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Abstract: Automated segmentation of medical images that aims at extracting anatomical boundaries is a fundamental
step in any computer-aided diagnosis (CAD) system. Chest radiographic CAD systems, which are used to detect
pulmonary diseases, first segment the lung field to precisely define the region-of-interest from which radiographic patterns
are sought. In this paper, a deep learning-based method for segmenting lung fields from chest radiographs has been
proposed. Several modifications in the fully convolutional network, which is used for segmenting natural images to date,
have been attempted and evaluated to finally evolve a network fine-tuned for segmenting lung fields. The testing accuracy
and overlap of the evolved network are 98.75% and 96.10%, respectively, which exceeds the state-of-the-art results.
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1. Introduction
Medical image analysis is an immensely active and fast-growing area that has evolved into an established
discipline. Medical images are acquired using different modalities such as radiography, computed tomography
(CT), and magnetic resonance imaging (MRI). Among all these, radiography is the most commonly used
modality for diagnosing pulmonary and abdominal abnormalities. Chest radiography, colloquially known as
chest X-ray (CXR), is used for screening various pulmonary diseases such as lung cancer, tuberculosis (TB),
pneumoconiosis, and emphysema. While CXR is easy to acquire, its interpretation is extremely challenging and
heavily depends on the expertise of the person interpreting it. It has been observed that there are substantial
interobserver and intraobserver variations in the interpretation of CXRs. Since triaging and clinical decisions
heavily depend upon CXR interpretation, it becomes essential to develop a computer-aided diagnosis (CAD)
system that can automatically interpret CXRs and assist clinicians in decision making.

As stated, lung field segmentation (LFS) is a preliminary step in any chest radiographic CAD system.
The LFS problem has been extensively studied since the 1970s, and Section 2 succinctly presents the related
work. Despite enormous research effort, the problem has not yet been satisfactorily solved, and active research
is still being pursued to develop a robust LFS method. The recent research trends have seen a paradigm shift,
and deep learning techniques are now being applied to solve the LFS problem.

The resurrection of deep learning, after its conceptualization in the 1990s, is accredited to the easy
availability of graphics processing units (GPUs) and large image datasets. Nowadays, most of the research in
the field of medical image analysis has shifted towards it. The convolutional neural network (CNN) is the most
popular deep learning technique. In recent years, various CNN-based architectures such as LeNet [1], Alexnet [2],
∗Correspondence: ajaymittal@pu.ac.in
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VGGnet [3], GoogleNet [4], and ZFNet [5] have been proposed to perform image classification. Researchers have
also customized these architectures to perform semantic segmentation. However, their segmentation performance
is not satisfactory. Thus, networks specifically designed for semantic segmentation have also been developed.
These networks include the fully convolutional network (FCN) [6], Segnet [7], and U-Net [8]. Among these,
FCN is the best performing architecture and is thus chosen for this study. In this paper, FCN is customized
for segmenting lung fields from gray-scale CXRs.The significant contribution of this paper is in reengineering
the FCN architecture, which includes several modifications to the original architecture such as augmentation of
skip layers, removal of pooling layers, and addition of dropout layers. The effect of modifications when applied
in isolation and conjunction on the original architecture has been evaluated to retain the effective modifications
and to report the best performing architecture.

The rest of the paper is organized as follows. Section 2 briefly presents literature related to LFS methods
and semantic segmentation using CNNs. Section 3 discusses the modifications in the FCN architecture to make
it suitable for LFS. Performances of modified architectures for LFS are reported and compared to state-of-the-art
LFS methods in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related work
This section succinctly presents the relevant literature along two separate threads: lung field segmentation and
semantic segmentation using a CNN.

2.1. Lung field segmentation

LFS methods presented in the literature can be broadly categorized into three categories, namely rule-based
methods, machine learning-based methods, and deformable model-based methods.

i Rule-based methods: These methods employ heuristic rules based on lungs’ characteristics such as position
and texture to segment the lung field. The rules are formulated from the prior knowledge of the lung
anatomy and are implemented using low-level image processing operations. These methods are flexible as
the rules can be applied in different permutations and combinations to achieve the desired results. Some
of the popular rule-based LFS methods were presented in [9–11].

