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Abstract: In this study, we propose a new approach that can be used as a kernel-like function for support vector machines
(SVMs) in order to get nonlinear classification surfaces. We combined polyhedral conic functions (PCFs) with the SVM
method. To get nonlinear classification surfaces, kernel functions are used with SVMs. However, the parameter selection
of the kernel function affects the classification accuracy. Generally, in order to get successful classifiers which can predict
unknown data accurately, best parameters are explored with the grid search method which is computationally expensive.
We solved this problem with the proposed method. There is no need to optimize any parameter in the proposed method.
We tested the proposed method on three publicly available datasets. Next, the classification accuracies of the proposed
method were compared with the linear, radial basis function (RBF), Pearson universal kernel (PUK), and polynomial
kernel SVMs. The results are competitive with those of the other methods.
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1. Introduction
Solving classification problems efficiently is very important for real-life applications in the areas of machine
learning and data mining. Therefore, many researchers have been actively working on this problem. One of the
most popular methods for solving this problem is support vector machines (SVMs). SVMs control generalization
error by balancing the separation margin and the misclassification rate.

The first version of the SVMs constructs a linear hyperplane to separate classes. However, a linear
classifier does not meet the needs of a user because the most of the real-life classification problems are not
linearly separable. In order to cope with this problem, SVMs use kernel functions to get nonlinear separating
surfaces. Selection of the kernel function and determination of its parameters play a crucial role in the accuracy.

Polyhedral conic functions (PCFs) have been introduced to solve classification problems [1]. These
functions can be obtained by extending linear functions with l1 -normed term. There are various algorithms
based on PCFs. These algorithms are applied to some real-life problems like arrhythmia classification and
gesture recognition. The parameters of the PCFs are found by solving an optimization problem.

In [2], the advantages of PCFs and SVMs were combined and an algorithm for binary classification problem
was proposed. Unlike [2], our study has been developed for both binary and multiclass classification problems.
Moreover, our aim was different and we used PCFs as a kernel-like function to improve classification accuracy of
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the SVMs. Firstly, a PCF that represents the training data was found by solving a linear programming problem
for each class and then a feature was added to the training set by calculating the corresponding PCF value.
This means that the dimension of the original data is increased by the number of classes.

The notation we use in this study is as follows. The vectors are represented by boldface lower-case
letters, a . Scalars are represented by italic lower-case letters, s . The 2d matrices which are the datasets in
this paper are symbolized by capital boldface letters, A . For the cardinality of a set, the |.| is used, and the
number of classes is represented by the symbol η .

In the following sections, SVMs and PCFs are described briefly. In Section 4, the proposed algorithm
with an illustrative example is given. Section 5 gives some computational results, and Section 6 concludes the
study.

2. Support vector machines

SVMs are famous supervised learning models in machine learning which were introduced in [3]. They are
defined for binary classification problems. However, it can be generalized to multiclass classification problems.
For linear separable case, a lot of separating hyperplane which separates two sets completely can be found with
different methods. Each of these hyperplanes can be used as a decision boundary between classes. In the SVM
method, the objective is to find the separating hyperplane which has the maximum distance to both classes.
The distance between the separating hyperplane and closest data point to the hyperplane is called margin.

It is often unlikely to be encountered with linearly separable case for many real-life problems. In the
linearly inseparable cases, SVMs use a kernel function in order to obtain nonlinear decision boundaries. This
method is called kernel trick and was proposed in [4]. Gaussian kernel, polynomial kernel, and sigmoid kernel
are the common examples of kernel functions. In Figure 1, how to obtain a nonlinear separation surface
with the Gaussian kernel in SVM for a linearly nonseparable case is shown. Though kernel functions improve
classification success, it is very important to select the right kernel function and its parameters. Generally, the
best parameters are found by a method called grid search.

Figure 1. An example for RBF kernel.

Kernel functions allow researchers to apply SVMs on real-life problems such as text classification [5] and
biology [6]. Multiple kernel learning algorithms have had great impact in recent years [7].

The following kernel functions are commonly used:

• Gaussian radial basis kernel (RBF): K(xi,xj) = exp(−∥xi−xj∥2

2σ2 ),
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• Polynomial kernel: K(xi,xj) = (xi.xj + c)h ,

• Pearson universal kernel (PUK): K(xi,xj) =
1[

1+

(
2

√
∥xi−xj∥2

√
2(1/w)−1

σ

)2]w .

