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Abstract: The rainfall amount observed at a given location mostly depend on the cloud density, which can be quantified
with the reflectivity values observed by meteorology weather radars. In this study, we aim to estimate the rainfall amount
using a Kalman filter with radar reflectivity measurements. We first assume that the amount of rainfall observed at
automatic weather observation stations (AWOSs) are elements of an unknown state vector and consider the Kalman
filter process model as the true rainfall amounts observed at these AWOSs over time. For the measurement model
of the Kalman filter, we use the radar reflectivity values observed at each AWOS location. For the execution of the
Kalman filter, a number of rainfall amount and radar reflectivity value pairs are first required to learn the process and
measurement models of the Kalman filter. The estimation performance of the proposed Kalman filter is then compared
with empirical reflectivity (Z) - rainfall (R) relationships. Numerical results show that when the Kalman filter is executed
with radar reflectivity measurements observed around a large number of AWOS locations, the mean squared errors of
the Kalman filter rainfall estimates are smaller than the ones obtained with empirical ZR relationships.
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1. Introduction
Weather forecasting predicts the level of precipitation, cloudiness, temperature, wind speed, and direction for a
given time period in the near future. Short-time forecasting refers to the determination of the weather conditions
for the next 12 h; on the other hand, nowcasting refers to determination of the weather activity for the next
6 h. Nowcasting is critical to warn the public about severe weather that may have a harsh effect on social life
and economic activities. As an example, an early warning about severe weather is important to reduce disaster
risks.

Meteorology weather radar, also called weather surveillance radar (WSR) or Doppler weather radar, is a
type of radar used to locate precipitation, calculate its motion, and estimate its type such as rain, snow, or hail.
Return echoes from clouds, called reflectivity measurements, are then analyzed for their intensities to establish
the precipitation rate in the scanned volume. The radar reflectivity values, Z (or dBZ in its decibel scale),
increase with the severity of the pulse returns where stronger returns may indicate not only heavy rain but also
thunderstorms or hail [1]. There is an empirical relationship between radar reflectivity value Z in millimeters
to the sixth power per cubic meter (mm6/mm3) and the corresponding rainfall amount R in millimeters per
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hour (mm/hour) as Z = aRb , where the empirical ZR relationship parameters a and b vary based on the type
of the rainfall [2–6].

One branch of research is interested in tracking the cloud activity, which employs spatial or temporal
interpolation between consecutively observed radar reflectivity measurements (see [7] and references therein).
However, in this work, our aim is to directly predict the amount of rainfall at each automatic weather observation
station (AWOS) based on the radar reflectivity measurements. The ZR relationship parameters a and b depend
on the type of the rainfall [5] and may change over time [6]. Additionally, there might be some bias between
the predicted and the true rainfall amount, which may require further calibration [5]. A logarithmic bias model
between the predicted and the true rainfall amount was presented in [8, 9], where the authors additionally
employed a Kalman filter [10] to estimate the bias term over time. Additional bias models, linear and power
law models, were also given in [11]. Then the authors of [12] first determined the optimal parameters of the ZR
relationship for given weather data and compared their precipitation estimates with the Kalman filter used for
bias correction. For the Kalman filter, the process and measurement model parameters need to be determined
first. The works presented in [9, 11] model the bias value over time as an autoregressive-one (AR(1)) model.
For bias correction in rainfall estimation, in [9], Kalman filter model parameters were obtained by trial and
error. In [11], Kalman filter model parameters were estimated by using nonparametric estimators based on the
method of moments, which does not assume any distribution for the errors.

In this work, we are interested in estimating the precipitation amount for nowcasting. Rather than using
the conventional empirical ZR relationships, our aim is to predict the rainfall amount at a given AWOS location
by not only considering the current and previously received radar reflectivity measurements only around that
location, but also including the current and previously received radar reflectivity measurements around the
neighboring AWOS locations. Note that in order to predict the rainfall amount at a given AWOS location,
our method does not need the observed rainfall amounts in the previous steps of tracking. Here, rather than
forming an AR(1) model, we form a vector autoregressive-one VAR(1) model [13] where elements of the state
vector represent the true but unknown rainfall amounts observed at different AWOS locations. In our work, the
parameters of the process and measurement models of the Kalman filter are determined by using multivariate
least squares, which requires some initial training data consisting of radar reflectivity measurements and rainfall
amount data pairs. Numerical results show that as we increase the number of participating AWOS locations
to estimate the rainfall amount at a given location, Kalman filter predictions significantly outperform the
predictions generated with the empirical ZR relationships.

