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Abstract: We consider a biobjective sequential decision-making problem where an allocation (arm) is called ϵ lexi-
cographic optimal if its expected reward in the first objective is at most ϵ smaller than the highest expected reward,
and its expected reward in the second objective is at least the expected reward of a lexicographic optimal arm. The
goal of the learner is to select arms that are ϵ lexicographic optimal as much as possible without knowing the arm
reward distributions beforehand. For this problem, we first show that the learner’s goal is equivalent to minimizing the
ϵ lexicographic regret, and then, propose a learning algorithm whose ϵ lexicographic gap-dependent regret is bounded
and gap-independent regret is sublinear in the number of rounds with high probability. Then, we apply the proposed
model and algorithm for dynamic rate and channel selection in a cognitive radio network with imperfect channel sensing.
Our results show that the proposed algorithm is able to learn the approximate lexicographic optimal rate–channel pair
that simultaneously minimizes the primary user interference and maximizes the secondary user throughput.

Key words: Multiarmed bandit, biobjective learning, lexicographic optimality, dynamic rate and channel selection,
cognitive radio networks

1. Introduction
The multiarmed bandit (MAB) is used to model real-world applications in which the decision maker repeatedly
interacts with its unknown environment in order to maximize its long-term reward [1, 2]. The decision maker
can be a recommender system recommending items to its users [3], a secondary user performing opportunistic
spectrum access in a cognitive radio network [4], or an agent that chooses a routing path between the source
and the destination in a network [5].

A plethora of prior works on the MAB focused on designing learning algorithms that optimize the total
scalar reward. These include the celebrated upper confidence bound (UCB) policies [1, 6] and posterior sampling
[2, 7]. On the other hand, in many real-world applications of the MAB, the environment produces vector-
valued rewards, where each component of the reward vector corresponds to a different goal. For instance, in a
cognitive radio network, the goal of the secondary user (SU) is to maximize its throughput while minimizing
the interference to the primary user (PU). In this paper, we introduce the biobjective MAB to tackle this type
of sequential decision-making problems. In the biobjective MAB, the learner receives, at each round, random
rewards from two objectives. These objectives are lexicographically ordered in the sense that the learner values
the first objective more than the second objective.

The learner aims at selecting approximate lexicographic optimal allocations (arms), which yield an ϵ
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optimal expected reward in the first objective and an expected reward that is at least the expected reward of a
lexicographic optimal arm in the second objective. This notion of optimality allows the learner to accumulate
a high reward in the second objective by incurring a small loss in the first objective. In order to quantify the
loss of the learner due to not knowing the ϵ lexicographic optimal arms beforehand, we introduce the notion of
ϵ lexicographic regret, and propose a learning algorithm whose ϵ lexicographic gap-dependent regret is O(1)

and gap-independent regret is Õ(
√
T ) with high probability. Then, we cast the dynamic rate and channel

selection problem in a cognitive radio network with imperfect channel sensing as a biobjective MAB where the
first objective is related to PU interference and the second objective is related to SU throughput.

To sum up, in this work, we propose a new MAB called the biobjective MAB, study the notion of
approximate lexicographic optimality, propose a learning algorithm and bound its regret, and investigate
a multirate multichannel communication application of the biobjective MAB. The algorithm we propose is
fundamentally different from the algorithms designed to learn in the MAB with scalar reward and uses confidence
intervals, in addition to the UCBs, in order to learn the optimal arms based on lexicographic ordered objectives.
This also makes the regret analysis substantially different from the prior work, since bounding the regret requires
considering the confidence intervals for both objectives.

2. Related work
In the classical MAB, first studied in [2], at each round, after selecting an arm, the learner receives a random
reward that comes from an unknown distribution that depends on the selected arm. An asymptotically optimal
adaptive allocation rule with O(logT ) regret is proposed in [1] for the classical MAB with independent arms.
Later, finite time O(logT ) regret bounds are derived in [6]. It is also shown in [1] that when the arms are
independent, the best possible regret is O(logT ) . Numerous interesting extensions of the classical MAB are
proposed later on, including the combinatorial MAB [8] and the unimodal MAB [9, 10].

For instance, [8] proposes the combinatorial MAB in which the learner selects at each round a super arm
that is composed of multiple arms, observes the outcomes of the selected arms, and receives a linear combination
of the rewards of the selected arms. The combinatorial bandit is used in [11] to learn the optimal allocations in
a multiuser multichannel communication system. Due to obtaining observations from each selected arm, this
problem is also called the combinatorial semibandit [12]. Reward functions that are nonlinear in the expected
outcomes of arms are considered in [13] and [14].

The variant of the classical MAB we consider in this paper is the multiobjective MAB. Unlike the classical
MAB, where the reward is scalar, the reward is vector valued in the multiobjective MAB. This results in various
notions of optimality, each of which require a different learning algorithm. For instance, Pareto optimality is
considered in [15], [16], and [17]. Essentially, an arm is called Pareto optimal, if switching to any arm that
is better in terms of the expected reward in at least one objective will result in a reduction in the expected
reward in at least one other objective. It is shown that the Pareto regret, i.e. the loss due to not selecting
arms from the Pareto front, is O(logT ) . As an extension, contextual multiobjective MAB with similarity
information is considered in [18]. In this work, the authors propose a multiobjective learning algorithm that
uses the contextual zooming idea [19], and prove that the Pareto regret is Õ(T (1+dp)/(2+dp)) where dp is the
Pareto zooming dimension of the similarity space.

