].

Robots used in the medical applications can be serial, parallel, or hybrid structures. Parallel and serial
robots have been frequently used in the medical field as well as in industry for the solution of many problems.
Parallel robots are superior to serial robots in terms of basic robot features such as payload capacity, positioning
accuracy, repeatability, and rigidity. Serial robots are superior in another important feature: large workspace
and reachability. Recently, the best robotic solutions for surgery are obtained using hybrid robotic structures.
The Stewart platform used widely in industry is a special parallel manipulator type. It allows six DOF precision
motions like a surgeon’s hand, which is important in robotic surgery. This structure is also known as hexapod
and it was developed as a flight simulator and tire test machine by Stewart and Gough [2]. In the literature,
∗Correspondence: selcuk.kizir@kocaeli.edu.tr
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there are numerous reports and studies about medical robots and robotic surgery. Robotic systems have been
used in branches such as orthopedics and traumatology; ear, nose, and throat; ophthalmology; gynecology;
urology; plastic surgery; and brain and cardiovascular surgery [3]. Parallel robots focus on particular areas such
as bone placement, fixing broken bones, spinal drilling and screw driving, knee replacement, hip replacement,
skull drilling, and rehabilitation [3, 4].

Haptic devices have an important place in robotic surgery [5]. Haptic systems can be defined briefly as
mechatronic devices that provide navigation with a variety of degrees of freedom and sense of touch using force
feedback [6]. These structures can be designed based on the electromechanical or electromagnetic principles to
be used in various workspaces. Haptic devices undertake the important task of ensuring the interaction between
the surgeon and the robot in the field of robotic surgery, which gives the sense of touch, especially with the force
feedback [7]. Another important application area of haptic systems is virtual training environments. Training
of inexperienced surgeons brings significant costs, and also it improves the inefficient use of the operating rooms
and their equipment. Interns are trained with plastic models, live animals, and humans. An intern has the
possibility of making more errors in comparison with a specialist surgeon and these errors can have economic,
legal, and social effects. For these reasons, surgical simulators are known to be educational options, because
they provide a cost-effective and efficient methodology. Medical simulators have been developed inspired by
aircraft simulators. Surgical virtual reality simulators offer better education and exercises without endangering
the lives of patients. Candidate surgeons can do exercises for different challenging scenarios. In addition, it
eliminates the need for the use of live animals or cadavers.

Surgical procedures are used very intensively with images obtained by a microchip camera as an endoscope
with the developments in imaging and optical systems. This can be called endoscopic or laparoscopic surgery
and robots have been used in this area for the solutions of problems as well. Endoscopic transsphenoidal surgery
[8], a minimal invasive procedure, aims to remove tumors within the sphenoid sinus and sella turcica of the skull.
This procedure is one of the medical fields that needs robotic assistance. In the literature, there are several
commercial robotic systems and research studies related to robotic assistance. Ballester et al. [9] compared the
task performance of laparoscopic camera holders Endo Assist and AESOP (Automated Endoscopic System for
Optimal Positioning) and stated that Endo Assist was quicker than AESOP in the downward, sideways, and
diagonal tasks. AESOP was only faster in preprogrammed complex tasks and no difference for zoom motions
was seen between them. Nathan et al. [10] used the AESOP system in order to approach the sella. Nimsky et
al. [11] adopted the Evolution 1 robot attached with a 6 DOF hexapod used as an instrument holder operated
by a joystick for extended endoscope assisted transsphenoidal surgery. Bumm et al. [12] developed a serial
robot based robotic system for endoscopic transsphenoidal surgery. Burgner et al. [13] and Chalongwongse
and Suthakorn [14] studied workspace requirements for robot assisted endonasal transsphenoidal surgery and
designed a concentric tube continuum robot [13] and a hybrid 6 DOF robot in which a delta parallel robot was
proposed for 3 DOF translation and 2 DOF for rotation and 1 DOF for surgical tool insertion. The required
workspace was determined by an optical tracking system and computed tomography (CT) images.