The rest of the paper is organized as follows. In Section 2, we give a brief review of meteorology radars
and the relationship between rainfall predictions and radar reflectivity measurements. In Section 3, we present
the Kalman filter model, determination of the Kalman filter model parameters, and execution of the Kalman
filter. In Section 4, we present the numerical results, and finally in Section 5, we conclude the paper and address
fruitful research directions.

2. Rainfall prediction from radar reflectivity measurements

Modern weather radars are typically pulse-Doppler radars, which can detect both the motion of rain droplets
and the precipitation intensity. Both types of data are then analyzed to determine the structure of weather
activity and their potential to cause severity. Weather radars send directional pulses on the order of 1 ms long.
Between each pulse, the radar serves as a receiver and listens for return signals from particles in the air. The
listen cycle duration is on the order of 1 ms, which is about 1000 times longer than the pulse duration. The
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typical values of equivalent radar reflectivity measurements from different types of weather activities (targets)
are shown in Table 1.

Table 1. The typical values of equivalent radar reflectivity values from different targets [1].

Target Z, (dBZ)

Light drizzle 0
Moderate drizzle, light snow 10
Light rain or moderate snow 25
Moderate rain 35
Heavy rain 45
Hail or very heavy rain 55
Moderate or severe hail > 60

Z–R relationships map the radar reflectivity measurements (Z) into rainfall amount predictions (R) for the
types of precipitation as shown in Table 2. As an example, the precipitation generated by warm rain processes
such as drizzle results in smaller drops and has climatological Z–R relationships with smaller a coefficients (a
weaker reflectivity will be observed for the same rain rate because of the smaller drops). Examples of other Z–R
relationships include the Marshall–-Palmer Z–R relationship Z = 200R1.6 , suitable for stratiform precipitations
[3, 14], or the relationship applicable to convective precipitation Z = 300R1.4 , which is widely used by the US
National Weather Service (NWS) [1, 4, 15, 16]. There are many criteria that may be used to separate stratiform
precipitation from the convective one [1, 17, 18]. First of all, the type of cloudiness, such as cumuliform types,
may characterize convective air and convective precipitation. A convective air mass is rapid and efficient. When
compared with stratiform precipitation, convective precipitation is unstable and has vertical air motions within
clouds. Particles in convective precipitation drift both upwards and downwards, while particles mostly drift
downward in stratiform precipitation [17]. On the other hand, stratiform precipitation may also have small
cells of convection [1]. At usual weather radar wavelengths, strong echoes (>40 dBZ) originate from convective
precipitation, and the strongest echoes (> 60 dBZ) are generally associated with hail. Stratiform precipitations,
on the other hand, do not have peak echoes above 40 dBZ.

Table 2. The empirical relationship between reflectivity and rainfall for different precipitation types [3, 4].

Empirical Z-R relationship Rain type
Z = 140R1.5 Light drizzle
Z = 200R1.6 Stratiform precipitation
Z = 300R1.4 Convective precipitation

In this work, we obtain the radar reflectivity data from the Çatalca radar in Turkey, whose location is
shown in Figure 1a. The Çatalca radar is owned and operated by the Turkish State Meteorological Service. The
Çatalca radar is a C-band Doppler radar that transmits radiation with a wavelength of 5.33 cm and produces
a beam-width of 0.56 degrees. The radar reflectivity measurements have been derived from the 1-km constant
altitude plan position indicator (CAPPI) data spanning an area with a radius of 120 km from the radar location.
CAPPI radar reflectivity data have been provided in a Cartesian grid, as shown in Figure 1b, of 720×720 with
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Figure 1. (a) Çatalca radar observation range and locations of the AWOSs, (b) radar coverage region partitioned into
pixels.
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about 0.11 km2 spatial resolution for each pixel and 8 min of temporal resolution. In a Cartesian grid, the
radar is located in the upper left corner of the pixel (360,360), which represents the center of the disk having a
radius of 120 km. Within the range of the Çatalca radar, there are a number of automatic weather observation
stations (AWOS), where an AWOS is equipped with sensors that can measure meteorological parameters such
as precipitation, temperature, wind speed, and wind direction. Radar reflectivity and rain gauge data around
a particular AWOS location need to be recorded at the same time for this study.