Another important notion of optimality in the multiobjective setting is lexicographic optimality [20].
Unlike Pareto optimality in lexicographic optimality, the order of the objectives matter. In this case, the
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learner prefers obtaining higher reward in any objective i to obtaining higher reward in any other objective j

such that i < j . Lexicographic optimality is first studied in a contextual MAB [21, 22], and it is shown that
the lexicographic regret is Õ(T (2+d)/(3+d)) , where d is the dimension of the context set. In addition to the
MAB, the notions of Pareto optimality and lexicographic optimality are also considered in the more general
reinforcement learning framework [23, 24].

Compared to all the works mentioned above, in this paper, we propose the biobjective MAB with
approximate lexicographic optimality as the performance metric for the first time. As opposed to lexicographic
optimality, we analyze the learner’s performance when it can tolerate ϵ > 0 suboptimality in the first objective.
This way, the learner seeks to identify and select ϵ optimal arms in the first objective, which might result in
significant improvement in the reward it obtains in the second objective. We prove two high probability bounds
on the ϵ lexicographic regret: O(1) gap-dependent regret bound and Õ(

√
T ) gap-independent regret bound.

These bounds are much sharper than the Õ(T (2+d)/(3+d)) regret bound for the multiobjective contextual MAB,
since the existence of contexts makes learning of lexicographic optimal allocations more difficult.

3. Problem formulation
In this section, we explain the system model, and define approximate lexicographic optimality and the regret.
Our notation is presented in Table 1.

Table 1. Notation

Notation for problem description
A Set of arms a(t) Arm selected in round t

µi
a Expected reward of arm a in obj. i ri(t) Random reward in obj. i

µa Expected reward vector of arm a κi(t) Noise in obj. i

A1
∗ Set of arms with the highest expected µ1

∗ The highest expected reward
reward in obj. 1 in obj. 1

A2
∗ Set of lexicographic optimal arms µ2

∗ Expected reward of an arm in A2
∗ in obj. 2

∆1
a,ϵ Suboptimality gap of arm a in obj. 1 ∆2

a Suboptimality gap of arm a in obj. 2
Si Set of suboptimal arms in obj. i Reg1ϵ(T ) Regret in obj. 1
Reg2(T ) Regret in obj. 2 Regϵ(T ) ϵ lexicographic regret
Notation for the learning algorithm (ALEX)
Na(t) Number of times arm a was selected µ̂i

a(t) Sample mean estimate of µi
a

prior to round t in round t

ui
a(t) Upper confidence bound (UCB) for lia(t) Lower confidence bound (LCB) for

the expected reward in obj. i the expected reward in obj. i

ca(t) Uncertainty term â1∗(t) Arm with the highest UCB in obj. 1

Â1
∗(t) Set of candidate optimal arms

3.1. System model

We consider decision epochs (rounds) indexed by t ∈ {1, 2, . . .} . At each round t , the learner first selects
an arm a(t) from the finite arm set A , and then, observes a random reward for each objective i ∈ {1, 2} ,
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denoted by ri(t) , which is equal to µi
a(t) + κi(t) , where µi

a denotes the expected reward of arm a in objective

i and κi(t) denotes the zero mean noise. The learner does not know µi
a , a ∈ A beforehand, and the

noise process (κ1(t), κ2(t)) is assumed to be independent over rounds and conditionally 1 -sub-Gaussian, i.e.

∀λ ∈ R E[eλκi(t)|a(t)] ≤ exp(λ2/2) . This assumption on the noise distribution is very general as it covers the
Gaussian distribution with zero mean and unit variance, and any bounded zero mean distribution defined over
an interval of length 2 . We use µa := (µ1

a, µ
2
a) to denote the expected reward vector of arm a .

3.2. Approximate lexicographic optimality

Let A1
∗ := arg maxa∈A µ1

a denote the set of arms with the highest expected reward and µ1
∗ := maxa∈A µ1

a

denote the highest expected reward in objective 1 . The set of lexicographic optimal arms is defined as
A2

∗ := arg maxa∈A1
∗
µ2
a . The expected reward of a lexicographic optimal arm in objective 2 is defined as

µ2
∗ := maxa∈A1

∗
µ2
a . Moreover, when referring to a lexicographic optimal arm we use a∗ . For a given ϵ > 0 ,

arm a is called ϵ (approximate) lexicographic optimal if it satisfies the following condition: µ1
a ≥ µ1

∗ − ϵ and
µ2
a ≥ µ2

∗ . We define the suboptimality gap of arm a in objective 1 as ∆1
a,ϵ := [µ1

∗−µ1
a− ϵ]+ and in objective 2

as ∆2
a := [µ2

∗ − µ2
a]+ , where [µ]+ = max{0, µ} . Based on this, the set of suboptimal arms in objectives 1 and

2 are defined as S1 := {a ∈ A : ∆1
a,ϵ > 0} and S2 := {a ∈ A : ∆2

a > 0} respectively. Cardinalities of these sets
are represented by using | · | . For instance, |S1| represents the cardinality of S1 .

