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Abstract: In the present article, we have developed the G2 -approximation scheme for planar curves arising in science,
engineering, computer-aided design, computer-aided manufacturing, and many other fields. The obtained results reveal
that the proposed method is a significant addition to the approximation of planar curves. The method is illustrated
using different numerical examples. The smaller absolute error confirms the applicability and efficiency of the proposed
method.
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1. Introduction
A wide class of planar curves (parabola and ellipse) arise in various branches of pure and applied sciences, in-
cluding astrophysics, medical imaging, structural engineering, biomedical engineering, chemical industry, wave
propagation, objects motion, and optimization. Conics are extensively used in shape expression, mechanical
accessories (tube benders, cutters, wrenches, clamp systems, inspection gauges), design of aircrafts, car head-
lights, rocket satellites, construction of roller coaster, suspension bridges, outline of fonts, and CAD/CAM
systems [1]. In particular, ellipses are used in modern medicine where the reflection property is the basis for
lithotripsy. Lithotripsy is a very useful medical treatment for kidney and gall stones without open surgery. The
risks associated with this surgery are comparatively small. A parabolic dish (parabolic reflector) is just like the
shape of a parabola, which is used to direct light or sound waves.

Approximation of planar curves is of great interest in CAD due to the inconsistency of parametric
equations of conics with CAD. A lot of work has been done in the past few years in this regard. Some noticeable
contributions include [2–16]. The existing approximation schemes have focused on the approximation of rational
quadratic Bézier curves, which represent conic sections. The control points and weights of the approximating
curves were defined in terms of a rational quadratic Bézier curve. The constraints on the weight functions
of the approximating curves yielded a family of approximating curves for a given planar curve. Thus, the
approximating curve was not unique and involved geometrical and computational complexity.

In this research paper a novel G2 -approximation scheme is presented for parabolic and elliptic arcs using
a parametric rational cubic function. The control points of the parametric rational cubic function are calculated
using G2 -approximation constraints. The proposed geometric approximation scheme is based on end tangents
and curvatures of planar curves (parabolic and elliptic arcs), and the optimal values of free parameters are
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determined by optimization techniques. To the best of our knowledge, no similar work is found in the literature.
The maximum absolute error for the developed approximation scheme is less than that of the prevailing schemes.
The numerical experiments suggest the simplicity, feasibility, and efficiency of the presented scheme. A detailed
comparison to the existing schemes is as follows:

• The existing schemes approximate conics in terms of control points and weights of the rational quadratic
Bézier curve [2,6–9,15,16]. The proposed G2 -approximation scheme of this research paper is based on end
tangents and curvatures of planar curves (parabola and ellipse). Therefore, it does not need the rational
quadratic Bézier representation of planar curves and it is robust and simpler than the prevailing schemes.

• The existing approximation schemes of conics [2,6,7,8,15] provide a family of approximating curves of a
given conic section due to the constraints on weight functions. In this research paper, the optimal value
of the free parameter is calculated by an optimization technique. It provides the unique and optimal
approximation of parabolic and elliptic arcs.

• It is clear from the Table that the maximum absolute error of the proposed G2 -approximation scheme
for parabolic and elliptic arcs is less than that of the prevailing schemes [2,6,8,9,11]. Hence, the proposed
approximation scheme of this research paper is more effective than prevailing schemes.

Table. Comparison of absolute errors of the proposed approximation schemes (parabolic and elliptic arcs) with the
existing approximations schemes.

Approximating schemes [2] [7] [8] [11]
Proposed
approximation
scheme

Maximum absolute errors 2.8737× 10−1 1.4719× 10−1 1.3638× 10−3 4.5982× 10−4 3.4510× 10−12

Approximating schemes [2] Proposed approximation scheme
Maximum absolute errors 4.3990× 10−3 2.8× 10−3

• In [15], a rational cubic Bézier representation for conics was presented with the help of weights and vertices
of the rational quadratic Bézier curve. However, in our proposed scheme, G2 -approximation is used to
approximate parabolic and elliptic arcs by a rational cubic parametric function with two free parameters.
The G2 -approximation scheme proposed in this research paper is more efficient than [15] as it provides
unique and optimal approximation. Unlike [15], it does not constrain the geometry of vertices and does
not require its rational quadratic Bézier representation. The parabolic and elliptic arcs are approximated
in the first quadrant and then affine transformation is applied to obtain the complete parabola and ellipse.
Therefore, the proposed scheme is simpler than [15].