In this work, we are interested in predicting rainfall amounts of up to N = 15 AWOSs having rain gauge
sensors located in the southern part of İstanbul Province as shown in Figure 2. The locations of the AWOSs
of interest are also given in Table 3 in terms of their pixel values within the range of the Çatalca radar. The
Turkish State Meteorological Service (TSMS) is a founder state of the World Meteorological Organization, the
WMO being responsible to make regulations in the meteorological area, such as measurements, instrumentation,
observations, nowcasting, etc. In our work, we are interested in precipitation measurements on the ground. The
WMO suggests that the location of precipitation stations within the area of interest is important, because the
number and locations of the rain gauge sites should determine how well the rain gauge observations represent
the actual amount of precipitation falling in the area. Therefore, the rainfall parameter should be considered
as the area average. In order to express the radar reflectivity over the same area and to associate it with the
rain gauge rainfall amount for each AWOS location, we average the radar reflectivity values over 25 pixels of
CAPPI data, where the AWOS is located at the center of these 25 pixels [19].

Table 3. Automatic weather observation stations (AWOSs) used in this work within the range of the Çatalca radar.

Sensor no. AWOS name Pixel value Sensor no. AWOS name Pixel value
S1 Şişli (455,513) S9 Kartal (503,560)
S2 Kadiköy (477,526) S10 Tuzla (531,595)
S3 Ümraniye (463,556) S11 Büyükçekmece (458,418)
S4 Sancaktepe (470,529) S12 Davutpaşa (424,534)
S5 Darıca (549,619) S13 Vefa (468,511)
S6 Florya (481,467) S14 Eyüp (439,502)
S7 Üsküdar (462,533) S15 Sarıyer (424,534)
S8 Samandıra (478,575)

3. Kalman filter for rainfall estimation
In this section we briefly review the properties of the Kalman filter [10]. We then review the multivariate least
squares method, which is used for estimating the process and measurement models of the Kalman filter. We
finally relate the prediction and update models of the Kalman filter according to the rainfall estimation problem.

3.1. Kalman filter model
Let xt represent the true state vector of size N × 1 at time step t . The true state at time t evolves from the
previous state t− 1 according to the process model as

xt = Fxt−1 +wt, (1)
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Figure 2. Locations of the AWOSs having rain gauge sensors.

where F is the N ×N state transition matrix applied to the previous state xt−1 , and wt is the process noise,
which is assumed to be drawn from a zero mean multivariate Gaussian distribution with covariance matrix Q

of size N ×N .
At time step t , a measurement vector zt of size M × 1 is obtained from the true state xt according to

the measurement model as
zt = Hxt + vt, (2)

where H is the measurement matrix of size M ×N , which maps the true state space into measurement space,
and vt is the zero mean multivariate Gaussian measurement noise with covariance matrix R of size M ×M .

In our problem formulation, xt represents the amount of rain collected in N different AWOS rain gauge
sensors located in a given region of interest. In this problem, our task is to estimate the amount of rain x̂t|t

at each time step t , using the radar reflectivity measurements zt . In this work, M = N , where the size of
the radar reflectivity measurement vector M becomes equal to the size of the unknown state N , i.e. the true
rainfall amounts observed at the AWOS locations where the radar reflectivity measurements have also been
taken.

3.2. Kalman filter model estimation
Let us have the observation pair (xt, zt) for t ∈ {1, 2, . . . , T} , where T represents the total number of pairs
used for training, i.e. Kalman filter model estimation. Let the actual rainfall information for T steps of tracking
be x1, . . . ,xT (where xt = [x1,t, x2,t, . . . , xN,t]

T and xi,t represents the true rainfall amount observed at the
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ith AWOS rain gauge sensor at time step t) obeying a vector autoregression model, VAR(1), as follows:


x1,t

x2,t

...
xN,t


︸ ︷︷ ︸

xt

=


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
... . . . ...

aN,1 aN,2 · · · aN,N


︸ ︷︷ ︸

F


x1,t−1

x2,t−1

...
xN,t−1


︸ ︷︷ ︸

xt−1

+


w1,t

w2,t

...
wN,t


︸ ︷︷ ︸

wt

t ∈ {2, . . . , T}. (3)

The above VAR(1) includes T − 1 recursions, and all recursions can be written in a compact form as

Y 1 = B1Z1 +U1, (4)

where Y 1 =


x1,2 x1,3 · · · x1,T

x2,2 x2,3 · · · x2,T

...
... . . . ...