In many learning applications, it is intuitive to consider approximate lexicographic optimality instead of
lexicographic optimality. For instance, when there are many near-optimal arms in objective 1 , an arm which
is slightly worse than the best arm in objective 1 can have a much higher expected reward in objective 2 than
the best arm in objective 1 . Such a case is considered in Section 6.

3.3. Regret definition

Since the learner does not know the expected arm rewards beforehand, we compare it with an oracle, which
knows the expected rewards of the arms and chooses an ϵ lexicographic optimal arm in each round. The loss
of the learner with respect to this oracle is measured by the ϵ lexicographic (pseudo) regret (referred to as the
regret hereafter), and is given as the tuple Regϵ(T ) := (Reg1ϵ(T ),Reg2(T )) , where

Reg1ϵ(T ) :=
T∑

t=1

∆1
a(t),ϵ and Reg2(T ) :=

T∑
t=1

∆2
a(t). (1)

Using the multidimensional regret notion defined above, we say that Regϵ(T ) is O(max{f1(T ), f2(T )}) when
Reg1ϵ(T ) = O(f1(T )) and Reg2(T ) = O(f2(T )) . In Section 4, we propose a learning algorithm with a gap-
dependent regret of O(1) with high probability and O(logT ) in expectation, and a gap-independent regret
of Õ(

√
T ) both with high probability and in expectation. The difference between the gap-dependent and

the gap-independent regrets is that the former depends on problem-specific parameters such as the minimum
suboptimality gap, while the latter does not have any dependence on such parameters (i.e. it holds for the
worst-case selection of problem-specific parameters).
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4. The learning algorithm

Our algorithm is named Approximate Lexicographic Exploration and Exploitation (ALEX) and its pseudocode
is given in Algorithm 1. ALEX takes as input ϵ > 0 and for each arm a it keeps a counter Na(t) , which counts
the number of times arm a was selected prior to round t , and the sample mean estimate of the rewards from
the selections of arm a prior to round t for objectives 1 and 2 , denoted by µ̂1

a(t) and µ̂2
a(t) respectively.

Arm selection of ALEX in round t depends on the confidence intervals in the first objective. The
upper confidence bound (UCB) and the lower confidence bound (LCB) of arm a in objective i are given as
ui
a(t) := µ̂i

a(t) + ca(t) and lia(t) := µ̂i
a(t)− ca(t) respectively. Here,

ca(t) =

√
1 +Na(t)

N2
a (t)

(
1 + 2 log

(
2|A|(1 +Na(t))1/2

δ

))
(2)

represents the uncertainty in arm a ’s reward, and δ is called the confidence term, which is given as input
to ALEX. As expected, the uncertainty decreases as arm a gets selected. As we will show in Section 5,
µi
a is in the confidence interval [lia(t), u

i
a(t)] with high probability for both objectives in all rounds. Let

â1∗(t) := arg maxa∈A u1
a(t) denote the arm with the highest UCB in objective 1 . The confidence bounds

imply that an arm a for which u1
a(t) < l1â1

∗(t)
(t)− ϵ/3 is suboptimal in the first objective with high probability.

Thus, the set of candidate optimal arms in round t is defined as

Â1
∗(t) :=

{
a ∈ A : u1

a(t) ≥ l1â1
∗(t)

(t)− ϵ/3
}
. (3)

When the uncertainty about arm â1∗(t) is high, i.e. câ1
∗(t)

(t) > ϵ/3 , ALEX selects arm a(t) = â1∗(t) to reduce
its uncertainty. However, since this selection does not take into account the rewards obtained in objective 2 ,
it does not ensure selection of ϵ lexicographic optimal arms. On the other hand, when the uncertainty about
arm â1∗(t) is low, i.e. câ1

∗(t)
(t) ≤ ϵ/3 , ALEX selects the arm in Â1

∗(t) with the highest UCB in objective 2 , i.e.
a(t) = arg maxa∈Â1

∗(t)
u2
a(t) . This ensures that an ϵ lexicographic optimal arm is selected with high probability.

After ALEX selects arm a(t) , it observes the random reward vector r(t) = (r1(t), r2(t)) of arm a(t) ,
and updates the sample mean estimates of the rewards in objectives 1 and 2 and the counter of a(t) . This
procedure is repeated in the next round.