The paper is organized as follows: in Section 2, approximation schemes for planar curves by parametric
rational cubic function are introduced. In Section 3, the proposed schemes are demonstrated with the help of
numerical examples, and concluding remarks are given in Section 4.
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2. Approximation of planar curves by parametric rational cubic function

The parametric rational cubic function (PRCF) is given by:

p (t) =

3∑
i=0

Bi(t)pi, t ∈ [0, 1] pi ∈ R2 (1)

Here, Bi (t) =
(1−t)3−iti

q(t) , q (t) = α+β (1− t) t p
′

is are the 2D control points and α, β are the positive real free

parameters. For G2 -approximation of conics (parabolic and elliptic arcs) by the PRCF of Eq. (1), the following
G2 -constraints are used:

p (0) = c0 , p (1) = c1 (2)

T0 = t0 , T1 = t1 (3)

κp (0) = κ0 κp (1) = κ1 (4)

Here, p (0) and p (1) are the end points, T0 and T1 are the end unit tangents, and κp (0) and κp (1) are
the end curvatures of PRCF Eq. (1). ck, k = 0, 1, are the initial and final points of the concerned conic and
tk, k = 0, 1, are its unit tangents at c0 and c1 , respectively. Curvature of the concerned conic at c0 and c1 is
denoted by κ0 and κ1 , respectively. A simple calculation yields the following values of end points and end unit
tangents of PRCF Eq. (1):

p (0) =
p0
α
, p (1) =

p3
α
, T0 =

p
′
(0)

∥p′ (0)∥
=

αp1 − (3α+ β) p0
g1

, T1 =
p

′
(1)

∥p′ (1)∥
=

(3α+ β) p3 − αp2
g2

(5)

Here, g1 = ∥αp1 − (3α+ β) p0∥ , g2 = ∥(3α+ β) p3 − αp2∥ . As g′is depend upon α and β these are also
exploited as positive real free parameters in the construction of approximation schemes. Substituting the values
from Eqs. (2) and (3) in Eq. (5), the values of control points of Eq. (1) are calculated, which are given in Eq.
(6).

p0 = αc0 , p3 = αc1 , αp1 − (3α+ β) p0 = g1t0 , (3α+ β) p3 − αp2 = g2t1 (6)

The scalar form of Eq. (1) was used in [17] for the shape-preservation of 2D data.

2.1. Parametric rational cubic approximation of parabolic arcs
This section presents a parametric rational cubic approximation scheme to approximate parabolic arcs. As a
parabola is symmetric about the coordinate axes, a complete parabola is obtained through reflection transfor-
mations.

First, a numerical scheme is constructed to approximate the horizontal parabolic arc by the parametric
rational cubic function given in Eq. (1). Suppose that the parabolic arc is part of the horizontal parabola y2 =

4ax with axis along x -axis, vertex at (0, 0) , and focus at (a, 0) with a > 0. Any point S of this parabola
has parametric representation S

(
aθ2, 2aθ

)
where θ is the positive real parameter. Take c0 at origin and c1

as an arbitrary point of parabola y2 = 4ax The hypothesis provides the following end points (c0, c1) end unit
tangents (t0, t1) , and the curvatures (κ0, κ1) of the parabolic arc c0c1 :

c0 = (0, 0) , c1 =
(
aθ2, 2aθ

)
, t0 = (0, 1) , t1 =

(
θ

ρ1
,
1

ρ1

)
, κ0 = − 1

2a
κ1 = − 1

2aρ31
ρ1 =

√
θ2 + 1
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Substituting the above values into Eq. (6), the computed control points of PRCF Eq. (1) are written in Eq.
(7).

p0 = (x0, y0) , p1 = (x1, y1) , p2 = (x2, y2) , p3 = (x3, y3) , (7)

x0 = 0, y0 = 0, x1 = 0, y1 =
g1
α
, x2 = a (3α+ β) θ2− g2θ

αρ1
,

y2 = 2a (3α+ β) θ − g2
αρ1

, x3 = αaθ2, y3 = 2aαθ.

Substituting the values of control points pi = (xi, yi) i = 0, 1, 2, 3, from Eq. (7) into Eq. (1), the following
parametric equations of Eq. (1) are obtained:

x (t) =

3∑
i=0

Bi(t)xi, y (t) =

3∑
i=0

Bi(t)yi (8)

Curvature, κp (t) of PRCF Eq. (1) at the end points of the domain of parameter t ∈ [0, 1] , is given by:

κp (0) =
2α2

g21

(
g2θ

ρ1
− aα (3α+ β) θ2

)
, κp (1) =

2α2

g22ρ1

(
g1θ − aα (3α+ β) θ2

)
The values of curvature κp (t) are calculated by substituting the values of x (t) and y (t) from Eq. (8) in

curvature formula κp (t) =
(

dx
dt .

d2y
dt2

− dy
dt .

d2x
dt2

)
·
((

dx
dt

)2
+

(
dy
dt

)2
)− 3

2

. By putting these values of curvature in

Eq. (4), we have:
ρ1g

2
1 = −4aα2

(
g2θ − aαρ1 (3α+ β) θ2

)
(9)

g22 = −4aα2ρ21 (g1θ − aα (3α+ β)) θ2 (10)

The set of Eqs. (9) and (10) has two solutions, g2 = ρ1g1 or g2 = 4aα2ρ1θ − ρ1g1 leading to the following two
cases:

Case 1. If g2 = ρ1g1 then Eq. (10) can be written as follows:

g21 + 4aα2θg1 − 4α3a2 (3α+ β) θ2 = 0. (11)

Solutions of quadratic Eq. (11) are g1 = −2aα2θ± 2

√
(2aα2θ)

2
+ α3a2θ2β . As α, β, θ , and a are positive real

entities, g1 = −2aα2θ − 2

√
(2aα2θ)

2
+ α3a2θ2β gives a negative value of g1 . A negative value of g1 is not

acceptable as g1 is a positive real unknown parameter. Therefore, g1 = −2aα2θ + 2

√
(2aα2θ)

2
+ α3a2θ2β is

the only acceptable value.
Case 2. If g2 = 4aα2ρ1θ − ρ1g1 then Eq. (10) can be rewritten as follows:

g21 − 4aα2θg1 +
(
4α4a2θ2 − 4α3a2θ2β

)
= 0. (12)

Solutions of quadratic Eq. (12) are g1 = 2aα2θ ± 2
√

α3a2θ2β . Recollecting that α, β, θ , and a are positive

real entities, g1 = 2aα2θ + 2
√
α3a2θ2β is therefore always positive but g1 = 2aα2θ2 −

√
α3a2θ2β is positive
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only for α > β . As g1 is a positive real unknown parameter, therefore the universally acceptable value of g1 is
g1 = 2aα2θ + 2

√
α3a2θ2β. Thus, the two solutions to the simultaneous Eqs. (9) and (10) are the following:

g1 = −2aα2θ + 2

√
(2aα2θ)

2
+ α3a2θ2β and g2 = ρ1g1 (13)

g1 = 2aα2θ + 2
√

α3a2θ2β and g2 = 4aα2ρ1θ − ρ1g1 (14)

By substituting the values of g1 and g2 from either Eq. (13) or (14) in Eq. (7), two sets of control points
of PRCF Eq. (1) for the approximation of the horizontal parabolic arc are obtained. Now, by putting these
values of control points in Eq. (8), two sets of parametric equations, x(t) and y (t) for the approximation of
horizontal parabolic arc (y2 = 4ax) are obtained. The absolute error function of the developed approximation
scheme is γ1 (α, β, t) =

∣∣y2(t)− 4ax(t)
∣∣ . To obtain the optimal approximation of the horizontal parabolic arc,

the values of free parameters α and β are obtained by Optimization problem-I.
Optimization problem-I: Minimize (maximum γ1 (α, β, t) =

∣∣y2(t)− 4ax(t)
∣∣)

subject to α ≥ u , β ≥ u , where, u = 2.2204× 10−16 .

Here u = 2.2204× 10−16 is a MATLAB special variable epsilon. It is the smallest difference between two
values that can be represented by MATLAB. The parametric equations x(t) and y (t) are already defined in
Eq. (8).

Theorem 1 If the control points of the parametric rational cubic function in Eq. (1) are p0 = (x0, y0) , p1 =

(x1, y1) , p2 = (x2, y2) , p3 = (x3, y3) , x0 = 0, y0 = 0, x1 = 0, y1 = g1
α , x2 = a (3α+ β) θ2− g2θ

αρ1
, y2 =

2a (3α+ β) θ − g2
αρ1

, x3 = αaθ2, y3 = 2aαθ and ρ1 =
√
θ2 + 1; g1 and g2 are obtained from either Eq. (13)

or (14); and the free parameters α, β ∈ (0,∞) are obtained from Optimization problem-I, then PRCF Eq. (1)
approximates the horizontal parabolic arc c0c1 .

In a similar fashion, we can approximate an arc of a vertical parabola. The equation of vertical parabola
is x2 = 4ay with axis along the y-axis having vertex at (0, 0) , focus at (0, a) , a > 0. Consider an arc c0c1

of the vertical parabola where c0 (0, 0) and c1
(
2aθ, aθ2

)
. Here, θ is a positive real parameter. Following the

same steps as detailed above for approximation of a horizontal parabolic arc, the G2 -approximation scheme is
developed to approximate the vertical parabolic arc by PRCF Eq. (1). It is summarized in Theorem 2.

Theorem 2 If the control points of the parametric rational cubic function of Eq. (1) are p0 = (x0, y0) , p1 =

(x1, y1) , p2 = (x2, y2) p3 = (x3, y3) , x0 = 0, y0 = 0, x1 = g1
α , y1 = 0, x2 = 2a (3α+ β) θ − g2

αρ2
, y2 =

a (3α+ β) θ2 − g2θ
αρ2

, x3 = 2aα, θ, y3 = aαθ2, and ρ2 =
√
θ2 + 1; the values of g1 and g2 are obtained from

either Eq. (13) or (14); and the free parameters, α, β ∈ (0,∞) are obtained from Optimization problem-II, then
PRCF Eq. (1) approximates the vertical parabolic arc coc1 .

