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Abstract: Image denoising and restoration is one of the basic requirements in many digital image processing systems.
Variational regularization methods are widely used for removing noise without destroying edges that are important
visual cues. This paper provides an adaptive version of the total variation regularization model that incorporates
structure tensor eigenvalues for better edge preservation without creating blocky artifacts associated with gradient-based
approaches. Experimental results on a variety of noisy images indicate that the proposed structure tensor adaptive total
variation obtains promising results and compared with other methods, gets better structure preservation and robust
noise removal.
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1. Introduction
Image denoising and restoration are fundamental image processing steps due to the presence of random noise in
digital imaging systems. Despite the improvements in various imaging sensors, noise is a nuisance that requires
dedicated filters based upon the respective imaging system characteristics. There exists a large amount of
denoising filters and variational and partial differential equation (PDE)-based image restoration methods [1]
are widely utilized in many application domains where denoising is the preliminary requirement before deeper
image analysis tasks, see [2] for more details. Among a wide variety of variational regularization models, two
canonical regularizers are used for contrasting purposes, namely, the Tikhonov regularization that provides
global smoothing, and total variation (TV) regularization first studied by Rudin et al. [3] for image restoration
that obtains edge-preserving restorations.

Despite its edge-preserving property, TV regularization stimulated a lot of research due to its blocky
artifact creation in homogeneous regions. Various adaptations and improvements were proposed over the last
two decades with one of the main aims being to retain the edge preservation property while alleviating the
blocky artifacts in the resultant images [4–6]. Strong and Chan [7] provided one of the earliest attempts in this
direction by augmenting a weight function that depends on spatial pixel locations to guide the total variation
regularization with edges. By using a smoothed inverse gradient-based indicator function, these weighted TV
models provide better restoration results than the classical TV regularization, though similar block artifacts
can manifest as the gradient computations are prone to noise, see Figure 1. Figure 1a shows a noisy grayscale
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(a) Input (b) Inverse gradient weight (c) Structure tensor weight

Figure 1. Using edge indicator-based weights, our adaptive TV regularization provides better noise removal without
smoothing out the edges. a) Input House grayscale 256×256 test image with Gaussian noise σn = 30 , b) weight function
computed using the inverse gradient of the input image, see Eq. (5) with parameters k = 20 , σ = 1 , and c) weight
function computed using the proposed structure tensor eigenvalues of the input image, see Eq. (7), with parameters
ϵ = 0.05 , σ = 1 . Both weights were inverted and rescaled to [0, 1] for better visualization.

input image, Figure 1b shows the typical inverse gradient-based weight map, and Figure 1c shows the proposed
structure tensor-based weight map indicating better edge differentiation under noise. More sophisticated choices
for the adaptive parameter within TV regularization have been considered before. For example, a local variation
estimation [6] with a split Bregman algorithm-based implementation [8] was considered. In this work, we
advocate the use of structure tensor-based eigenvalues that are useful in computing noise-robust features in
digital images. Structure tensor and their eigenanalysis has been used for denoising [9], flow enhancement [10],
and many other computer vision problems. We use a structure tensor adaptive total variation (STATV) for a
better weight function that can guide the TV regularization, which can avoid the artifacts and improve upon
the previous adaptive models. There are two key differences between our current approach and [6]. First, the
previous method utilizes a local variance-based adaptive parameter estimation within TV regularization that
do not incorporate structural variations. These can be captured by structure tensor eigenvalues-based adaptive
parameter. Second, the multiscale nature of our proposed structure tensor-based parameter can retain small-
scale details that cannot be kept in the local variation parameter. Experimental results on various noisy images
are undertaken and comparison with previous regularization models are given with respect to peak signal to
noise ratio, structural similarity, and an edge-based error metrics.

The rest of the paper is organized as follows. Section 2 introduces the proposed method in terms of the
total variation regularization. Section 3 provides experimental results on noisy images as well as comparisons
with other related methods from the literature. Finally, Section 4 concludes the paper.