5. Regret analysis

In this section, we prove O(1) gap-dependent and Õ(
√
T ) gap-independent regret bounds for ALEX in the

event that the confidence intervals hold. We also show that the confidence intervals hold with high probability,
which allows us to translate the bounds that we derive for regret to the expected regret. The biobjective nature
of the problem requires us to analyze the regrets incurred in objectives 1 and 2 separately. Essentially, for the
regret in objective 2 , we need to deal with two cases: the case where ALEX forces selection of â1∗(t) and the
case where ALEX selects an arm from its candidate optimal arm set Â1

∗(t) .
Throughout our analysis, complement of event E is denoted by Ec . First, we state a concentration

inequality that will be used in the proofs.
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Algorithm 1 ALEX
1: Input: ϵ , δ

2: Initialize counters: Na = 0 , ∀a ∈ A , t = 1

3: Initialize estimates: µ̂1
a = µ̂2

a = 0 , ∀a ∈ A
4: while t ≥ 1 do
5: Compute ui

a = µ̂i
a + ca and lia = µ̂i

a − ca for a ∈ A , i ∈ {1, 2}
6: Set â1∗ = arg maxa∈A u1

a (ties are broken randomly)
7: if câ1

∗
> ϵ/3 then

8: Select arm a(t) = â1∗
9: else

10: Compute candidate optimal arms: Â1
∗ = {a ∈ A : u1

a ≥ l1â1
∗
− ϵ/3}

11: Select arm a(t) = arg maxa∈Â1
∗
u2
a (ties are broken randomly)

12: end if
13: Observe the random reward vector r(t) = (r1(t), r2(t))
14: Update estimates: µ̂i

a(t) ← (µ̂i
a(t)Na(t) + ri(t))/(Na(t) + 1) , i ∈ {1, 2}

15: Update counters: Na(t) ← Na(t) + 1
16: t← t+ 1

17: end while

Lemma 1 (Lemma 6 in [25]) Consider an arm a for which the rewards of objective i are generated by a process
{Ri

a(t)}Tt=1 with µi
a = E[Ri

a(t)] , where the noise Ri
a(t)−µi

a is conditionally 1-sub-Gaussian. Let Na(T ) denote

the number of times a is selected by the beginning of round T . Let µ̂a(T ) =
∑T−1

t=1 I(a(t) = a)Ri
a(t)/Na(T ) for

Na(T ) > 0 and µ̂a(T ) = 0 for Na(T ) = 0 . Then, for any 0 < δ < 2|A| with probability at least 1 − δ/(2|A|)
we have

|µ̂a(T )− µa| ≤

√
1 +Na(T )

N2
a (T )

(
1 + 2 log

(
2|A|(1 +Na(T ))1/2

δ

))
∀T ∈ N. (4)

Next, we define events in which confidence intervals are violated in at least one round. Let UCi
a :=

∪Tt=1{µi
a /∈ [lia(t), u

i
a(t)]} , UCi := ∪a∈AUCi

a and UC := ∪i∈{1,2}UCi . The following lemma shows that UC
occurs with a very little probability.

Lemma 2 Pr(UC) ≤ δ .

Proof This follows from the concentration inequality given in Lemma 1. We observe that {µi
a ∈ [lia(t), u

i
a(t)]} =

{|µi
a − µ̂i

a(t)| ≤ ca(t)} . Thus, Lemma 1 shows that (UCi
a)

c holds with probability at least 1 − δ/(2|A|) , and
hence, UCi

a holds with probability at most δ/(2|A|) . From the union bound it follows that Pr(UC) ≤ δ . 2

The next lemma bounds for event UCc the difference between the expected reward of the selected arm
and the expected reward of a lexicographic optimal arm in objective 1 as a function of ϵ and the length of the
confidence interval of the selected arm.

Lemma 3 When ALEX is run, the following holds for event UCc : µ1
∗ − µ1

a(t) ≤ u1
a(t)(t) − l1a(t)(t) + ϵ for all

t ∈ {1, . . . , T} .
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Proof For event UCc , we have

µ1
∗ − µ1

a(t) ≤ u1
a∗
(t)− l1a(t)(t) (5)

≤ u1
â1
∗(t)

(t)− l1a(t)(t) (6)

≤ u1
a(t)(t)− l1a(t)(t) + ϵ. (7)

Here, Eq. (5) holds since µ1
∗ ≤ u1

a∗
(t) and µ1

a(t) ≥ l1a(t)(t) for event UCc , Eq. (6) holds since u1
â1
∗(t)

(t) ≥ u1
a∗
(t)

for all t by definition of â1∗(t) , and Eq. (7) holds since u1
a(t)(t) ≥ u1

â1
∗(t)

(t)− ϵ for all t . For the last inequality,

observe that when câ1
∗(t)

(t) ≤ ϵ/3 , by the arm selection rule of ALEX we have u1
a(t)(t) ≥ l1â1

∗(t)
(t) − ϵ/3 =

u1
â1
∗(t)

(t) − 2câ1
∗(t)

(t) − ϵ/3 ≥ u1
â1
∗(t)

(t) − ϵ , and when câ1
∗(t)

(t) > ϵ/3 , again by the arm selection rule of ALEX

a(t) = â1∗(t) , thus we have u1
a(t)(t) = u1

â1
∗(t)

(t) ≥ u1
â1
∗(t)

(t)− ϵ . 2

Let T := {1 ≤ t ≤ T : câ1
∗(t)
≤ ϵ/3} denote the set of rounds in which ALEX selects an arm based on

the UCBs in objective 2 (lines 10–11 of Algorithm 1) and T c := {1, . . . , T} − T . In the following lemma, the
suboptimality gap of the arm selected in round t ∈ T in objective 2 is bounded for event UCc by the length
of the confidence interval of the selected arm.