Optimization problem-II: Minimize (maximum γ2 (α, β, t) =
∣∣x2(t)− 4ay(t)

∣∣)
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subject to α ≥ u , β ≥ u , where, u = 2.2204× 10−16 .

Here,
x (t) = B0 (t)x0 +B1 (t)x1+B2 (t)x2+B3 (t)x3

y (t) = B0 (t) y0 +B1 (t) y1+B2 (t) y2+B3 (t) y3

x0 = 0, y0 = 0, x1 =
g1
α
, y1 = 0, x2 = 2a (3α+ β) θ− g2

αρ2
, y2 = a (3α+ β) θ2− g2θ

αρ2
, x3 = 2aαθ, y3 = aαθ2,

and ρ2 =
√
θ2 + 1 .

Remark 1 The presented approximation scheme is useful for the approximation of all parabolic shapes (oblique
parabolas) using affine transformations.

2.2. Parametric rational cubic approximation of elliptic arcs
In this section, a parametric rational cubic approximation scheme is introduced to approximate an elliptic
arc by using the parametric rational cubic function (PRCF) defined in Eq. (1). We can obtain a complete
ellipse after applying affine transformations. Suppose that the concerned elliptic arc is part of the horizontal

ellipse x2

a2 + y2

b2 = 1, a > b > 0, with major axis along the x -axis, center at origin, and focus at (c, 0) where

c =
√
a2 − b2. Any point S of the ellipse has representation S (a cos θ, b sin θ) , where θ is the angle that OS

makes with the positive x -axis. Simplification suggests to choose θ ∈
[
0, π

2

]
. We take the initial point c0 of

the elliptic arc c0c1 on the horizontal x -axis and tangent t0 as vertical tangent. Thus, the end points, end unit
tangents, and end curvatures are given by:

c0 = (a, 0) , c1 = (a cos θ, b sin θ) , t0 = (0, 1) , t1 =

(
−a sin θ

ρ3
,
b cos θ
ρ3

)
,

κ0 =
a

b2
, κ1 =

ab

ρ33
, ρ3 =

√
a2sin2θ + b2cos2θ.

Substituting the values of end points and end unit tangents in Eq. (6), the following control points of the
parametric rational cubic function Eq. (1) approximating the horizontal elliptic arc c0c1 are obtained.

p0 = (x0, y0) , p1 = (x1, y1) , p2 = (x2, y2) , p3 = (x3, y3) , (15)

x0 = αa, y0 = 0, x1 = a (3α+ β) , y1 =
g1
α
, x2 = a (3α+ β) cos θ + ag2 sin θ

αρ3
,

y2 = b (3α+ β) sin θ − bg2 cos θ
αρ3

, x3 = αa cos θ, y3 = αb sin θ.

Substituting the values of control points pi = (xi, yi) , i = 0, 1, 2, 3, from Eq. (15) into Eq. (1), the following
parametric equations of Eq. (1) are obtained:

x (t) =

3∑
i=0

(1− t)
3−i

tixi

α+ β (1− t) t
, y (t) =

3∑
i=0

(1− t)
3−i

tiyi

α+ β (1− t) t
(16)
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The curvatures κp (t) of the PRCF at the end points of the domain of the parameter t ∈ [0, 1] are given by:

κp (0) =
2aα2

g21

(
α (3α+ β) (1− cos θ)− g2 sin θ

ρ3

)
(17)

κp (1) =
2aα2

g22ρ3
(bα (3α+ β) (1− cos θ)− g1 sin θ) (18)

By putting the values of curvatures in Eq. (4), we have

ρ3g
2
1 = 2α2b2 (αρ3 (3α+ β) (1− cos θ)− g2 sin θ) (19)

bg22 = 2α2ρ23 (bα (3α+ β) (1− cos θ)− g1 sin θ) (20)

Solutions of simultaneous Eqs. (19) and (20) are bg2 = ρ3g1 or bg2 + ρ3g1 = 2bα2ρ3 sin θ which leads to the
following two cases.

Case 1. If g2 = ρ3g1
b then Eq. (20) can be written as follows:

g1 = −α2b sin θ ± g1,0, g1,0 =
√
h, h. (21)

Solutions of quadratic Eq. (21) are g1 = −α2b sin θ±g1,0±g1,0 =
√
h, h =

(
α2b sin θ

)2
+2α3b2 (3α+ β) (1− cos θ)

As α, β, a , b are positive real entities and θ ∈
[
0, π

2

]
, g1 = −α2b sin θ − g1,0 is always negative, but by the

definition of g1 it is a positive real parameter. Therefore, the only acceptable value of g1 is given in Eq. (22).

g1 = −α2b sin θ+

√
(α2b sin θ)

2
+ 2α3b2 (3α+ β) (1− cos θ) (22)

Case 2. If g2 = 2α2ρ3 sin θ − ρ3g1
b then Eq. (20) can be rewritten as follows:

g21 − 2bα2 sin θg1 +
(
4α4b2sin2θ − 2α3b2 (3α+ β) (1− cos θ)