2. Structure tensor adaptive total variation

We introduce a structure tensor eigenvalues-based weight function that can be adaptively used in the TV
regularization for image restoration with effective noise removal and edges preservation.

2.1. Structure tensor
Let u : Ω → R be a grayscale image, that is u(x, y) is the pixel value at the spatial location (x, y) ∈ Ω of the
image domain Ω ⊂ R2 , a rectangle. The structure tensor is a 2× 2 matrix computed at every pixel (x, y) ∈ Ω
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and is given by,

Kσ(u(x, y)) = Gσ ⋆ (∇u∇uT ) (1)

=

[
Gσ ⋆ u2

x Gσ ⋆ uxuy

Gσ ⋆ uyux Gσ ⋆ u2
y

]
, (2)

where ∇u = (ux, uy) is the gradient of the image u , and superscript T is the vector transpose. Here, the
convolution ⋆ with a 2D Gaussian low-pass filter Gσ(x, y) = (σ

√
2π)−1 exp (−(x2 + y2)/2σ2) is undertaken to

avoid the ill-posedness of gradient components under noisy conditions. The structure tensor entries are positive
and the matrix Kσ is symmetric and positive semidefinite provided that there are enough gradient samples
in the neighborhood. Let the eigenvalues of Eq. (1) be (λ+(x, y, σ) , λ−(x, y, σ)) which are the maximum and
minimum, respectively, and λ+ ≥ λ− (from here on we drop the spatial (x, y) and scale (σ ) dependency in
our notations for simplicity). The eigenvalues encode local information on σ neighborhood and can provide
robust feature detections that can be utilized for low-level image processing steps [9, 10]. This can be seen in
an example image, see Figure 2. In Figures 2a–2c, we show the components of the smoothed structure tensor
entries respectively. Figure 2d shows the tensor field visualization with each point in the image is an ellipse
with long axis λ+ , the minor axis λ− .

(a) Gσ Ľ u 2
x (b) GσĽ u x uy (c)Gσ Ľ u 2

y (d) Structure tensor

Figure 2. Smoothed structure tensor entries capture the image discontinuities. We show the structure tensor entries
on the House grayscale test image. (a) Gσ ⋆ u2

x , (b) Gσ ⋆ uxuy , (c) Gσ ⋆ u2
y , and (d) the structure tensor visualized as

a tensor field where each point is an ellipse with the long axis λ+ , the minor axis λ− . The pre-smoothing parameter
for the convolution with the Gaussian filter is σ = 1 .

2.2. Adaptive total variation

In this work, we utilize the adaptive total variation (ATV) regularization,

min
u

{∫
Ω

Φ(|∇u|) dx+

∫
Ω

(u− u0) dx,

}
(3)

with the weight based edge indicator functions,

Φ(|∇u|) = ω |∇u| . (4)

Note here that we assume an additive Gaussian noise-corrupted image is given, that is, u0 = u+n , where u0 is
the input noisy image, u is the original (unknown) true image that we are trying to find and n ∼ N (0, σ2

n) the
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normalized Gaussian noise with zero mean and σn standard deviation. The spatially adaptive weight function
ω is chosen typically as smoothed inverse gradient [7, 11],

ω :=
1

1 + k |Gσ ⋆∇u|
, (5)

with k > 0 a contrast parameter. However, this inherits some of the drawbacks with other gradient regu-
larizations such as detecting blocky edges, see Figure 1b. To improve the performance of the weighted TV
regularization, and to avoid blocky artifacts, here we propose the following structure tensor-based weight func-
tion that incorporates the eigenvalues for better edge guidance than gradients. We consider the following
exponent function based on the eigenvalues of the structure tensor,

p = exp
[
−
(

λ+ λ−

ϵ+ λ+ + λ−

)2]
exp

[
−
(

λ+ − λ−

ϵ+ λ+ + λ−

)2]
, (6)

where a small parameter ϵ > 0 is added for numerical stability. Note that we use the shortened notation p to
denote the function p(x, y, σ) where the eigenvalues of the structure tensor matrix in Eq. (1) are computed for
a particular scale σ > 0 at the pixel location (x, y) ∈ Ω . We converted the eigenvalues (λ+ , λ− ) to be in [0, 1]