Lemma 4 When ALEX is run, the following holds for event UCc : µ2
∗ − µ2

a(t) ≤ u2
a(t)(t)− l2a(t)(t) for t ∈ T .

Proof Consider any lexicographic optimal arm a∗ . For event UCc , we have u1
a∗
(t) ≥ µ1

∗ ≥ µ1
â1
∗(t)
≥ l1â1

∗(t)
(t) ,

which implies that a∗ ∈ Â1
∗(t) . Thus, we have

µ2
∗ − µ2

a(t) ≤ u2
a∗
(t)− l2a(t)(t) (8)

≤ u2
a(t)(t)− l2a(t)(t), (9)

where Eq. (8) holds since µ2
∗ ≤ u2

a∗
(t) and µ2

a(t) ≥ l2a(t)(t) for event UCc , and Eq. (9) holds since u2
a(t)(t) ≥

u2
a∗
(t) by the arm selection rule of ALEX on t ∈ T . 2

We also need to bound the regret in objective 2 for rounds up to round T for which t /∈ T . Let
T c
a := {t ∈ {1, . . . , T} − T : â1∗(t) = a} . Obviously, ALEX does not incur any regret in objective 2 in rounds

t ∈ T c
a for a ∈ A− S2 , and incurs regret ∆2

a in objective 2 in rounds t ∈ T c
a for a ∈ S2 .

Lemma 5 When ALEX is run, we have

∑
t∈T c

∆2
a(t) ≤

∑
a∈S2

(
3 +

36

ϵ2
log 6e

1
2 |A|
ϵδ

)
∆2

a. (10)

Proof The proof follows from bounding the cardinality of T c
a for a ∈ S2 . Note that t ∈ T c

a when ca(t) > ϵ/3 .
Similar to the proof of Theorem 7 in [25], this implies that
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N2
a (t)− 1

Na(t) + 1
≤ N2

a (t)

Na(t) + 1
≤ 9

ϵ2

(
2 log 2e

1
2 |A|(1 +Na(t))

1
2

δ

)
(11)

Then, from Lemma 8 in [26], we obtain Na(t) ≤ 3 + 36
ϵ2 log 6e

1
2 |A|
ϵδ .

2

In the rest of the analysis, we will bound both Regi(T ) under the event UCc and E[Regi(T )] by using
the results of the lemmas above. For the latter, we will use the following decomposition:

E[Regi(T )] = E[Regi(T )|UC]Pr(UC) + E[Regi(T )|UCc]Pr(UCc) ≤ T∆i
max Pr(UC) + E[Regip(T )|UCc], (12)

where ∆1
max = maxa∈A ∆1

a,ϵ and ∆2
max = maxa∈A ∆2

a .
The following theorem gives gap-dependent regret bounds for ALEX.

Theorem 1 When ALEX is run with δ ∈ (0, 1) and ϵ > 0 , the following bounds hold with probability at least
1− δ for all T > 0 :

Reg1ϵ(T ) ≤
∑

a:∆1
a,ϵ>0

(
3∆1

a,ϵ +
16

∆1
a,ϵ

log
(
4e

1
2 |A|

∆1
a,ϵδ

))
, (13)

Reg2(T ) ≤
∑

a:∆2
a>0

(
3∆2

a +
16∆2

a

(min{∆2
a, 2ϵ/3})2

log
(

4e
1
2 |A|

min{∆2
a, 2ϵ/3}δ

))
. (14)

Moreover, when ALEX is run with δ = 1/T , we have the following bounds on the expected regret:

E[Reg1ϵ(T )] ≤
∑

a:∆1
a,ϵ>0

(
3∆1

a,ϵ +
16

∆1
a,ϵ

log
(
4e

1
2 |A|T
∆1

a,ϵ

))
+∆1

max, (15)

E[Reg2(T )] ≤
∑

a:∆2
a>0

(
3∆2

a +
16∆2

a

(min{∆2
a, 2ϵ/3})2

log
(

4e
1
2 |A|T

min{∆2
a, 2ϵ/3}

))
+∆2

max. (16)

Proof We first bound the regret in objective 1 . For event UCc , if arm a is selected in round t , then we have
ca(t) ≥ ∆1

a,ϵ/2 (by Lemma 3). The rest of the proof is similar to the proof of Theorem 7 of [25]:

ca(t) ≥
∆1

a,ϵ

2
⇒ Na(t) ≤ 3 +

16

(∆1
a,ϵ)

2
log
(
4e

1
2 |A|

∆1
a,ϵδ

)
, (17)

where Eq. (17) follows from Lemma 8 in [26]. Recall that we have Reg1ϵ(T ) =
∑

a:∆1
a,ϵ>0 ∆

1
a,ϵNa(T + 1) .

Combining this with the result above, we obtain
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Reg1ϵ(T ) ≤
∑

a:∆1
a,ϵ>0

(
3∆1

a,ϵ +
16∆1

a,ϵ

(∆1
a,ϵ)

2
log
(
4e

1
2 |A|

∆1
a,ϵδ

))
. (18)

For the second objective, for event UCc , if arm a is selected in round t ∈ T , then we have ca(t) ≥ ∆2
a/2

(by Lemma 4). Similar to Eq. (17), this implies that

Na(t) ≤ 3 +
16

(∆2
a)

2
log
(
4e

1
2 |A|

∆2
aδ

)
. (19)

In addition, Lemma 5 implies that if arm a ∈ S2 is selected in round t /∈ T , then ca(t) > ϵ/3 , which implies

that Na(t) ≤ 3 + 36
ϵ2 log 6e

1
2 |A|
ϵδ .