)
= 0 (23)

Solutions of quadratic Eq. (23) are g1 = α2b sin θ±g1,1, g1,1 =
√

h̃, h̃ = −3α4b2 sin2 θ+2α3b2 (3α+ β) (1− cos θ) .
These solutions become imaginary for different choices of α, β, a, b , and θ . Therefore, the acceptable solution
to simultaneous Eqs. (19) and (20) is given in Eq. (24):

g1 = −α2b sin θ+

√
(α2b sin θ)

2
+ 2α3b2 (3α+ β) (1− cos θ) , g2 =

ρ3g1
b

(24)

Substituting the values of g1 and g2 from Eq. (24) in Eq. (15), we get a unique set of control points of PRCF
Eq. (1) approximating the horizontal elliptic arc. Putting these values of control points in Eq. (16), a unique
set of parametric equations, x(t) and y (t) for the approximation of the horizontal elliptic arc is obtained. The

absolute error function of the concerned approximation scheme is γ3 (α, β, t) =
∣∣∣b2x2 (t) + a2y

2
(t)− a2b2

∣∣∣ . To

obtain the optimal approximation of the horizontal elliptic arc, the values of free parameters α and β are
obtained by Optimization problem-III.
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Optimization problem-III:

Minimize (maximum γ3 (α, β, t) =
∣∣∣b2x2 (t) + a2y

2
(t)− a2b2

∣∣∣)
subject to α ≥ u , β ≥ u , where, u = 2.2204× 10−16

Here, x (t) and y (t) are already defined in Eq. (16).

Theorem 3 If the control points of the parametric rational cubic function of Eq. (1) approximating the
horizontal elliptic arc are p0 = (x0, y0) , p1 = (x1, y1) , p2 = (x2, y2) , p3 = (x3, y3) , x0 = αa, y0 =

0, x1 = a (3α+ β) , y1 = g1
α , x2 = a (3α+ β) cos θ + ag2 sin θ

αρ3
, y2 = b (3α+ β) sin θ − bg2 cos θ

αρ3
, x3 = αa cos θ, y3 =

αb sin θ, g1 = −α2b sin θ+ g10, g10 =

√
(α2b sin θ)

2
+ 2α3b2 (3α+ β) (1− cos θ), g2 = ρ3g1

b ,

ρ3 =
√
a2sin2θ + b2cos2θ, 0 ≤ θ ≤ π

2 and the free parameters α, β ∈ (0,∞) are obtained from Optimization
problem-III, then PRCF Eq. (1) approximates the horizontal elliptic arc coc1 .

In a similar way, we can approximate an arc of a vertical ellipse. Suppose that the concerned arc is a

part of the vertical ellipse, x2

a2 + y2

b2 = 1, b > a > 0, with major axis along the y -axis, center at origin, and

focus at (0, c) where c =
√
b2 − a2. The computed control points of PRCF Eq. (1) approximating the vertical

elliptic arc are the same as given in Eq. (15). Therefore, Theorem 3 can be used to approximate the vertical

elliptic arc x2

a2 + y2

b2 = 1, b > a

Remark 2 The proposed approximation scheme can also be used to get oblique ellipses using affine transfor-
mations.

Remark 3 In Optimization problem-I, -II, and -III, the values of α and β are determined by minimizing the
maximum value of absolute error (γ2, γ2, γ3) using MATLAB’s built-in function ‘fminimax.’

The implementation of the proposed approximation schemes for parabolic and elliptic arcs by the para-
metric rational cubic function of Eq. (1) is outlined in the following algorithm.

Algorithm

Step 1. Input the values of a and parameter θ for the parabolic arc and the values of a , b , and θ for the
elliptic arc.
Step 2. Calculate the values of g1 and g2 .
Step 3. Compute the control points of the PRCF of Eq. (1) by putting the values of g1 and g2 .
Step 4. Calculate the parametric equations of the PRCF in Eq. (1).
Step 5. Use the concerned optimization problem to obtain the optimal values of α and β .
Step 6. Put the optimal values of α and β to obtain parametric rational cubic approximation of the parabolic
and elliptic arcs.

2.3. Approximation order of parabolic and elliptic aγ cs’ approximation schemes
Here, we will present the approximation order of parabolic and elliptic aγ cs’ approximation schemes.
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Theorem 4 If α ∈ (0,∞) , and t ∈ [0, 1] then

γ1 (α, β, t) =

{
0, θ ∈ [0, 1] , β → 0

O
(
θ2
)
, θ ∈ [0, 1] , β → ∞ .