The SVM model requires solving an optimization problem. It can be summarized as follows [3, 8, 9]:

min
w,b,ξ

1
2wT w + c

∑
i∈I

ξi

s.t. yi(wTϕ(xi) + b) ≥ ξi,
ξi ≥ 0,

(1)

where xi ∈ Rn is the training data points, yi ∈ {−1, 1} is the associated class labels, and i ∈ I = {1, . . . ,m} .
By solving the SVM model, a hyperplane is obtained with the normal vector w and b parameters. ϕ(.) is the
kernel and maps the input vector into a higher dimensional space. K(xi,xj) ≡ ϕ(xi)

Tϕ(xj) . ξi corresponds
misclassification error of ith data point. Thus, as one can see from the constraints, ξi = 0 if ith data point is
classified correctly. Otherwise, ξi gets a positive value. The objective function has two parts; while the first
part tries to maximize the margin, the second part tries to minimize the classification error. Therefore, there is
a trade-off between these two objectives.

3. Polyhedral conic functions and separation

A polyhedral conic function (PCF) is obtained by adding l1 norm term with a positive scalar coefficient, τ to
the linear function. Eq. 2 shows that a PCF where w,x ∈ Rn , and γ, τ ∈ R+ , ∥x∥1 =

∑n
i=1 |xi| .

g(x) = w′x + τ∥x∥1 − γ. (2)

A vertex point of a PCF, which is defined as in Eq. 2, is composed of a center point (origin, 0) and
positive scalar γ as (0,−γ) . In order to construct a PCF with a specific center, c ∈ Rn , the function can easily
be written with the form given in Eq. 3.

g(x) = w′(x − c) + τ∥x − c∥1 − γ. (3)

PCFs were proposed to construct a separation function for the finite point sets A,B ⊂ Rn [1]. Definition
1 and Lemma 1 quoted below were given in [1].

A = {a1, . . . ,am}, ai ∈ Rn, i ∈ I = {1, . . . ,m} (4)

B = {b1, . . . ,bp}, bj ∈ Rn, j ∈ J = {1, . . . , p} (5)

Definition 1 A function g : Rn → R is called polyhedral conic if its graph is a cone and all its level sets

S(α) = {x ∈ Rn : g(x) ≤ α } , (6)

for α ∈ R are polyhedrons.

Lemma 1 A graph of the function g(w,ξ,γ,c) defined in Eq. (2) is a polyhedral cone with a vertex at (c,−γ) ∈
Rn × R .
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In order to obtain PCF parameters w , τ , and γ ; it is required to solve a linear programming problem,
P .

(P )

min 1
|A|

∑
i ξ

A
i + 1

|B|
∑

j ξ
B
j

s.t.
w(ai − c) + τ∥ai − c∥1 − γ ≤ ξAi ,∀ i ∈ I

−w(bj − c)− τ∥bj − c∥1 − γ ≤ ξBj ,∀ j ∈ J

Figures 2 and 3 illustrate the graph and level set of the polyhedral conic function, respectively.

Figure 2. The graph of the polyhedral conic function g . Figure 3. The level set of the polyhedral conic function
g .

The sets A and B are polyhedral conic separable if there exist a finite number of PCFs gl = g(wl,τ l,γl,cl), l =

1, . . . , L such that
min

l=1,...,L
gl(a) ≤ 0 ∀ a ∈ A (7)

and
min

l=1,...,L
gl(b) > 0 ∀ b ∈ B. (8)

Based on PCFs, several competitive classification methods have been developed and some of them have
successfully been applied to real-life problems [1, 2, 10–21].

4. The proposed method
In this study, we propose a new method to classify two finite point sets A and B by combining the idea of PCFs
and SVMs. As we mentioned above, there are different PCF-based classification approaches. In this study, we
used k-means based PCF algorithm [11] for the PCF part of the proposed method. In this proposed method,
firstly, we chose a class as set A and the rest as set B . Next, we divided the set A into k clusters with k-means
algorithm and then, we constructed k PCFs by solving k simple linear programming problems. We calculated
point-wise minimum of these k PCFs and add this value as a new feature. We repeated this process for all
classes. Finally, η features were added to the dataset (training and test sets). This process plays a kernel-like
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role. After the modification of the dataset, a linear SVM model was applied to solve the new problem. The
proposed algorithm is given as follows:
Algorithm:

Step 1. For i = 1, · · · , η :

Step 1.1. Set ith class as A and the rest as B.

Step 2.2. Obtain clusters of the set A as Aj , j = 1, . . . , k by applying k-means algorithm.

Step 3.3. For j = 1, · · · , k :
Solve the linear programming problem Pj over the sets Aj and B ; use centroid of the set Aj ,
as the center cj ; obtain the PCF gj .

Step 4.4. Extend the training and the test set by a feature. For all points in the test and training
set; calculate this feature as point-wise minimum of all PCFs:

min
j=1,...,k

gj(.) (9)

Step 2. Train the linear SVM method on the extended dataset.