These methods do not require annotated datasets for training and are thus unsupervised. However, these
methods are fragile when the lung portion is missing or its shape is highly deformed.

ii Machine learning-based methods: These methods classify each pixel of the CXR image as either lung or
background region using a binary classifier. The classifier is trained using the features extracted from the
training dataset. Depending on how the features are extracted, these methods are further categorized as
shallow learning-based methods and deep learning-based methods. In shallow learning-based methods,
feature extraction is performed manually and requires extensive domain knowledge. The most significant
challenge in these methods is to decide the appropriate class of features to be extracted. Some of the
popular shallow learning-based LFS methods were presented in [12–15].

In deep learning-based methods, the feature extraction process is automatic and hierarchical and has
multiple levels of abstraction. It more closely resembles the way the human brain does it. These methods
have a deep architecture with multiple processing layers consisting of linear and nonlinear transformations.
Recently, these methods have efficiently replaced shallow learning-based methods in different medical
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image segmentation studies. However, the usage of deep learning techniques in the area of LFS remains
relatively unexplored. LFS methods based on deep learning were presented in [16–18].

iii Deformable model-based methods: These methods use a model that can modify its shape according
to desired objects (lungs, in this case) using internal forces and external forces. While the internal
forces ensure the shape to be smooth and stretchable, the external forces enrich the model with desired
image characteristics such as terminations, edges, and lines. Deformable models that have been used for
segmentation of lungs are further classified as parametric models and geometric models. Some of the
popular deformable model-based LFS methods were presented in [19–22].

The registration-based LFS method presented by Candemir et al. [22] is the best performing method to
date. It belongs to the category of deformable model-based methods and involves a registration-driven
lung boundary detection technique. A content-based image retrieval approach is used to obtain similar
training images and then scale-invariant feature transform (SIFT)-flow nonrigid registration is applied to
create an initial lung model. After that, a graph cut-based method is used for deformation to obtain the
final segmented result.

2.2. Semantic segmentation using CNNs

Semantic segmentation is defined as understanding the image at the pixel level, which means to assign each pixel
of the image to an object class. This requires high-level visual understanding of the image. Initially, approaches
such as random forest-based classifiers were used for semantic segmentation. However, after deep learning took
over, CNNs attained enormous success in solving segmentation problems. Current state-of-the-art methods for
semantic segmentation include SegNet [7], FCNs [6], and U-Net [8].

i SegNet: It is a deep-layered architecture proposed by Badrinarayanan et al. for semantic pixel-wise
labeling. The architecture consists of a stack of encoders and decoders. It is among the first few archi-
tectures specifically designed for semantic pixel-wise segmentation as the initial deep-learning approaches
for segmentation have tweaked classification architectures such as AlexNet and VGGNet to perform seg-
mentation. The changes in classification-based architectures include removal of fully connected layers
of the architecture and enhancement in the resolution in the last layer to obtain output with the same
dimensions as the input image. However, in SegNet architecture, the resolution is enhanced in a stepwise
manner by transferring the max-pooling indices from the encoder part to the corresponding decoder part.
This transferred information helps the decoder in mapping features from subsampled layers to the final
layer.

ii U-Net: It is another popular architecture that makes use of an encoder-decoder network like SegNet.
It is called U-Net because the architecture is shaped similarly to the letter U. The first few layers (i.e.
encoder layers) perform downsampling while the later layers (i.e. decoder layers) perform upsampling.
The architecture performs upsampling by passing a complete feature map to the corresponding decoder
layer. It is different from SegNet, in which only max-pool indices are passed. It is specifically proposed
for biomedical images where the number of annotated images is limited, and thus this architecture uses
excessive data augmentation techniques. The U-Net architecture takes as input images of size 572× 572

and produces an output of size 388×388 . This means that it produces output of smaller size as compared
to input, which is a disadvantage of this method.
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iii Fully-convolutional networks (FCNs): FCNs [6] are dense prediction networks that perform semantic
pixel-wise segmentation. These networks are an extension of CNNs and prediction is made for each pixel
individually. They apply a skip architecture that combines and takes advantage of coarse as well as fine
information. In these networks, classifiers are modified to obtain dense prediction by converting fully
connected (FC) layers into convolutional layers, and thus a heat map or classification map is received as
output. This modification helps FCNs to take the input of different sizes and produce classification maps
of varying size. These maps are then combined, and their resolution is upsampled using deconvolutional
operation to receive output of the same size as input. In addition to that, the most significant difference
between CNN and FCN is that FCN keeps on learning filters even in the last layer as all the layers are
convolutional.
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(a) Illustration of FCN-32 architecture

(b) Illustration of FCN-16 architecture

(c) Illustration of FCN-8 architecture

Figure 1. Illustration of different FCN architectures.