Proof The absolute error of the parabolic arc approximation scheme in Optimization problem-I is the following:

γ1 (α, β, t) =
∣∣y2 (t)− 4ax (t)

∣∣ (25)

where α, β ∈ (0,∞) , t ∈ [0, 1] . Here, x(t) =
3∑

i=0

Bi(t)xi and y (t) =
3∑

i=0

Bi (t)yi with x0 = 0, y0 = 0, x1 =

0, y1 = g1
α , x2 = a (3α+ β) θ2− g2θ

αρ1
, y2 = 2a (3α+ β) θ − g2

αρ1
, x3 = αaθ2, y3 = 2aαθ, ρ1 =

√
θ2 + 1 . Without

loss of generality, we shall consider only positive values of γ1 (α, β, t) to calculate the approximation order of
the concerned scheme, i.e.

γ1 (α, β, t) = y2 (t)− 4ax (t)

As the maximum and minimum values of γ1 (α, β, t) lie at the end points of the domain of parameters α, β ,
and t and at the critical points of the function γ1 (α, β, t) , therefore, to find out the approximation order of
the horizontal parabolic arc approximation scheme, γ1 (α, β, t) is evaluated at these points. First, the behavior
of γ1 (α, β, t) at the extremes of interval β ∈ (0,∞) is observed.

(i) When β → 0

U1 (t) = lim
β→0

γ1 (α, β, t) = 4a2θ2
[
t6 + (1− t)

4
t2 − t2

]
+24a2θ2 (1− t)

2
t4+16a2θ2

[
(1− t)

3
t3 + (1− t) t5

]
(26)

Here, U1 (t) is independent of α . Moreover, the function U1 (t) is zero at its critical points, and at the
extreme points of its domain t ∈ [0, 1] . It follows from the above observation that

max
0≤t≤1,β→0

γ1 (α, β, t) = max
0≤t≤1

U1 (t) = 0. (27)

(ii) When β → ∞

lim
β→∞

γ1 (α, β, t) =U2 (t) = 4a2θ2
(
t2 − t

)
U2 (t) is independent of α , so its extreme values are only dependent upon t ∈ [0, 1] It can be seen that
U2 (0) = 0 and U2 (1) = 1. Differentiating U2 (t) with respect to t , we have dU2

dt = 4a2θ2 (2t− 1) It is

observed that dU2

dt = 0 for t = 0.5 and dU2

dt ̸= ∞ for t ∈ [0, 1] . It follows from the above observations
that

max
0≤t≤1,β→∞

γ1 (α, β, t) = U2 (t) = max
0≤t≤1

U2 (0.5) =r1 (θ) (28)

Here,
r1 (θ) = −a2θ2 (29)
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(iii) When ∂γ1(α,β,t)
∂β = 0 or ∂γ1(α,β,t)

∂β = ∞.

Differentiating γ1 (α, β, t) with respect to β , we have ∂γ1

∂β = S2(α,β,t)

(α+β(1−t)t)3
where S2 (α, β, t) =

(α+ β (1− t) t) ∂S1

∂β − 2S1 (1− t) t, S1 =

(
3∑

i=0

Bi(t)yi

)2

− 4a (α+ β (1− t) t)
3∑

i=0

Bi (t)xi . It can be ob-

served that ∂γ1

∂β = 0 for negative and imaginary values of β , which is not acceptable as β ∈ (0,∞) . It is

clear that ∂γ1

∂β = ∞ when α + β (1− t) t = 0 or β = −α
(1−t)t . Since t ∈ [0, 1] and α ∈ (0,∞) , β = −α

(1−t)t

is either negative or undefined, which is not acceptable as β is a positive real number. Hence, the order
of approximation of the parametric rational cubic approximation scheme for the horizontal parabolic arc
depends on r1 (θ) , which is given in Eq. (29). The Taylor expansion of r1 (θ) near θ = 0 is the following:

r1 (θ) =
θ2

2!

(
−2a2

)
= O

(
θ2
)

(30)

This shows that the approximation order of the developed parametric rational cubic approximation scheme
for horizontal parabolic arcs is O

(
θ2
)
. The above discussion can be summarized as follows:

γ1 (α, β, t) =

{
0 θ ∈ [0, 1] , β → 0

O(θ2), θ ∈ [0, 1] , β → ∞ . (31)

2

Remark 4 The approximation order of the developed parametric rational cubic approximation scheme for a
vertical parabolic arc is also calculated and it is observed that it is the same as given in Eq. (31).

Theorem 5 If α ∈ (0,∞) and t ∈ [0, 1] then

γ3 (α, β, t) =

{
−a2b2

32 +O
(
θ2
)
, θ ∈

[
0, π

2

]
, β → 0

a2b2θ
2

4 +O
(
θ4
)
, θ ∈

[
0, π

2

]
, β → ∞

.