This study presents the results of the development of a haptic and joystick navigated Stewart platform
for endoscope positioning and holding in transsphenoidal surgery. The aim of the study is to examine the
feasibility of usage of a haptic or joystick navigated Stewart platform in transsphenoidal surgery. A new model-
free intelligent PI controller was also used for the first time for position and trajectory control of the SP. The
rest of the paper is organized as follows: In Section 2, components of the robotic surgery system are described.
In Section 3, kinematics and dynamics of the SP, controller design, stability, and experimental studies on a skull
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model and cadavers for endoscopic transsphenoidal surgery are given. Finally, conclusions are presented and
future work is recommended.

2. Materials and methods
Figure 1 depicts the block diagram of the overall system, which consists of the SP and other parts such as
real-time controller (ds1103), 6-DOF joystick (space navigator), 6-DOF haptic device (Phantom Omni), 6-DOF
force-torque sensor (Ati-Gamma), controller-robot connector board, emergency stop circuit, power supply, and
endoscope holder. The surgeons are able to select one of the navigation devices (joystick or haptic) to operate
the robot. The reference trajectory is then produced by the selected navigation device. The endoscope position
is controlled according to the surgeon’s instructions.

Inverse
Kinematics

Position
Control

Force
Feedback

Visual
Feedback

Force Sensor

Endoscope Patient and Robot
Surgeon Side

Figure 1. General structure of the robotic surgery system.

The SP system has a special structure that includes two main bodies (upper mobile and bottom fixed
plates), six linear actuators, and universal joints. Implementation of control algorithms was realized using the
DSPACE DS1103 real-time controller.

-0.05
0

0.05

-0.05
0

0.05

-0.005

0

0.005

0.01

0.015

0.02

0.025

x axis (m)y axis (m)

)
m( sixa z

front

front

top

top

back

side

76.2

16.4

105.1
26.5

23.1
31

36.4

Ø16.9

51.9

Ø12

34.5

(b)(a)

Figure 2. (a)Workspace of the SP used in this study. (b) Maximum surgical workspace for average sized endonasal
skull base surgery (mm) [13].

The maximum workspace for the operation of endonasal skull base surgery was found to be a cylindrical
space with 24.2 mm for diameter and 100.6 mm for length in [14] and 100 mm distance from the nostril entrance
to the pituitary in [13], respectively. The calculated workspace of the SP under zero orientation is shown in
Figure 2a. The maximum space required for the endonasal surgery calculated by [13] is shown in Figure 2b.
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The robot’s workspace is sufficient for the operation, but a new kinematic design can be developed in the case of
the need for a larger workspace. The Phantom Omni haptic device was developed by the Sensable Company. It
is capable of six degrees of freedom position sensing, providing three degrees of freedom force feedback. Haptic
devices are used in many applications, such as virtual reality, robot navigation, and telerobotics. The Phantom
Omni can be programmed using the OpenHaptics library with C++. In order to be integrated into the system
and navigate the SP with the haptic device, a VisualStudio 2008 project was developed in the C++ environment.
Reflection of the force was provided by the force/torque sensor at the base of the endoscope holder. An Ati
gamma sensor was used to sense three axis forces and 19,200 bps serial communication speed was used between
the ds1103 controller and haptic device. In communication, 3 bytes of data were used for the force feedback and
6 bytes of data were used and sent for the orientation and position commands. The robot could be navigated
with a joystick instead of the 6 DOF haptic device. A 3D mouse (space navigator, 3Dconnexion) enabled the
production of three-dimensional motions. An m-file was written in MATLAB for reading the joystick via USB.
Motion commands yielded by users were transmitted to the ds1103 controller board via the RS-232 serial port.

3. Results
3.1. Kinematics and dynamics of the SP

Robot kinematics defines the geometric relationships between Cartesian and joint space of a robot. Coordinate
systems can be placed at the center of the upper mobile plate and base plate in order to find the inverse
kinematics of the SP as depicted in Figure 3. Bi (i = 1, 2, .. 6) and Ti (i = 1, 2, .. 6) coordinate systems show
the connection points of each leg.

Figure 3. Kinematic configuration of the SP.