The k -means algorithm [22] is one of the well-known algorithms for solving clustering problems. Since
it is easy to implement, fast, and applicable to very large datasets, we preferred to use it in the proposed
algorithm. The steps of the k means algorithm are explained as follows.
The k -means Algorithm

Step 1. Choose a seed solution consisting of k centers from set A .

Step 2. Allocate data points a ∈ A to their closest centers and obtain k -partition of A .

Step 3. Recompute centers for this new partition and go to Step 2 until no more data points change their
clusters.

It should be noted that, clearly, by applying the proposed method, the training and the test set is extended
by η features.

4.1. Illustrative example
In order to illustrate the proposed method, first we generated a hypothetical data which cannot be separable
with linear structures. These datasets A and B are shown in Figure 4. The data points belonging to sets A
and B are represented by red and blue dots, respectively.

According to the proposed approach, all the data points in the datasets are transformed to a new space
by using the kernel-like PCFs obtained in the algorithm. By applying Step 1.2 of the proposed algorithm, the
centroids and clusters are found as the results of the k -means algorithm. For the k = 3 case, PCFs are obtained
by solving corresponding problem P . Next, the separating function which is the point-wise minimum of these
three PCFs have been calculated as explained in the algorithm’s following steps. This separating function and 2d
scatter of the data points belonging to sets A and B are shown in in Figure 5. In Figure 6, this transformation
is illustrated.

1176



ÖZTURK and ÇİMEN/Turk J Elec Eng & Comp Sci

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

Figure 4. The A and B data points for illustrative example.

Figure 5. The separating function and 2d scatters of
data.

Figure 6. Projection of data points of sets A and B on
separating function.

5. Computational results

The efficiency of the proposed algorithm was tested with publicly available datasets [23]. We used three datasets,
namely, Liver, Splice, and Svmguide1. The brief description of the datasets is given in Table 1, where the
number of data points for training and test sets, number of classes, and number of attributes for each datasets
are included. The datasets given in Table 1 have only real or integer attributes and there is no missing value in
them.

The proposed algorithm was implemented in Python 2.7 and MATLAB. The linear programming problem
P in Step 1.3 of the proposed algorithm was solved by using Gurobi package[24]. Linear SVM problem in Step
2 was solved with Liblinear package [23].

For comparison of the results, cross-validation procedure was used in the algorithm. In v -fold cross-
validation, we first divided the training set into v subsets of equal size. Sequentially one subset was tested
using the classifier trained on the remaining v − 1 subsets. Thus, each instance of the whole training set was
predicted once so the cross-validation accuracy is the percentage of data which are correctly classified [9].
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Table 1. The brief description of datasets.

Data sets Liver Splice Svmguide1
# training data points 145 1000 3089
# test data points 200 2175 4000
# attributes 5 60 4
# classes 2 2 2

Ten-fold cross validation classification accuracy results of the test sets obtained by the proposed algorithm
are presented in Table 2. The performance of the proposed method is compared with those of linear and RBF,
PUK, and Polynomial kernel SVMs. RBF, PUK, and Polynomial kernel SVMs performances were calculated
by using Weka [25]. One can see that the proposed method (PCF + Linear SVM) achieves good classification
accuracies. The performance of the proposed method is competitive with RBF, PUK, and Polynomial kernel
SVMs. However, the proposed method could not beat the RBF kernel SVM in three tests.

It should be noted that RBF, PUK, and Polynomial kernel SVMs parameters are optimized with a basic
grid search. The advantage of the proposed method is that there is no need to optimize any parameters. RBF,
PUK, and Polynomial kernel SVM performances strongly depend on parameter selection. However, it can be
impossible to optimize kernel function parameters with grid search, especially on big datasets.

Table 2. Comparison of ten-fold cross-validation results

Liver Splice Svmguide1
Linear 54.50 84.37 78.93
Poly. 60.00 84.60 95.60
PUK 60.00 87.08 96.23
RBF 62.50 89.79 96.70
PCF+Linear SVM 61.00 88.14 96.38

6. Conclusion

We proposed a new method that can be used as a kernel-like function for linear SVMs.This method combines
PCF and SVM approaches by considering strongest part of these method.

SVMs can generate nonlinear separation surfaces thanks to kernel functions. However, the success of
the classifier strongly depends on the selection of the kernel function parameters. In order to obtain the best
parameters giving the highest training accuracy, generally, a grid search is applied before training. However,
this process can be very time-consuming on big datasets. The proposed method does not need to parameter
optimization.

Classification accuracies of the proposed method were compared with linear and RBF, PUK, and Poly-
nomial kernel SVM. We obtained competitive accuracies and it is very promising for the usage the proposed
method on big datasets. We are planning to extend computational tests and analysis on big datasets in future
research.
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