Proof As discussed in Optimization problem-III, the absolute error of the approximation scheme for a horizontal
elliptic arc is given by Eq. (32):

γ3 (α, β, t) =
∣∣∣b2x2 (t) + a2y

2
(t)− a2b2

∣∣∣ (32)

where α, β ∈ (0,∞) , t ∈ [0, 1] , θ ∈
[
0, π

2

]
. From Eq. (16), we have

x2 (t) =
h̃1 (t)

(α+ β (1− t) t)
2 y2 (t) =

h̃2 (t)

(α+ β (1− t) t)
2 , (33)

where

h̃1 (t) =x2
0 (1− t)

6
+ 2x0x1 (1− t)

5
t+

(
x2
1 + 2x0x2

)
(1− t)

4
t2 + (2x0x3 + 2x1x2)

× (1− t)
3
t3 +

(
x2
2 + 2x1x3

)
(1− t)

2
t4 + 2x2x3(1− t) t

5
+ x2

3t
6,

h̃2 (t) =y20 (1− t)
6
+ 2y0y1 (1− t)

5
t+

(
y21 + 2y0y2

)
(1− t)

4
t2 + (2y0y3 + 2y1y2) (1− t)

3
t3

+
(
y22 + 2y1y3

)
(1− t)

2
t4 + 2y2y3(1− t) t

5
+ y23t

6.
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x0 = αa, x1 = a (3α+ β) , x2 = a (3α+ β) cos θ + ag2 sin θ

αρ3
, x3 = αa cos θ, y0 = 0, y1 =

g1
α
,

y2 = b (3α+ β) sin θ − bg2 cos θ
αρ3

, y3 = αb sin θ.

Without loss of generality we shall consider only the positive value of γ3 (α, β, t) to calculate the approximation

order of the concerned scheme, i.e. γ3 (α, β, t) = b2x2 (t) + a2y
2
(t)−a2b2 . Using Eq. (33), we have γ3 (α, β, t) =

H1(α,β,t)

(α+β(1−t)t)2
− a2b2 where H1 (α, β, t) = b

2
h̃2
1(t) + a2h̃2

2(t). The behavior of γ3 (α, β, t) is observed at its critical

end points with respect to parameters α, β , and t to find the approximation order of the rational cubic
approximation scheme for a horizontal elliptic arc.

First, the behavior of γ3 (α, β, t) at extremes of the interval β ∈ (0,∞) is observed.

(iv) When β → 0

M1(t) = lim
β→0

γ3 (α, β, t) =

6∑
i=0

(1− t)
6−i

timi − a2b2 (34)

where m0 = a2b2, m1 = 6a2b2, m2 = 15a2b2 , m3 = 6a2b2 cos θ−12a2b2sin2θ − 4a2b2 cos θsin2θ +

12a2b2cos2θ +
√

sin2θ + 6 (1− cos θ)×
(
12a2b2 sin θ+4a2b2 sin θ cos θ

)
, m4 = m2, m5 = m1, m6 = m0.

Hence, M1 (t) is independent of α . Therefore, the extreme values of M1 (t) only depend on t . Differen-

tiating M1 (t) with respect to t we have dM1

dt =
(
60a2b2 − 3m3

) (
(1− t)

2
t3 − (1− t)

3
t2
)

. It is observed

that dM1

dt = 0 for t = 0, t = 0.5 , and t = 1. Substituting these values of t in Eq. (34), we have M1 (0) = 0 ,

M1 (0.5) = q1(θ) , and M1 (1) = 0, and also dM1

dt ̸= ∞ for t ∈ [0, 1] . It follows from the above observation
that

max
0≤t≤1,β→0

γ3 (α, β, t) = max
0≤t≤1

M1 (t) = M1 (0.5) = q1(θ)

Here,

q1 (θ) =
−5

16
a2b2 +

1

32

[
3a2b2 cos θ−6a2b2sin2θ − 2a2b2 cos θsin2θ + 6a2b2cos2θ

+
(
6a2b2 sin θ+2a2b2 sin θ cos θ

)√
sin2θ + 6 (1− cos θ)

]
. (35)

(v) When β → ∞

γ3 (α, β, t) =M2 (t) = 2a2b2 (1− cos θ)
(
t2 − t

)
M2 (t) is independent of α, so its extreme values are only dependent on t ∈ [0, 1] . It can be seen that
M2 (0) = 0 and M2 (1) = 1. Differentiating M2 (t) with respect to t , we have dM2

dt = 2a2b2 (1− cos θ) (2t− 1) .

It is observed that dM2

dt = 0 for t = 0.5 and dM2

dt ̸= ∞ for t ∈ [0, 1] . It follows from the above observation
that

max
0≤t≤1,β→0

γ3 (α, β, t) = max
0≤t≤1

M2 (t) = M2 (0.5) =q2 (θ) ,
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Here,

q2 (θ) =
a2b2

2
(cos θ−1) (36)

(vi) When ∂γ3(α,β,t)
∂β = 0 or ∂γ3(α,β,t)

∂β = ∞.

Differentiating γ3 (α, β, t) with respect to β , we have

∂γ3
∂β

=
H2 (α, β, t)

(α+ β (1− t) t)
3 ,

where

H2 (α, β, t) = (α+ β (1− t) t)
dH1

dβ
− 2H1 (1− t) t.