xN,2 xN,3 · · · xN,T

 , B1 =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
... . . . ...

aN,1 aN,2 · · · aN,N

 , Z1 =


x1,1 x1,2 · · · x1,T−1

x2,1 x2,2 · · · x2,T−1

...
... . . . ...

xN,1 xN,2 · · · xN,T−1

 ,

and U1 =


w1,2 w1,3 · · · w1,T

w2,2 w2,3 · · · w2,T

...
... . . . ...

wN,2 wN,3 · · · wN,T

 . From Eq. (4), the multivariate least squares estimate of B1 , B̂1 , is

obtained as [13]

B̂1 = Y 1Z
T
1 (Z1Z

T
1 )

−1 (5)

and the error covariance matrix is estimated as [13]

Σ̂1 =
(Y 1 − B̂1Z1)(Y 1 − B̂1Z1)

T

(T − 1)−N − 1
, (6)

where the normalization factor (T−1)−N−1 ensures that Σ̂1 is an unbiased estimate of the true but unknown
error covariance matrix Σ1 . Then, in Eq. (1), we set the process model matrix F = B̂1 and process noise
covariance matrix Q = Σ̂1 .

We use the actual rainfall values, x1, . . . ,xT , and their corresponding radar reflectivity measurements,
z1, . . . , zT , up to time step T as follows:


z1,t
z2,t

...
zN,t


︸ ︷︷ ︸

zt

=


b1,1 b1,2 · · · b1,N
b2,1 b2,2 · · · b2,N

...
... . . . ...

bN,1 bN,2 · · · bN,N


︸ ︷︷ ︸

H


x1,t

x2,t

...
xN,t


︸ ︷︷ ︸

xt

+


v1,t
v2,t

...
vN,t


︸ ︷︷ ︸

vt

t ∈ {1, . . . , T}. (7)

Similar to Eq. (4), we can represent all T radar reflectivity and corresponding rainfall amount pairs in a
compact form as

Y 2 = B2Z2 +U2, (8)
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where Y 2 =


z1,1 z1,2 · · · z1,T
z2,1 z2,2 · · · z2,T

...
... . . . ...

zN,1 zN,2 · · · zN,T

 , B2 =


b1,1 b1,2 · · · b1,N
b2,1 b2,2 · · · b2,N

...
... . . . ...

bN,1 bN,2 · · · bN,N

 , Z2 =


x1,1 x1,2 · · · x1,T

x2,1 x2,2 · · · x2,T

...
... . . . ...

xN,1 xN,2 · · · xN,T

 ,

and U2 =


v1,1 v1,2 · · · v1,T
v2,1 v2,2 · · · v2,T

...
... . . . ...

vN,1 vN,2 · · · vN,T

 . Then the multivariate least squares estimate of B2 , B̂2 , is obtained as

B̂2 = Y 2Z
T
2 (Z2Z

T
2 )

−1 (9)

and the unbiased covariance matrix estimate of the measurement noise becomes

Σ̂2 =
(Y 2 − B̂2Z2)(Y 2 − B̂2Z2)

T

T −N − 1
. (10)

Finally, in Eq. (2), we set the measurement model matrix H = B̂2 and measurement noise covariance matrix
R = Σ̂2 .

3.3. Execution of the Kalman filter
The Kalman filter is a recursive estimator; that is, only the estimated state from the previous time step and
the current measurement are needed to compute the estimate for the current state. Let x̂t|t represent the a
posteriori state estimate at time t given observations up to and including time step t and let P t|t be the a
posteriori error covariance matrix. Then the Kalman filter is implemented in two distinct stages as prediction
and update [10].

During the prediction stage, for time step t , the predicted a priori state estimate, x̂t|t−1 , and a priori
error covariance matrix, P t|t−1 , are respectively obtained from the a posteriori state estimate x̂t−1|t−1 and a
posteriori error covariance matrix P t−1|t−1 of the previous time step t− 1 as

x̂t|t−1 = F x̂t−1|t−1, (11)

P t|t−1 = FP t−1|t−1F
T +Q,

where (.)T is the transpose operation.
Upon the reception of the measurement zt at time step t , the update stage sequentially determines the

innovation ỹt , innovation covariance St , optimal Kalman gain Kt , updated a posteriori state estimate x̂t|t ,
and updated a posteriori error covariance matrix P t|t as follows:

ỹt = zt −Hx̂t|t−1, (12)

St = R+HP t|t−1H
T ,

Kt = P t|t−1H
TS−1

t ,

x̂t|t = x̂t|t−1 +Ktỹt,

P t|t = (I −KtH)P t|t−1(I −KtH)T +KtRKT
t ,

where I is the identity matrix of size N .
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To initialize recursions, we generate an initial rainfall estimate x̂0|0 from a multivariate Gaussian dis-
tribution with mean µ0 and covariance matrix P 0|0 . Then rainfall predictions are obtained using Eq. (11).
Upon observing the radar reflectivity measurements zk , we execute the update stage as given in Eq. (12).