FCNs are based on VGG-16 networks and are obtained by swapping FC layers with convolutional layers
having 1 × 1 filters for dense prediction. In the original paper, the performances of three types of FCN
architectures, i.e. FCN-32, FCN-16, and FCN-8, were evaluated and compared with each other with the
PASCAL VOC 2011 dataset. In FCN-32, the output of the final prediction layer needs to be upsampled
32 times and thus omits the fine details of the scene. The other two versions of FCN resolve this issue
by adding skip layers. In skip connections, the output of lower layers (with finer details) is added to
the final prediction layer. It turns a straight line topology into directed acyclic graph (DAG) topology,
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in which edges from lower layers directly jump to higher layers while skipping intermediate layers. In
FCN-16, the output of the Pool4 layer is fused with the Conv7 layer (upsampled two times). The fusion
is further upsampled 16 times using deconvolutional operation to obtain the final output. Similarly, in
FCN-8, the output of the Pool3 layer is fused with the Pool4 layer (upsampled two times) and Conv7 layer
(upsampled four times). The fusion is further upsampled 8 times to obtain the final output. Out of all
three variations, FCN-8 gives the best output with finer details and is used to achieve segmentation. The
architecture details of three variations of FCNs (i.e. FCN-32, FCN-16, and FCN-8) are shown in Figure
1.

3. Proposed modifications

The study proposes the following modified architectures based on standard FCN architecture to perform LFS.

i FCN-4 architecture: The implementation of FCN-4 architecture has not been done to date. FCN-4
implementation extends the standard FCN architecture and combines the output of the Pool2 layer with
the output of three more layers, i.e. the Pool3 layer (upsampled two times), Pool4 layer (upsampled four
times), and Conv7 layer (upsampled eight times). The output of the fusion is further upsampled 4 times
to obtain the final output of the same size as that of the input image. This addition does not increase
the complexity of the network and also helps in reducing the upsampling of the fusion to half. Due to the
reduced upsampling, the final output has fewer pixel-level predictions and thus constitutes fine details.
The architectural detail of FCN-4 is shown in Figure 2.
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Figure 2. Illustration of FCN-4 architecture.

ii Architecture with dropout layers: There is a considerable number of parameters used in the FCN
architecture. Since medical images are scarce, training a large network with no regularization would often
lead to overfitting. In this architecture, a dropout layer has been added after each convolutional layer for
better optimization. Addition of dropout layers is commonly used in modern deep architectures for better
regularization [18]. The details of this modified architecture are shown in Figure 3.

iii Architecture with only conv layers: It is evident from the literature that usage of convolutional layers
to perform downsampling instead of pooling layers can improve the performance of an architecture [23].
These changes enhance the network by introducing new parameters. In this modification, all the pooling
layers have been removed and their operation is performed by the preceding convolutional layer using
strides. The modified architecture is shown in Figure 4.
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Figure 3. Illustration of modified FCN-8 architecture with added dropout layers.
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Figure 4. Illustration of modified FCN-8 architecture with only convolutional layers.

4. Experimental results
4.1. Datasets and evaluation metrics
Datasets: In this study, two datasets, namely JSRT [24] and the Montgomery dataset [25], have been used.
These are the standard LFS datasets that are used in various LFS studies and are publicly available. The details
of these datasets are as follows.

i JSRT dataset: It was created by the Japanese Society of Radiological Technology (JSRT) in collaboration
with the Japanese Radiological Society. It consists of 247 posteroanterior (PA) CXRs collected from
different institutions in Japan and the United States. Of all 247, 154 CXR images have lung nodules,
while 93 have none. The CXR images have a size of 2048 × 2048 pixels and gray-scale depth of 12 bits.
The dataset also provides the labeled annotations of different anatomic structures including lung.

ii Montgomery dataset: The dataset was created by the US National Library of Medicine (USNLM) in
collaboration with the Department of Health and Human Services, Montgomery County (MC), USA.
It consists of 138 PA CXRs collected via MC’s tuberculosis screening program. Of all 138, 80 CXRs
have been classified as normal, while the remaining 58 have manifestations of TB. The CXR images were
acquired at two different spatial resolutions with gray-scale depth of 12 bits. It also includes labeled
annotations of lung regions.