range by rescaling to avoid the negative values, since we require a weight map that depends on the absolute
values to capture edge information from p in Eq. (6), and set ϵ = 0.05 in the experiments. The multiplication
of (λ+ , λ− )-based term (the first exponential term in Eq. (6)) is the harmonic mean of the eigenvalues, and
captures corners in the image that contains high spatial frequencies. The subtraction of (λ+ , λ− )-based term
(the second exponential term in Eq. (6)) is the coherence measure and captures the edge information. We next
define our weight function as a spatially varying multifeature map,

ω :=
1

1 + k |p|
, (7)

where k > 0 as before a parameter. We can use the multiscale structure tensor-based map in (6) via the weight
function in (7) as a guide to the TV-based image restoration in Eq. (4) with better edges preservation. Due to
its robustness to noise, see Figure 1c, this map is used as an edge indicator function in TV image restoration
method in Eq. (3), called structure tensor adaptive total variation (STATV), obtains better restoration results
as we will in the experimental results (Section 3). There exist many convergent numerical implementations [12]
for the TV regularization that can be adapted for the ATV model considered here. However, we utilize the
well-known split Bregman algorithm [8] to solve the adaptive TV regularization in Eq. (3) here due to its
efficiency.

3. Experimental results
3.1. Setup
The following parameters are fixed for all the experiments reported here. We used the parameter k = 20 in both
the adaptive TV [7] and our proposed STATV models, ϵ = 0.05 in Eq. (6) and the presmoothing parameter
σ = 1 for the convolution with the Gaussian are used in both the inverse gradient weight function in Eq. (5)
and the structure tensor components in Eq. (1). For the method in [4], the default parameters are used, and
the iteration time of all the methods is determined by the highest PSNR (dB) values.
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3.2. Comparison results

(a) Input and the amount of noise added (b) TVREG [ 14 ]

(c) APMAD [4] (d) Our STATV

Figure 3. Our proposed method works better than the related regularization models by removing noise and preserving
edges without blocky artifacts. a) Denoising results along with method noise images obtained with b) total variation
(TVREG) [3], c) adaptive Perona-Malik (APMAD) [4], and d) our proposed STATV. In each row, we show the denoised
result (left) along with the method noise |uNoisy − uDenoised| (right) indicating the amount of noise removed by each
method.

Figure 3 shows a comparison of different regularization methods on a noisy House grayscale test image
(input image with Gaussian noise σn = 30 is shown in Figure 1a. In Figure 3a, we show the latent (unknown)
true image, the amount of noise added, and subsequently the denoising results with total variation regularization
(TVREG) [3], adaptive Perona–Malik anisotropic diffusion (APMAD) [4], and our proposed STATV with
respective method noise ( |uNoisy − uDenoised| indicates the amount of noise removed by the method). As can
be seen, the TVREG result in Figure 3b shows considerable staircasing/block artifacts in homogeneous areas,
whereas the APMAD result in Figure 3c, though better than the TVREG, still inherits the blocky artifacts.
In contrast, our STATV results in Figure 3d shows an overall better edge preservation without any of the
aforementioned artifacts. Moreover, comparing the method noise images, we see that our STATV removes noise
without affecting the overall edges and salient structures. In particular, better edge preservation can be observed
in structure tensor eigenvalues-based total variation result (Figure 3d) than with inverse gradient-based total
variation result (Figure 3b).