These connection points can be computed from

Ti =

 Tix

Tiy

Tiz

 =

 rt cos(λi)
rt sin(λi)

0

 Bi =

 Bix

Biy

Biz

 =

 rb cos(νi)
rb sin(νi)

0

. (1)
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λi =
iπ

3
− θt

2
i = 1, 3, 5 and λi = λi−1 + θt i = 2, 4, 6. (2)

νi =
iπ

3
− θb

2
i = 1, 3, 5 and νi = νi−1 + θb i = 2, 4, 6. (3)

θb and θt are the angles between coordinates, and rb and rt are the radii of the bottom and top plates,
respectively. The leg vectors can be computed from the following equation: [15],

Li = RXY ZTi + P − Bi i = 1, 2, ..., 6. (4)

P is the position vector and R is the orientation matrix. Finally, leg lengths are the norms of the vectors.
Forward kinematics can be defined by calculation of the robot tool point from the known joint values. In this
study, online and offline forward kinematics of the SP were solved by the Newton–Raphson numerical iteration
method based on the inverse kinematics solution. Accordingly, the equation needing to be solved is shown
below:

f (i) = (R11Tix+R12Tiy+px−Bix)
2+(R21Tix+R22Tiy+py−Biy)

2+(R31Tix+R32Tiy+pz)
2−(l (i)+lnominal)

2.

(5)
This nonlinear equation can be solved by using the Newton–Raphson algorithm, whose equations are given
below:

Γij =
∂fi
∂xj

, (6)

x(υ+1) = x(υ) − Γ−1(υ)fυ. (7)

In order to find the relevant Γij , first, the row of the Γ matrix can be obtained based on partial derivatives.
Finally, an embedded MATLAB function was written in Simulink for this algorithm. The Jacobian matrix is
another important topic and can be defined as follows:

L̇ = JẊ, (8)

τ = JTF . (9)

J ,
.

L , X , τ , and F represent the Jacobian matrix, leg velocity vector, end effector velocities, joint torques,
and force applied to the actuators, respectively.

The forward dynamics of the SP is expressed by the following equation in Cartesian space [16]:

M (X) Ẍ + C
(
X, Ẋ

)
Ẋ + G (X) = τ . (10)

M stands for the 6 × 6 symmetric and positive definite mass matrix, C for the Coriolis and centripetal matrix,
G for the gravity vector, τ for the applied torque vector, and X for the position and orientation of the upper
plate. The full model of the system with addition of actuator dynamics can be obtained as below:

La
dia
dt

+Raia = Va −Kbθ̇, (11)
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τm − τ l = Jmθ̈ +Bmθ̇. (12)

La is the inductance (H), ia is the current (A), Ra is the resistance (Ω), Va is the applied voltage (V), Kb is
the back EMF constant (V/rpm), θ is the motor position (rad), τm is motor the torque (Nm), τl is the load
torque, Jm is the total inertia (kgm2 ), and Bm is the total damping (Nms/rad). The matrix form of Eq. (12)
can be defined as follows:

τm = MaL̈ + NaL̇ + KaY . (13)

Ma = 2π
p (Jm)I6x6 , Na = 2π

p (Bm)I6x6 , Ka = p
2πI6x6 , Y = 2π

p τ l , and p is the ball screw pitch. Finally, the

full dynamics of the SP is achieved by [17]:

τm = M̌fẌ + ŇfẊ + Ǧf , (14)

M̌f = MaJ + KaJ
−TM, Ňf = NaJ + MaJ̇ + KaJ

−TC, Ǧf = KaJ
−TG. (15)

Figure 4 shows a block diagram of Eq. (14), which represents the full dynamic model of the SP and a Simulink
model designed for simulations about position and trajectory control of the SP.

Figure 4. Full dynamic model diagram of the SP.