From the two equations above, we observe that for any arm a ∈ S2 , we have

Na(t) ≤ 3 +
16

(min{∆2
a, 2ϵ/3})2

log
(

4e
1
2 |A|

min{∆2
a, 2ϵ/3}δ

)
. (20)

Thus,

Reg2(T ) ≤
∑

a:∆2
a>0

(
3∆2

a +
16∆2

a

(min{∆2
a, 2ϵ/3})2

log
(

4e
1
2 |A|

min{∆2
a, 2ϵ/3}δ

))
. (21)

Bounds on the expected regret are obtained by using Eq. (12) and setting δ = 1/T . 2

The regret bounds given in Theorem 1 are gap-dependent since they are inversely proportional to the
suboptimality gaps. This means that the regret is large in problem instances where the suboptimality gaps are
small. In contrast to these bounds, the next theorem gives gap-independent regret bounds for ALEX that hold
for any problem instance.

Theorem 2 When ALEX is run with δ ∈ (0, 1) and ϵ > 0 , the following bounds hold with probability at least
1− δ for all T > 0 :

Reg1ϵ(T ) ≤ 4
√
2BT,δ

√
|S1|T + |S1|∆1

max, (22)

Reg2(T ) ≤ 4
√
2BT,δ

√
|S2|T +

(
3 +

36

ϵ2
log 6e

1
2 |A|
ϵδ

)
|S2|∆2

max, (23)

where BT,δ :=
√

1 + 2 log(2|A|T 1/2/δ) . Moreover, when ALEX is run with δ = 1/T , we have the following
bounds on the expected regret:

E[Reg1ϵ(T )] ≤ 4
√
2BT,1/T

√
|S1|T + (|S1|+ 1)∆1

max, (24)

E[Reg2(T )] ≤ 4
√
2BT,1/T

√
|S2|T +

(
3|S2|+

36|S2|
ϵ2

log
(
6e

1
2 |A|T
ϵ

)
+ 1

)
∆2

max. (25)
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Proof Let Na := {1 ≤ t ≤ T : a(t) = a} and Ña := {t ∈ Na : Na(t) ≥ 1} . By Lemma 3, we have for event
UCc (which happens with probability at least 1− δ )

Reg1ϵ(T ) ≤
∑
a∈S1

∑
t∈Ña

(u1
a(t)− l1a(t)) + |S1|∆1

max (26)

≤ 2
√
2
∑
a∈S1

BT,δ

∑
t∈Ña

√
1

Na(t)

+ |S1|∆1
max (27)

≤ 4
√
2BT,δ

∑
a∈S1

√
Na(T ) + |S1|∆1

max (28)

≤ 4
√
2BT,δ

√
|S1|T + |S1|∆1

max, (29)

where Eq. (27) holds since ca(t) ≤
√
2(1 + 2 log(2|A|T 1/2/δ))/Na(t) , Eq. (28) follows from the fact that

Na(T )−1∑
k=0

√
1

1 + k
≤
∫ Na(T )

x=0

1√
x
dx = 2

√
Na(T ) (30)

and Eq. (29) follows from the Cauchy–Schwarz inequality.

The bound for Reg2(T ) is obtained by using the result in Lemmas 4 and 5. By Lemma 5, we know that

∑
t∈T c

∆2
a(t) ≤ 3|S2|∆2

max +
36|S2|∆2

max
ϵ2

log 6e
1
2 |A|
ϵδ

. (31)

Let Ma := {t ∈ T : a(t) = a} . Similar to the regret bound proof for objective 1 , we have

∑
t∈T

∆2
a(t) ≤

∑
a∈S2

∑
t∈Ma

(u2
a(t)− l2a(t)) (32)

≤ 2
√
2
∑
a∈S2

(
BT,δ

∑
t∈Ma

√
1

Na(t)

)
(33)

≤ 4
√
2BT,δ

√
|S2|T . (34)

The bound for Reg2(T ) is obtained by summing the results of Eqs. (31) and (34). Finally, the bounds
on the expected regret simply follows from using Eq. (12) and setting δ = 1/T . 2

6. Experiments on adaptive multirate multichannel communication
In a cognitive radio network, the SUs are expected to perform under highly dynamic and unpredictable channel
conditions by exploiting spatiotemporal spectrum opportunities while avoiding interference with the PUs.
Essentially, each SU is required to select a channel that is not currently occupied by a PU, and transmit on
that channel with an appropriate rate to maximize its throughput. To accomplish this task, adaptive learning
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algorithms that are designed to exploit spectrum opportunities are essential. In the past, MAB algorithms
were used for optimal channel and rate selection in cognitive radio networks [4, 10]. Here, we present for the
first time, an MAB algorithm for optimal channel and rate selection in a cognitive radio network under a
multidimensional performance metric. Essentially, we aim to maximize the SU throughput while ensuring that
the PU interference is almost optimal.