Evaluation metrics: LFS is a binary classification task, including the classes L,B, which stand for lung
and background event, respectively, and the predicted classes l, b , which denotes predicted lung and predicted
background event. There can be four possible outcomes from the classifier and they can be displayed in a 2× 2

confusion matrix, as shown in Figure 5.
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Figure 5. 2× 2 confusion matrix for a lung classifier.

True positive (TP), i.e. correct prediction, is a lung pixel correctly identified as a lung pixel; false positive
(FP), i.e. false alarm, is a background pixel falsely classified as a lung pixel; false negative (FN), i.e. a miss, is a
lung pixel falsely classified as a background pixel; and true negative (TN), i.e. correct rejection, is a background
pixel correctly classified as a background pixel.

To evaluate and compare the performance of the proposed architectures with other algorithms, two
commonly applied metrics, i.e. accuracy and overlap, are used.

i Accuracy: It is defined as the ratio of correct predictions to the total number of predictions made by the
classifier. It can be obtained by using Eq. 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

ii Overlap: Also known as the Jaccard similarity coefficient, it is the ratio of the area of intersection to the
area of union between the ground truth image (G) and the segmented image (O), and it can be determined
by using Eq. 2.

Overlap =
|G ∩O|
|G ∪O|

=
TP

TP + FP + FN
(2)

The accuracy measure is to be cautiously used while analyzing the quality of a predictive model as it
suffers from the accuracy paradox. This measure is used with other evaluation metrics such as precision, overlap,
and recall to determine the quality of a predictive model. Therefore, in this study, both accuracy and overlap
have been used as the evaluation metrics.
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4.2. Training model
To perform training, the datasets have been divided into training and testing portions. In this study, two sets
of experiments have been performed. Experiment 1 is conducted using the JSRT dataset. In this experiment,
186 images out of the total 247 images are used for training and the remaining 61 images are used for testing.
Since the dataset has a smaller number of images, the chances of overfitting are high. To avoid overfitting,
data augmentation is performed on the training images. For each training image, eight images are added to
the training set. Out of these eight augmented images, three have been obtained by rotating the image by
90◦ , 180◦ , and 270◦ . Horizontal and vertical flips are performed to obtain another two images. The rest of
the images are obtained by performing random cropping. Experiment 2 is performed using both the datasets.
In this experiment, the complete JSRT dataset with augmentation is used for training and the Montgomery
dataset is used for testing to determine the generalizing capabilities of the architectures.

Loss function: Let the input training dataset be denoted by Tr = {(Xn, Yn), n = 1, ..., N} , where Xn

denotes the raw input image, Yn denotes the corresponding binary ground truth, and N denotes the number
of images in the training dataset. Each layer of the architecture has a set of weights or parameters. We denote
the complete set of parameters as W . The parameters are initially set to random values. In each iteration, the
predicted output, PRYn , is obtained using the parameters. Based on Yn and PRYn , the loss function of the
architecture L is calculated using the following formula:

L =
1

N

(
N∑

n=1

(Yn ∗ log(PRYn))

)
(3)

The objective is to minimize the loss function L . The evaluated value is used by the optimization
algorithm to update the parameters W in the next iteration. This process happens in each iteration and finally
optimized parameters are obtained.

4.3. Results and discussion
In this section, the performances of default FCN architectures and modified architectures are reported and
compared with each other. The results of Experiment 1 are as follows.

Default FCN architecture: Out of all three default architectures, FCN-8 performs the best as it
obtains auxiliary outputs from two different pooling layers and requires small upsampling after the fusion. On
the other hand, FCN-32 performs worst as it does not perform any fusion using the output from previous layers
and upsampling at the end of the network is also very high. Thus, the FCN-32 network’s segmentation results
are coarse while FCN-8 includes the fine details around the lung boundary, which enhances its performance.
The training performance and loss convergence on the JSRT dataset are shown in Figure 6. The performances
of different networks, as shown in Figure 6, are quite close to each other and hence clear distinction can be
made only by the testing performance achieved by the architectures. The testing accuracy of FCN-32, FCN-16,
and FCN-8 networks are 97.19%, 97.48%, and 98.51%, respectively, while the testing overlaps of these networks
are 91.37%, 93.92%, and 94.76%, respectively. These results indicate that inclusion of skip layers improves the
performance of the network.