4. Numerical results
In this work, we are interested in the precipitations observed in a consecutive 3-day period between 28 November
2016 and 30 November 2016. For 28 November 2016, Figure 3a shows the radar activity over Turkey, where the
Çatalca radar is located in the northwest of Turkey. Figure 3b shows the weather activity as radar reflectivity
measurements observed by the Çatalca radar. For this 3-day period, the reflectivity values of first-level CAPPI
data (within 1 km) are around 30–40 dBz, and the variability of the reflectivity values is smooth. There are
not many peaks above 40 dBZ and rain rates do not exceed 10 mm/h, which can be classified as stratiform
precipitation based on the definitions given in Section 2. On the other hand, the presence of a cold-front line
with warm air causes rain showers at the beginning of the period, where such showers can be classified as
convective precipitation. Both ZR relations for stratiform precipitation and convective precipitation, given in
Table 2, are thus considered here for numerical comparison. We refer to ZR relationship Z = 200R1.6 as ZR1
(suited for stratiform precipitations) and Z = 300R1.4 as ZR2 (suited for convective precipitations).

(b)(a)

Figure 3. (a) Radar map of Turkey on 28 November 2016, (b) radar reflectivity measurements (in dBZ) within the
range of the Çatalca radar.

Let xt(n) be the actual rainfall measured by the rain gauge sensor of AWOS n at time step t and x̂t(n)

be the estimated rainfall for AWOS n at time step t by using either of the above ZR rules or the Kalman filter.
We define the mean squared error (MSE) of the rainfall estimate at AWOS n as

MSE(n) = 1

TS

TS∑
t=1

(xt(n)− x̂t(n))
2 n ∈ {1, · · · , N}, (13)

where TS is the total number of iterations (time steps) in a 3-day (72-h) period of tracking. Note that
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CAPPI provides radar reflectivity measurements every 8 min. Therefore, in order to have a radar reflectivity
measurement that can best represent the 1-h weather activity, we select the maximum of the reflectivity
measurements observed within the 1-h period. In our study, for our available weather data, we also tried
summing all the radar reflectivity measurements, or averaging the reflectivity measurements received in 1 h.
When we used the summation of the reflectivity measurements in 1 h and the corresponding rainfall amount
in the same hour, the best ZR relationship parameters were obtained as a = 488.26 and b = 1.2512 , which
were close to the parameters of a thunderstorm [2]. On the other hand, when we used the average of the
reflectivity measurements and the rainfall amount in the same hour, the best ZR relationship parameters were
then obtained as a = 61.0328 and b = 1.2512 , which were close to the parameters of a light rain [2]. For
our data, the maximum radar reflectivity value in 1 h and the total rainfall amount in the same hour are best
modeled with the ZR parameters a = 158.2116 and b = 1.1947 , which are now comparable with the stratiform
precipitation parameters (a = 200 , b = 1.6) where our 3-day rainfall data were mostly classified as stratiform.

Then, using either the Kalman filter or empirical ZR relationships, we estimate the rainfall at a particular
AWOS location accordingly. The estimated rainfall amount at a given AWOS location is then compared with
the actual rainfall amount observed at that location. In this study we initialize the Kalman filter using the ZR1
estimates of the rainfall. For the prediction stage in Eq. (11), the elements of the initial value vector x̂1|1 are
set as the ZR1 rainfall estimates at each of the AWOS locations. The initial covariance matrix P 1|1 is set as
arbitrary σ2⊮ , where we select σ2 = 40 and ⊮ represents the identity matrix of size N ×N .