6.1. Simulation setup

We consider multirate multichannel communication where the SU selects a transmission rate r ∈ R and a
channel c ∈ C in each round. Here, each transmission rate–channel pair corresponds to an arm. Before
transmitting on the selected channel, the SU performs imperfect spectrum sensing with false-positive rate qFP

and false-negative rate qFN . We model the PU activity as a Bernoulli random process that is independent over
channels and i.i.d. over rounds. Based on this, the probability that the PU is active on channel c is denoted
by qPU,c , and the PU activity probability vector is given as qPU = {qPU,c}c∈C .

The reward in objective 1 is related to PU interference. Basically, the SU receives reward 0 in objective
1 if the PU is present on the channel that it selects but it fails to detect the PU. Otherwise, the reward is
1 in objective 1 . The reward in objective 2 is related to SU throughput. If the transmission on the selected
channel with the selected rate r is successful, then the reward in objective 2 is r/rmax , where rmax is the
maximum rate. If there is no transmission or the transmission is unsuccessful (i.e., outage), then the reward
in objective 2 is 0 . Obviously, the expected reward in objective 2 for rate–channel pair (r, c) depends on the
probability of successful transmission, which is given as 1 − pout(r, c, 1) when the PU is present on channel c

and 1− pout(r, c, 0) when the PU is not present on channel c . Here, pout denotes the outage probability, which
depends on the rate, the channel gain, the transmit power, and the receiver noise plus interference power.

For every round t and channel c , the transmit power to receiver noise plus interference power ratio
SINRc,t is assumed to be 1 when the PU is not active and is sampled from Beta(α, β) when the PU is active.
Thus, the interference caused by the PU presence results in a lower expected SINRc,t . We use Nakagami-m
model [27] for channel fading as it captures various fading channels through parameter m . In this model, the
gain of channel c in round t , i.e. h2

c,t , is gamma distributed with probability density function

p(x) =
(λcm)mxm−1

Γ(m)
e−λcmx (35)

with shape parameter m , and rate parameter λcm , where Γ(m) :=
∫∞
0

tm−1e−tdt . When m = 1 , this
corresponds to the Rayleigh fading model where the channel gain is exponentially distributed with rate λc .
The case 0.5 ≤ m < 1 models fading that is more severe than Rayleigh fading and the case m > 1 models
fading that is less severe than Rayleigh fading. In simulations, we focus on three cases: m = 0.5 , m = 1 and
m = 2 . Based on this, the outage event for rate–channel pair (r, c) is defined as log2(1 + h2

c,tSINRc,t) < r .
Parameters used in the simulations are given in Table 2. The given set of parameters corresponds to 9

arms. The expected arm rewards in objectives 1 and 2 are numerically computed by averaging over 5 × 107

random samples, and are given Table 3. Note that the expected reward in objective 1 does not depend on the
channel gain. According to this, the best arms in objective 1 are (2, 2) , (1, 2) and (0.5, 2) and the lexicographic
optimal arm is (1, 2) for m ∈ {0.5, 1, 2} . However, for m = 2 , arm (0.5, 2) is almost as good as arm (1, 2) .
Existence of multiple best arms in objective 1 is due to the fact that the reward in objective 1 does not depend

1075



TEKİN/Turk J Elec Eng & Comp Sci

on the rate. In all simulations, the time horizon is set to T = 106 and the reported results correspond to the
averages over 50 runs.

Table 2. Simulation parameters. λ = {λc}c∈C denotes the set of channel gain parameters.

C R λ qFP qFN qPU α, β
{1, 2, 3} {2, 1, 0.5} {0.5, 1, 0.5} 0.3 0.3 {0.2, 0.05, 0.5} 1, 3

Table 3. Expected arm rewards for the simulation parameters given in Table 2.

a = (r, c) (2,1) (2,2) (2,3) (1,1) (1,2) (1,3) (0.5,1) (0.5,2) (0.5,3)
µ1
a (m ∈ {0.5, 1, 2}) 0.940 0.985 0.850 0.940 0.985 0.850 0.940 0.985 0.850

µ2
a (m = 0.5) 0.125 0.055 0.082 0.139 0.106 0.095 0.095 0.087 0.068

µ2
a (m = 1) 0.126 0.033 0.081 0.174 0.123 0.117 0.119 0.111 0.084

µ2
a (m = 2) 0.112 0.012 0.071 0.210 0.135 0.139 0.137 0.134 0.097

6.2. Algorithms

In addition to ALEX, we also report the results of the following algorithms:
UCB(δ ): This is the UCB-based single-objective learning algorithm proposed in [25], which uses a slightly

different confidence term than UCB1 in [6] and is proven to achieve bounded regret with high probability. Here,
δ denotes the confidence term and is similar to the confidence term of ALEX. In simulations, UCB(δ ) learns
only from objective 1 and the confidence terms of ALEX and UCB(δ ) are set to δ = 0.01 .