It can be observed that ∂γ3

∂β = 0 for negative and imaginary values of β which is not acceptable as

β ∈ (0,∞) . It is clear that ∂γ3

∂β = ∞ when α + β (1− t) t = 0 or β = −α
(1−t)t . Since t ∈ [0, 1] and

α ∈ (0,∞) , β = −α
(1−t)t is either negative or undefined, which is not acceptable as β is a positive real

number. It follows from the above discussion that the order of approximation of the parametric rational
cubic horizontal elliptic arc approximation scheme depends on q1 (θ) and q2 (θ) already defined in Eqs.
(35) and (36). The Taylor expansion of q1 (θ) near θ = 0 is given in Eq. (37):

q1 (θ) = −a2b2

32
+

θ2

2!

(
a2b2

32

)
− θ4

4!

(
a2b2

32

)
− θ6

6!

(
37a2b2

256

)
. . . = −a2b2

32
+O

(
θ2
)

(37)

The Taylor expansion of q2 (θ) near θ = 0 is given in Eq. (38):

q2 (θ) = −θ2

2!

(
a2b2

2

)
+

θ4

4!

(
a2b2

2

)
− θ6

6!

(
a2b2

2

)
+ . . . = −a2b2θ

2

4
+O(θ4). (38)

Eqs. (37) and (38) show that the approximation order of the developed parametric rational cubic
approximation scheme for horizontal elliptic arcs is either O

(
θ2
)

or O
(
θ4
)

The above discussion can
be summarized as follows:

γ3 (α, β, t) =

 −a2b2

32 +O
(
θ2
)
, θ ∈

[
0, π

2

]
, β → 0

a2b2θ
2

4 +O(θ4), θ ∈
[
0, π

2

]
, β → ∞

. (39)

2

Remark 5 The approximation order of the developed parametric rational cubic approximation scheme for a
vertical elliptic arc is also calculated and it is the same as given in Eq. (39).
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3. Numerical examples
In this section, we shall illustrate the proposed scheme through some numerical examples.

Example 1 Take horizontal parabolic arc c0c1 for approximation with end points c0 (0, 0) , c1 (0.75, 3) and
θ = 0.5, a = 3, t0 (0, 1) , t1 (0.4472, 0.8945) . Figure 1 is the plot of a horizontal parabolic arc approximated by the
approximation scheme presented in Section 2.1 and the complete horizontal parabola in Figure 2 is obtained by
reflection of Figure 1 about the x-axis.
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Figure 1. Plot of the approximated horizontal parabolic
arc.

Figure 2. Plot of the horizontal parabola.

Example 2 Here, a numerical example is presented to illustrate that the proposed parametric rational cubic
approximation scheme of parabolic arcs is applicable to oblique parabolas. Consider the oblique parabola
16x2 + 24xy + 9y2 − 5x − 10y + 1 = 0 for approximation by PRCF Eq. (1). It is transformed into standard
vertical parabola X2 = 1

5Y in the XY -plane by applying rotation through angle θ = tan−1
(
3
4

)
. The vertical

parabola X2 = 1
5Y is approximated by the approximation scheme developed in Section 2.1 and its plot is shown

in Figure 3. The required oblique parabola in Figure 4 is obtained from Figure 3 by applying inverse rotation.
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Figure 3. Plot of the approximated vertical parabolic arc. Figure 4. Plot of the oblique parabola.
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Example 3 The oblique ellipse to be approximated is 29x2 − 24xy + 36y2 + 118x− 24y − 55 = 0. The oblique
ellipse is transformed into standard horizontal ellipse X2

9 + Y 2

4 = 1 in the XY -plane with center (0, 0) by

applying rotation through angle θ = tan−1
(
3
4

)
. The horizontal ellipse X2

9 + Y 2

4 = 1 is approximated by the
approximation scheme developed in Section 2.2, and its plot is shown in Figure 5. The required oblique ellipse
in Figure 6 is obtained from Figure 5 by inverse rotation transformation.
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Figure 5. Plot of the approximated horizontal elliptic
arc.

Figure 6. Plot of the oblique ellipse.

Example 4 Let c0(1, 0) and c1(0, 3) be the end points of a vertical elliptic arc for approximations. The other
initial conditions are θ = π

2 , a = 1, b = 3, t0(0, 1) , and t1 (−1, 0) . Figure 7 shows the plot of the vertical
elliptical arc approximated by the approximation scheme presented in Section 2.2. The vertical ellipse in Figure
8 is obtained by reflection of Figure 7 about the x-axis.
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Figure 7. Plot of the approximated vertical elliptic arc. Figure 8. Plot of the vertical ellipse.
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4. Conclusion
In this research paper, a dynamic G2 -approximation scheme is developed using PRCF Eq. (1). The rational
cubic parametric curve with two free parameters in the control point form is used for G2 -approximation. A
unique approximation of a conic is obtained by finding the optimal value of free parameters. The choice of these
approximation schemes serves the purpose of favorable approximations with minimized errors. The proposed
scheme is simple and efficient.
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