For the Kalman filter model, we initially select N = 5 AWOSs located at S1 to S5 (see Table 3) as shown
in Figure 2 and Table 3. The Kalman filter is trained with the first T iterations of actual radar reflectivity and
rainfall amount pairs in order to obtain the process/measurement models and covariance matrices of the process
noise/measurement noise as defined in Section 3.2. Table 4 shows that for N = 5 AWOS locations, the Kalman
filter model and empirical ZR relationships achieve similar results in terms of MSE, where the estimation results
of the KF converges after about T = 36 initial iterations for training. Since the type of precipitation is mostly
stratiform, the ZR relationship of the stratiform precipitation (ZR1) yields rainfall estimates with slightly better
MSE values as compared to the ZR relationship of the convective precipitation (ZR2).

Table 4. MSE at N = 5 AWOS locations as a function of number of training samples T , hourly data.

T S1 S2 S3 S4 S5

24 7.00 2.77 2.01 4.37 3.30
36 2.37 1.06 1.20 1.52 0.57
48 2.34 1.04 1.19 1.48 0.56
60 2.44 1.22 1.30 1.62 0.59
72 2.44 1.23 1.29 1.62 0.60
ZR 1 2.53 1.10 1.33 1.44 0.79
ZR 2 2.89 1.26 1.47 1.64 0.80

To assess the estimation performance of the Kalman filter when the total number of AWOS locations is
increased, in Table 5, we set the total number of AWOS locations as N = 10 by adding 5 new AWOS locations
S6 to S10 (see Table 3). The numerical results in Table 5 show that, when used with N = 10 AWOS locations,
it is possible to reduce the MSE at S1 to S5 as compared to the N = 5 case presented in Table 4. When
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Table 5. MSE at N = 10 AWOS locations as a function of number of samples for training, hourly data; T is the total
number of training pairs.

T S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

24 4.08 2.40 3.90 1.22 1.60 2.32 3.40 5.73 0.94 0.88
36 1.85 0.83 0.88 0.87 0.44 0.74 0.91 1.39 0.23 0.52
48 1.78 0.81 0.87 0.86 0.44 0.72 0.87 1.42 0.23 0.54
60 1.74 0.87 0.85 0.85 0.42 0.69 0.84 1.49 0.21 0.54
72 1.74 0.87 0.85 0.84 0.43 0.70 0.84 1.48 0.20 0.56
ZR1 2.53 1.10 1.33 1.44 0.79 0.88 1.44 1.89 1.85 1.39
ZR2 2.89 1.26 1.47 1.64 0.80 1.03 1.69 1.96 1.44 1.39

Table 6. MSE at N = 15 AWOS locations as a function of number of samples for training, hourly data; T is the total
number of training pairs.

T S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

24 10.13 2.32 9.15 15.87 2.67 4.78 5.47 56.35 5.04 1.76 38.59 5.50 5.47 5.79 4.30
36 1.43 0.60 0.62 0.65 0.20 0.47 0.64 1.38 0.15 0.31 0.80 0.91 1.30 0.92 0.36
48 1.03 0.50 0.59 0.64 0.17 0.37 0.56 1.27 0.12 0.26 0.74 0.72 0.94 0.74 0.34
60 0.98 0.46 0.61 0.68 0.17 0.37 0.49 0.84 0.10 0.23 0.76 0.76 0.90 0.75 0.30
72 1.03 0.47 0.61 0.69 0.18 0.38 0.50 0.81 0.10 0.24 0.75 0.80 0.94 0.80 0.31
ZR1 2.53 1.10 1.33 1.44 0.79 0.88 1.44 1.89 1.85 1.39 27.32 2.36 2.12 1.78 1.07
ZR2 2.89 1.26 1.47 1.64 0.80 1.03 1.69 1.96 1.44 1.39 18.21 2.76 2.51 2.05 1.27

used with N = 10 AWOS locations, in terms of MSE in estimation, the Kalman filter now outperforms all the
ZR relationship-based methods considerably. Furthermore, for N = 15 AWOS locations, we further include
reflectivity measurements observed from S11 to S15 (see Table 3). Similar to the previous results, when used
with N = 15 AWOS locations, the MSEs at S1 to S10 further decrease as compared to the N = 10 case
presented in Table 5. Finally, we compare the MSE values given in Table 4, Table 5, and Table 6 in terms of
the required number of training samples T to fit the Kalman filter model parameters. For all three cases, the
MSE of the Kalman filter estimate at a given AWOS location does not change significantly after trained with
at least the first T = 36 h of data.