Empirical Pareto UCB1 (EP-UCB1): This is the UCB-based multiobjective learning algorithm proposed
in [15]. This algorithm aims at learning to select arms from the Pareto optimal arm set in order to minimize
the Pareto regret. While it is known that a lexicographic optimal arm is also Pareto optimal, the converse does
not generally hold [20].

6.3. Results
The regrets of ALEX in objectives 1 and 2 over rounds are shown for different ϵ values for m = 1 in Figure 1.
Based on this, we conclude that the regret decreases in both objectives as ϵ increases. The regret in objective
1 decreases due to the decreasing suboptimality gaps. Moreover for ϵ = 0.1 , 6 out of 9 arms incur no regret in
objective 1 and for ϵ = 0.2 , all arms incur no regret in objective 1 . The regret in objective 2 decreases because
for small values of ϵ , ALEX frequently selects the arm with the highest UCB in objective 1 instead of searching
for an approximate lexicographic optimal arm in order to make sure that it learns the best arm in objective 1

well. The sharp increase in the regret in objective 1 corresponds to rounds in which ALEX switches its arm
selection rule (from line 8 to line 10 in Algorithm 1).

In addition to the regret, the average reward collected by all of the algorithms by the end of the time
horizon is given in Table 4. From this, we observe that for ALEX, increasing ϵ decreases the average reward
collected in objective 1 , while increasing the average reward collected in objective 2 for all values of m . This
is expected, since as ϵ increases ALEX makes choices from a larger candidate optimal arm set, which includes
arms with higher expected rewards in objective 2 but also lower expected rewards in objective 1 . We observe
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Figure 1. Regret of ALEX for different ϵ values in objectives 1 and 2 .

Table 4. Average rewards of the algorithms by round T in objectives 1 and 2 respectively.

m ALEX (ϵ = 0.025) ALEX (ϵ = 0.05) ALEX (ϵ = 0.1) ALEX (ϵ = 0.2) UCB(δ) EP-UCB1
0.5 0.983, 0.084 0.963, 0.109 0.942, 0.133 0.940, 0.135 0.984, 0.084 0.963, 0.102
1 0.983, 0.090 0.960, 0.123 0.942, 0.167 0.940, 0.171 0.984, 0.090 0.963, 0.115
2 0.983, 0.095 0.965, 0.137 0.942, 0.201 0.940, 0.207 0.984, 0.095 0.965, 0.126

that when ϵ = 0.025 , ALEX performs almost the same as UCB(δ ), which aims at maximizing the total reward
in objective 1 . When ϵ = 0.2 , the average reward of ALEX in objective 2 is at least 60% higher than that
of UCB(δ ) and at least 32% higher than that of EP-UCB1, while its average reward in objective 1 is only at
most 4.47% lower than that of UCB(δ ) and at most 2.59% lower than that of EP-UCB1 for all values of m .
These results show the ability of ALEX to tradeoff between the rewards in objectives 1 and 2 by adjusting ϵ .

The regrets of all algorithms are compared in Figure 2 for m = 1 and ϵ = 0.1 . Note that ϵ does not affect
the total reward of UCB(δ ) and EP-UCB1 since these algorithms do not take it as input. However, ϵ affects
the regrets of these algorithms since it affects the suboptimality gaps of the chosen arms. From the results,
we observe that ALEX achieves the smallest regret in objective 2 . Moreover, consistent with the theoretical
findings, the regret of ALEX exhibits either logarithmic or bounded growth in both objectives, while the regrets
of UCB(δ ) and EP-UCB1 are linear in objective 2 . This shows that UCB(δ ) and EP-UCB1 do not have
sublinear ϵ lexicographic regret.

Table 5. The fraction of times a 0.1 lexicographic optimal arm is selected.

m ALEX (ϵ = 0.025) ALEX (ϵ = 0.05) ALEX (ϵ = 0.1) ALEX (ϵ = 0.2) UCB(δ) EP-UCB1
0.5 0.343 0.733 0.930 0.956 0.343 0.562
1 0.339 0.660 0.939 0.971 0.341 0.532
2 0.340 0.672 0.945 0.980 0.340 0.589
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Figure 2. Regrets of ALEX, UCB(δ ) and EP-UCB1 in objectives 1 and 2 for ϵ = 0.1 .

Finally, the fraction of times a 0.1 lexicographic optimal arm is selected is given for all algorithms in
Table 5. Results show that ALEX significantly outperforms UCB(δ ) and EP-UCB1 in selecting approximate
lexicographic optimal arms for ϵ = 0.1 and ϵ = 0.2 .

7. Conclusion
In this paper, we proposed a new MAB model called the biobjective MAB and defined the notion of ϵ

lexicographic regret. Then, we proposed a learning algorithm called ALEX, and proved that its gap-dependent
ϵ lexicographic regret is bounded with high probability and logarithmic in expectation, and its gap-independent
regret is Õ(

√
T ) both with high probability and in expectation. Finally, we modeled multirate multichannel

communication as a biobjective MAB, and investigated how ALEX learns to tradeoff PU interference and
SU throughput better than MAB algorithms that are not tailored to learn approximate lexicographic optimal
allocations. Possible future application domains for the biobjective MAB include recommendation engines and
robotic systems with multidimensional performance metrics.
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