3.2. Position control
The SP position controller can be designed in the Cartesian space or joint space. Forward kinematics is required
for position control of the SP in the Cartesian space, whereas the design of the controller in the joint space
needs inverse kinematics. Forward kinematics is a difficult problem; however, inverse kinematics is an easier
task to solve for parallel manipulators. Therefore, the position controller of the SP was designed in joint
space. Position control in Cartesian space was transformed into leg position control in the joint space. A
novel intelligent PI (iPI) control method [18–20] was used for the position and trajectory control of the SP.
Intelligent PID controllers show better control performance than classic PID controllers, as demonstrated in
[18–20]. This is achieved because intelligent PID controllers can be tuned in a quite straightforward and natural
way in contrast to the classical PID [20]. An iPID controller is similar to a classical PII2D controller [20]. A
new model-free intelligent PI controller [18] is defined for n = 1:

ẏ = F + βu, (16)

u =
F − ẏ∗

β
+Kpe+Ki

∫
e, (17)

966



KİZİR and BİNGÜL/Turk J Elec Eng & Comp Sci

where e = y∗ − y is the error, y∗ is the reference trajectory, Kp and Ki are the proportional and integrator
tuning gains, and β is a constant parameter. For the implementation, Eqs. (16) and (17) were slightly modified
[19]:

ẏ(t) = F̃ (t) + βu(t− λ), (18)

u =
F̃ (t)− ẏ∗(t)

β
+Kp(y

∗(t)− y(t)) +Ki

∫
(y∗(t)− y(t))dt, (19)

where F̃ (t) is the current estimate of F (t) calculated by Eq. (20) with the first derivative of the current output
measurement ( ẏ(t)) and previous input (u(t− λ)):

F̃ (t) = ẏ(t)− βu(t− λ). (20)

Stability analysis of the iPI controller can be found in [19] and it was shown that if β and controller parameters
are selected such that the s2 + βKps+ βKi polynomial is Hurwitz then three cases are obtained:

Case I : If either λ → 0 or | z |<<
1√
βλ

, then model-free control is achieved and the controller gains

can be selected using the Routh–Hurwitz stability criterion.
Case II : If βλ | z |2→ ∞ , then three closed-loop poles are located at the origin of the s-plane, which is

unstable.
Case III : A parameter-based tuning of the system is required, where Case I must be provided to make

the system stable, and if so, dominant poles are located at:

s1,2 =
(−βKp ∓

√
β2K2

p − 4βKi)

2
. (21)

Under these conditions the iPI controller was designed and compared with the classical PID. Under
the same conditions, 4 different point to point smooth trajectory (Kane functions) tracking experiments were
conducted in the z axis for 2 s. Results of the experiments are given in the Table (best performance shown
in bold) with controller parameters of total error costs (RMSE), controller effort, and RMSE error costs
of each leg. The performance index used in the table is the root mean squared error (RMSE) defined as

RMSE =

√
1

N

∑N
i=1(e(t)

2) . Results showed that an improvement of 15.68% was achieved from Exp. IV

compared to I, an improvement of 10.78% from Exp. IV to II, and an improvement of 17.64% from Exp.
IV to III according to the total cost values. This comparison shows that any of the iPIs has better tracking
performance than the classical PID in the trajectory experiments.

One of the real-time experimental position responses under haptic navigation is given in Figure 5. In
the figure, reference orientation and position commands applied by the haptic device and robot position in
Cartesian space computed from joint space values using forward kinematics are shown. The response of the
actuators or joint space according to the motion in Figure 5 is shown in Figure 6, which proves Figure 5. The
three axis forces exerted during the experiment, which are also reflected by the haptic device, are shown in
Figure 7. The haptic device used in this study allows three axis force feedback, which provides tactile feedback
to the surgeon. Force feedback is especially important in robotic surgery, but it is not crucial for endoscope
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Table. Comparison of trajectory tracking performances for the iPI and classical PID.

Exp. Parameters Total
cost

Control
effort Leg1 Leg2 Leg3 Leg4 Leg5 Leg6

1

β:2
F: 0.1
Kp:10
Ki:20

0.0086 0.2722 0.0020 0.0013 0.0014 0.0013 0.0014 0.0013

2

β:2
F: 0.02
Kp:10
Ki:20

0.0091 0.2723 0.0021 0.0015 0.0015 0.0014 0.0015 0.0012

3

β:0.4
F: 0.02
Kp:10
Ki:20

0.0084 0.2822 0.0019 0.0014 0.0014 0.0012 0.0013 0.0012

4
Kp:10
Ki:20
Kd:0.006

0.0102 0.2799 0.0017 0.0017 0.0016 0.0023 0.0015 0.0013

positioning, especially in transsphenoidal surgery. The surgeon can be feel the tool/tissue interaction by the
haptic device with tactile feedback, for example when the endoscope touches the body. Gaining touch sense for
the surgeon is an important capability in robotic surgery.