Next, in Figure 4a, we show a partially textured Baboon grayscale test image, and in Figure 4b, a
corrupted version by Gaussian noise σn = 30 . Figure 5 shows the denoising results with TVREG, adaptive TV
(ATVREG) [7], and our proposed STATV methods. It is clear that our proposed STATV method obtains better
edge preservation while the TVREG and ATVREG models obtain staircasing artifacts. This can be seen on
the cropped versions (mouth, eye) of the denoised results, TVREG (Figure 5a) and ATVREG (Figure 5b) both
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(a) Original

(b) Noisy

Figure 4. Original and noise versions of the Baboon grayscale 256× 256 test image with Gaussian noise σn = 30 used
in our denoising comparisons. a) original, and b) noisy images. In each row, we show the image (left) along with the
cropped parts of the image (middle, right).

either oversmooth or create staircasing artifacts, whereas our proposed STATV (Figure 5c) keeps the majority of
edges without oversmoothing and has no visible artifacts. To further compare the image denoising results from
different filters quantitatively, we utilize three error measures including two well-known standard error metrics,
namely the peak signal-to-noise ratio (PSNR, measured in decibels - dB), and the mean structural similarity
(MSSIM, varies in the range [0, 1] with 0-low, 1-high quality). These two are the image quality metrics widely
used in image processing literature for comparing the quality of restoration with the known reference image
(original/noise-free). Along with these, we use a new metric (PSNRE ) based on gradient edge maps that can
capture the edge preservation quality between different methods.

1. PSNR: Peak signal-to-noise ratio which is given in decibels (dB ). Higher PSNR value indicates optimum
denoising capability. PSNR for a denoised image ũ is given by,

PSNR(ũ) = 20 ∗ log10
(

ũmax√
MSE

)
dB, (8)

where MSE = (mn)−1
∑∑

(ũ− u)2 , with u is the original (noise free) image, m× n denotes the image
size, ũmax denotes the maximum value, for example in 8 -bit images ũmax = 255 . A difference of 0.5 dB

can be identified visually.

2. PSNRE : Following [4], we use the PSNR of the edge maps (EM), EM(ξ) = 2 − (2/(1 + k |∇Gσ ⋆ ξ|2)
with k = 0.0025 , σ = 0.5 .

PSNRE(ũ) = 20 ∗ log10
(

max EM(u)− min EM(u)

MSEE

)
dB, (9)
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(a) TVREG [ 14]

(b) ATVREG [ 15]

(c) Our STATV

Figure 5. Our proposed method works better than the other classical and adaptive TV regularization models. Denoising
applied on a noisy version (Gaussian noise σn = 30 added) obtained with: a) total variation (TVREG) [3], b) adaptive
TV (ATVREG) [7], and c) our proposed STATV. In each row, we show the image (left) along with the cropped parts of
the image (middle, right).

where MSEE = (mn)−1
∑∑

(EM(ũ) − EM(u))2 . Higher PSNRE indicates that the method performs
better edge preservation by way of matching the derivatives.

3. MSSIM: Mean structural similarity (MSSIM) index is in the range [0, 1] and is known to be a better
error metric than the traditional signal-to-noise ratio [13]. It is the mean value of the structural similarity
(SSIM) metric. The SSIM is calculated between two windows ω1 and ω2 of common size N ×N , and is
given by,

SSIM(ω1, ω2) =
(2µω1

µω2
+ c1)(2σω1ω2

+ c2)

(µ2
ω1

+ µ2
ω2

+ c1)(σ2
ω1

+ σ2
ω2

+ c2)
, (10)

where µωi is the average of ωi , σ2
ωi

is the variance of ωi , σω1ω2 is the covariance, and c1, c2 are
stabilization parameters. We use the default parameters for SSIM. The MSSIM value near 1 implies
the optimal denoising capability of a method and we used the default parameters.
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Table 1 shows the PSNR, and PSNRE (dB) values for various regularization methods compared with
our proposed STATV in different standard test images taken from the USC-SIPI Miscellaneous dataset. The
images are corrupted with Gaussian noise of strength σn = 30 . Overall, our approach obtains the highest
PSNR, PSNRE values indicating better signal and edge preservation, respectively. Table 2 shows the MSSIM
values. Higher MSSIM values show that our denoised images are structurally similar to the original noise-free
images showcasing good fidelity.

Table 1. PSNR/PSNRE (dB) comparison of various methods for standard test images from USC-SIPI Miscellaneous
dataset. Noisy image is obtained by adding Gaussian noise of strength σn = 30 to the original image. Each column
indicates the PSNR/PSNRE (dB) values for different test images. Best results are in boldface.