Figure 4 shows the amount of actual rainfall and estimated rainfall obtained by either using the ZR1 rule
or the Kalman filter at representative S1 to S4 AWOS locations over time. When used with N = 15 AWOS
locations, the Kalman filter rainfall estimation tracks the actual rainfall amounts at each hour better than the
Kalman filter as compared to the N = 5 case or ZR1 relationship. Finally, Figure 5 shows the minimum
achievable MSE at the same AWOS locations, when the number of AWOS locations N in the Kalman filter
is varied between 1 and 15. Note that when N = 1 , the rainfall amount is estimated by using the current
and previous reflectivity measurements observed at that AWOS location only, i.e. without using the reflectivity
measurements observed at the neighboring AWOS locations. When N = 1 , the estimation performance of
the ZR1 rule is better than the estimation performance of the Kalman filter. This might be due to the fact
that ZR relationship parameters (ZR1) have been determined for a statistically very long period of data,
where the Kalman filter parameters are obtained in this study by using a very limited number (T ) of radar
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reflectivity measurement - rainfall amount pairs. As we add reflectivity measurements observed around new
AWOS locations, the MSE at the AWOS location of interest tends to decrease. When N = 5 , ZR1 and
the Kalman filter yield similar estimation performances. The estimation performance of the Kalman filter
significantly outperforms the estimation performance of ZR1 relationships when N is further increased, i.e.
N = 10 or N = 15 .
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Figure 4. Actual rainfall and estimated rainfall over time observed at (a) S1 AWOS location, (b) S2 AWOS location,
(c) S3 AWOS location, and (d) S4 AWOS location.

5. Conclusions and future work
In this study, we formed a vector Kalman filter whose state vector was composed of true rainfall amounts at
N different AWOS locations. The radar reflectivity measurements observed around each AWOS location were
then considered as the measurements from the unknown state and the rainfall amounts at the rain gauge sensors
of AWOSs were predicted using the Kalman filter. Our preliminary results showed that, for a small number
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Figure 5. MSE as a function of total number of AWOS locations N observed at (a) S1 AWOS location, (b) S2 AWOS
location, (c) S3 AWOS location, and (d) S4 AWOS location.

of AWOS locations, the empirical ZR model provided better rainfall estimates as compared to the rainfall
estimates provided by the Kalman filter. On the other hand, as the number of participating AWOS locations
was increased, Kalman filter-based rainfall estimates significantly outperformed the estimates generated with
the ZR relationships. As a future work, ZR rule-based rainfall estimates can be integrated into the Kalman
filter model as additional measurements. When N is small, the estimation performance of the Kalman filter
may thus be improved.

In this study, we compared the performance of the rainfall amount estimation using the Kalman filter
with the empirical ZR relationships only. As a future work, we are also interested in determining the estimates
by using the spatial and temporal relationship of the rainfall amount data. For this purpose, we need to first
select the proper covariance model (or variogram model) of the measurements that can best reflect the spatial
and temporal relationship of the rainfall [20, 21], determine the optimal parameters of the covariance model,
and compare the estimation results with the ones already obtained in this work.
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In this study, we used the maximum of the radar reflectivity measurements observed in a 1-h period
to estimate the rainfall amount for that 1-h period. As a future work, the radar reflectivity measurement
representing the weather activity in a 1-h period may be improved by using additional radar signal processing.
In this study, we consider a stratiform precipitation observed during late November, which was effective over
a wide geographical region. The performance of different types of precipitations, i.e. stratiform precipitation
or convective precipitation over different time periods within a year, will be studied in detail. Furthermore,
we tested our hypothesis with a short period (3-day) of data observed in İstanbul, Turkey. By considering
further weather data that span different rain characteristics over different time periods and different regions,
we can determine how Kalman filter model parameters depend on the rain type, time of year, and geographical
region. If model parameters obtained in one certain region or time period are applicable to other regions or
time periods, the need for training the Kalman filter may diminish.

Also in this study, we used the radar reflectivity measurements obtained from a single radar. Fusing
radar reflectivity measurements from multiple weather radars may improve the rainfall amount predictions.
Moreover, in this work we were interested in the reflectivity data obtained from an altitude of 1 km where
CAPPI is capable to get reflectivity values between 1 km and 12 km. Including the reflectivity values obtained
from other altitude levels [22] may also improve the rainfall predictions. Last but not least, including data
from other sensors, such as temperature, humidity, pressure, wind speed, and wind direction, into the proposed
Kalman filter framework may provide very intuitive results to better understand the type and behavior of the
precipitation.
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