FCN-4 architecture: Since the fusion of different layers improves the performance and incorporates
fine details in the segmented output, a network in which the output of an additional previous layer is included at
the final layer is created. The output of the second pooling layer is added to the fusion, which reduces the final
upsampling to 4 times only. Due to this, the performance of the modified architecture is significantly improved
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Figure 6. Training performance of the different architectures’ (a) accuracy, (b) overlap, and (c) loss.

and crossed the state-of-the-art performance for LFS. The training performance and loss convergence on the
JSRT dataset are shown in Figure 6. The testing accuracy and overlap of this network are 98.75% and 96.10%,
respectively.

Architecture with dropout layers: As each FCN network has a large number of parameters, regu-
larization is needed in the network to avoid overfitting. Dropout layers are thus sandwiched between all pairs
of convolutional layers in the FCN-8 network to provide better optimization. The addition of dropout layers
lowered the training performance; however, as observed, it slightly improves the testing performance. This
observation suggests that the introduction of dropout layers regularizes the network and enhances its perfor-
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mance. The training performance and loss convergence on the JSRT dataset are shown in Figure 6. The testing
accuracy and overlap of this network are 98.61% and 95.07%, respectively.

Architecture with only conv layers: In this architecture, all the pooling layers have been removed
from the FCN-8 architecture and downsampling operation is performed using strided convolution. The perfor-
mance of this network is slightly better as compared to the FCN-8 architecture. It happens because the strided
convolution introduces new parameters in the network. The training performance and loss convergence on the
JSRT dataset are shown in Figure 6. The testing accuracy and overlap of this network are 98.54% and 95.44%,
respectively.

Two different architectures in which all the modifications are applied in conjunction have also been
evaluated. One such architecture includes the FCN-4 network with dropout layers and pooling layers removed,
and another architecture includes the same changes applied to the FCN-8 network. As listed in the Table, the
testing performance of these networks is slightly lower than the performance of the FCN-4 network but better
than the performance of the standard FCN-8 network.
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Figure 7. Output obtained on testing dataset on some images.
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Figure 8. Comparison of the performance of different proposed architectures.
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4.4. Comparison with other methods

Figures 7 and 8 show the output and performance of all modified architectures, respectively. The FCN-4
network performs the best and outperforms the human observer as well as other state-of-the-art methods in
the literature. The performance of other modifications is on par with other methods reported in the literature.
The Table shows the comparison of the performance of different architectures evaluated with the state-of-the-
art techniques. In Figure 9, sample output obtained from FCN-4 architecture and Candemir’s state-of-the-art
method [22] is shown. The performance of these methods is evaluated on the same set of 61 test images. The
overlap obtained by Candemir’s method is 94.40%, which is significantly less than the 96.10% overlap attained
by the proposed architecture.

FCN4Label CandemirImage FCN4Label CandemirImage

Figure 9. Comparison of output of FCN-4 architecture and Candemir’s method [22].

Table. Performance comparison of different proposed architectures with LFS algorithms reported in the literature.

Method Overlap score(%) Method Overlap score(%)
FCN-4 96.10 SIFT + graph cut [22] 95.40
FCN-4 (all modifications combined) 95.93 Novikov et al. [18] 95.00
FCN-8 (all modifications combined) 95.81 Hybrid voting [14] 94.90
FCN-8 with conv layers only 95.44 PC postprocessed [14] 94.50
FCN-8 with dropout 95.07 ASM optimal feature [19] 92.70
FCN-8 94.76 Ahmad et al. [11] 87.00

Experiment 2 evaluates the performance of the best architecture, i.e. FCN-4. It uses an augmented
JSRT dataset for training and a completely different Montgomery dataset for testing. The architecture on
the Montgomery dataset gives testing accuracy of 97.36% and testing overlap of 90.57%. The performance is
acceptable and indicates that the method can be used to segment entirely new CXR images as well.

5. Conclusion
In this study, different architectures have been proposed to improve the LFS performance on CXRs. These
architectures are evaluated on two standard datasets, and their performance shows improvement over the stan-
dard FCN architectures. The FCN-4 architecture achieves the best performance and surpasses the performance
of state-of-the-art LFS methods. It is also concluded that application of each modification has increased the
performance as compared to the standard FCN-8 network. The proposed method also gives a satisfactory
performance when an entirely different dataset is used for testing purpose.
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