Images TVREG ATVREG APMAD Our
[3] [7] [4] STATV

Couple 29.89
14.58

30.35
14.88

28.40
12.61

31.83
17.25

F-16 25.72
10.57

26.01
10.73

24.22
8.45

27.91
14.17

Girl1 29.63
14.29

29.78
14.70

27.90
12.50

31.35
16.76

Girl2 31.03
16.61

31.60
16.98

29.59
14.55

33.73
20.07

Girl3 30.30
15.10

31.25
15.45

28.07
12.95

33.04
18.85

House 29.50
15.18

30.08
15.81

27.49
12.75

31.53
19.58

IPI 31.37
15.89

32.18
16.76

29.25
14.00

34.82
19.63

IPIC 30.32
15.03

31.17
16.05

27.58
12.77

33.75
19.03

Tree 25.45
10.35

25.76
10.80

23.71
8.38

27.60
13.73

Baboon 22.81
6.27

22.52
6.03

21.85
4.87

23.35
9.27

Barbara 25.31
10.70

25.41
10.82

23.81
8.67

25.75
13.35

Boat 25.57
9.78

25.69
9.98

24.09
7.92

27.07
12.32

Car 24.76
8.65

24.91
8.83

23.33
6.89

26.42
11.45

Lena 26.72
11.31

26.92
11.56

24.86
9.40

28.63
14.26

Peppers 28.16
12.87

28.49
13.21

25.98
10.72

30.81
16.48

Splash 30.59
15.59

31.51
15.92

28.30
13.08

34.24
20.32

Tiffany 27.57
11.36

27.65
11.35

25.66
9.45

29.39
14.35

Despite good denoising results with edges preservation, our proposed STATV removes small-scale texture
details and will not be suitable for preserving partially textured images, for example, see the Baboon denoising
result in Figure 5 where the whiskers and the side regions are smoothed out, also in the House in Figure 3 on
the roof and tiles. This property is true for any variational and PDE-based models due to global smoothing
nature and a separate texture modeling will be required to alleviate this effect.

4. Conclusion
Image restoration with adaptive weight-based total variation regularization model is proposed in this work.
Instead of noise-prone inverse gradient-based weights typically used in the literature, we employed eigenanalysis
of the structure tensor that is robust against noise and provides a better guideline edge map. Total variation
regularization combined with the power of structure tensor adaptiveness provided better edge preserving image
denoising and comparisons with related works showed that the proposed approach is better-suited for restoration

1154



PRASATH and THANH/Turk J Elec Eng & Comp Sci

Table 2. MSSIM comparison of various methods for standard test images from USC-SIPI Miscellaneous dataset. Noisy
image is obtained by adding Gaussian noise of strength σn = 30 to the original image. Each column indicates the
MSSIM values for different test images. Best results are in boldface.

TVREG ATVREG APMAD OurImages
[3] [7] [4] STATV

Couple 0.7620 0.7748 0.7190 0.8407
F-16 0.8015 0.8103 0.7572 0.8598
Girl1 0.8011 0.8068 0.7522 0.8543
Girl2 0.8844 0.8877 0.8694 0.8867
Girl3 0.8576 0.8646 0.8195 0.8880
House 0.8145 0.8199 0.7860 0.8365
IPI 0.9223 0.9322 0.9092 0.9438
IPIC 0.9109 0.9218 0.8782 0.9372
Tree 0.7739 0.7816 0.7189 0.8374
Baboon 0.4951 0.4688 0.3825 0.6591
Barbara 0.7005 0.7034 0.6282 0.7631
Boat 0.6959 0.6947 0.6154 0.7904
Car 0.7187 0.7225 0.6409 0.8139
Lena 0.7853 0.7904 0.7250 0.8485
Peppers 0.8343 0.8408 0.7833 0.8927
Splash 0.8908 0.9018 0.8711 0.9119
Tiffany 0.7627 0.7646 0.6897 0.8333

under different noise levels. Extending the proposed model to handle mixed noise removal [14–18] and color
images [19, 20] defines our future works.
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