3.3. Endoscopic transsphenoidal surgery

Endoscopic transsphenoidal surgery is a special surgical operation in neurosurgery [8, 21]. It aims at evacuation
of the tumor in the pituitary gland. High-resolution endoscopes are used in this surgery for viewing. The
operation is carried out through the patient’s nostrils. In order to access it through the sphenoid sinus, the
nasal cavity must be prepared first. Figure 8 is a view of the endoscopic approach to the pituitary gland
region. Furthermore, the nasal cavity, sphenoid sinus, and tuberculum sella, which is almost inaccessible today
by endoscopic tools, can be seen in the figure [13]. After the patient is prepared for the surgery, the surgeon
has to hold and direct the endoscope using one hand during surgery. Surgeons try to operate and use surgical
equipment under video guides with the other hand. The surgeons may be tired during a long operation.
Therefore, surgeons may perform the surgery alternately, so there are more surgeons than necessary at the
same time. This is also critical, because two or more operations may be carried out if the hospital has qualified
facilities. To eliminate these disadvantages, a high precision parallel manipulator can be used as an endoscope
positioner. For this reason, a SP based robotic system is developed, which can be navigated by a six DOF
haptic device and joystick. The workspace of the haptic device and the SP was matched to each other. The
joystick was designed to work incrementally and the haptic device may also be designed to work incrementally.
The surgeons should use the haptic device when continuous trajectory tracking and force feedback are required.
Also, the haptic device allows mapping surgeons’ hand movements with endoscope motion. Surgeons should
use the joystick when fundamental commands such as stop or move in any direction are needed. The Cartesian
position and orientation commands produced by the haptic device were converted to leg lengths using the
inverse kinematics. Force signals produced by the 6 DOF force/torque sensor were processed and reflected by
the haptic device at the same time. A series of experimental tests were conducted on a realistic skull model
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Figure 5. Trajectory control of the SP with haptic device in Cartesian space.

in the laboratory. A photograph of the experimental setup is shown in Figure 9a. After laboratory tests on
the model, some experiments were carried out on cadavers with neurosurgeons in order to demonstrate the
effectiveness of the system. The demonstration on a fresh cadaver is shown in Figure 9b. Comments about the
usage of this system in endoscopic transsphenoidal surgery from the medical point of view can be found in [22].

4. Conclusion
The SP allows high resolution manipulation so it can be used in robotic surgery with high precision motions.
In this study, a SP based robotic system was developed for an endoscope positioner and holder especially in
endoscopic transsphenoidal surgery. In this surgery, the endoscope can be navigated by the SP in the full
operation space with six DOF joystick and haptic device. The haptic device allows three axis force feedback,
which is important in robotic surgery, but it is not crucial for endoscope positioning. Some criticisms may
be mentioned about the system: robot placement and size of the upper plate. Some suggestions about robot
placement can be given in order to use the developed system more effectively. The robot can be connected
to the ceiling of the operating room using a device like a surgery lamp or a serial manipulator. As a future
study, a wheeled station can be designed to hold the SP or adapted to a serial manipulator. On the other
hand, the workspace of the surgeon can be restricted by the upper plate. In order to overcome this drawback,
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Figure 6. Trajectory control of the SP with haptic device in joint space.
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Figure 7. Three axis forces reflected by haptic device during above motion.

a new kinematic design of the SP can be studied (smaller, lighter, etc.) or the robot can hold and navigate
an instrument holder with the endoscope simultaneously. Furthermore, a prismatic axis can be attached to
the top platform in order to increase the workspace. In summary, the SP based robotic system developed here
is feasible for transsphenoidal surgery and results can lead to new possibilities in the area of transsphenoidal
surgery such as fully automated robotic surgery systems with integration of the navigation system.
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Figure 8. Pituitary gland region in the brain [13].

Stewart

Figure 9. (a) An experiment performed on realistic skull model. (b) An experiment performed on a fresh cadaver.
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