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Abstract: Social circles, groups, lists, etc. are functionalities that allow users of online social network (OSN) platforms
to manually organize their social media contacts. However, this facility provided by OSNs has not received appreciation
from users due to the tedious nature of the task of organizing the ones that are only contacted periodically. In view of
the numerous benefits of this functionality, it may be advantageous to investigate measures that lead to enhancements
in its efficacy by allowing for automatic creation of customized groups of users (social circles, groups, lists, etc). The
field of study for this purpose, i.e. creating coarse-grained descriptions from data, consists of two families of techniques,
community discovery and clustering. These approaches are infeasible for the purpose of automation of social circle
creation as they fail on social networks. A reason for this failure could be lack of knowledge of the global structure of
the social network or the sparsity that exists in data from social networking websites. As individuals do in real life,
OSN clients dependably attempt to broaden their groups of contacts in order to fulfill different social demands. This
means that ‘homophily’ would exist among OSN users and prove useful in the task of social circle detection. Based on
this intuition, the current inquiry is focused on understanding ‘homophily’ and its role in the process of social circle
formation. Extensive experiments are performed on egocentric networks (ego is user, alters are friends) extracted from
prominent OSNs like Facebook, Twitter, and Google+. The results of these experiments are used to propose a unified
framework: feature extraction for social circles discovery (FESC). FESC detects social circles by jointly modeling ego-net
topology and attributes of alters. The performance of FESC is compared with standard benchmark frameworks using

metrics like edit distance, modularity, and running time to highlight its efficacy.
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1. Introduction

Social networks (graphs) have become a common vocabulary for representing complex systems across various
domains. In this form of representation, systems are modeled as graphs such that the entities of these systems
are represented as nodes and the relationships between these entities are edges. Online social networks (OSNs)
are popular service platforms, such as Facebook, Google+, and Twitter, among others, which are commonly
represented as graphs for purpose of efficient analysis [1]. These platforms give computerized socialization and
are widely used. For example, Facebook’s social network has been increasing in popularity and had recorded
close to 200 million active client accounts by late 2018, with around 10 million messages being posted each
hour and 46% of youthful clients logging in to their Facebook accounts as the first thing in their day. Behind
this ubiquity lies a rich wellspring of data that could be legitimately coordinated and broken down for better
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comprehension of the process of online socialization. This has raised the need for exploratory data analysis of
such OSNs using social network analysis [2].

In exploratory data analysis of social networks, a key task is to detect social groupings of a particular
user’s friends. This information has to be estimated from the friendship network of that user, which is also
known as an egocentric network (or ego-net). An ego-net contains an ego and alters. The alters are the friends
of the ego (user). Both the ego and the alters are represented in the form of nodes in a graph. In such a
graph, the social circles are subsets of the alters grouped manually by the user under certain measurements.
The concept of grouping friends into subnetworks is provided in various popular social networking platforms
such as Google+ (circles), Facebook (lists), and Twitter (groups) among others. Social circles have potential
applications in the domains of content filtering, handling of information overload, recommendation systems,
friendship predictions, group recommendations, inferring personal attributes, and human—computer interaction
for controlling information boundaries between different groups of users [2-5]. It is argued that just as
individuals do in real life, OSN clients attempt to broaden their groups of friends in order to fulfill different
social demands [4].

Although it enhances user experience, the notion of social circles is not well received by users. This is
due to the requirement of physically creating social circles and periodically reassigning member connections to
appropriate social circles. As these connections change over time, the process of keeping these lists up-to-date
becomes strenuous for the user [2, 6]. It is observed that for users that are less active than their peers, these lists
no longer reflect the ground reality [7]. Hence, it remains an essential undertaking to outline techniques that
will naturally and viably relegate users to respective social circles. Tracing this line of research, it is noticed that
the current literature focuses on addressing detection of overlapping social circles or detection of social circles
based on entity-annotated texts [2, 8-10]. Another line of literature focuses on attempting to enhance circle
detection in a target ego-net by utilizing circle data from other ego-nets. However, a suitable framework for
detecting social circles using both ego-net structural information and node attributes of alters is not available.

A related field is community detection, which involves identification of latent groups of entities in data. In
network sciences such subgroups (modules) or communities are identified using network topology. Community
detection algorithms aim to find such communities in undirected as well as directed graphs. Be that as it may,
recognizing communities in a social network requires knowing the global system structure, effectively making
this approach infeasible. Existing social network communities as identified by community discovery techniques
are found to be finer or broader than actual social circles [6]. An additional challenge in the task of social circle
identification is the high amount of missing values in social network data [3]. Standard clustering techniques
ignore or misinterpret this incompleteness in data and hence results obtained by these are found to deviate
significantly from the desired ones [2].

The present inquiry centers around building a unified mathematical model for social circle recognition
based on structural characteristics of the ego-net as well as attribute information of the alters. Thus, global
network information is not required. The reason to prefer locally available information is the assumption
that homophily exists in the network. Homophily is characterized as a person’s inclination to interface with
‘like-minded’ people to amplify individual incentives [11]. An analysis of close to 110 ego-nets extracted from
Facebook, 938 ego-nets extracted from Twitter, and 128 ego-nets extracted from Google+ identify the presence
of homophily in social networks. Based on these experiments a joint framework is proposed for social circle
identification that factors in the local network structure of the ego along with attribute information of the

alters. Such an approach is demonstrated to be effective even if all the node information about the alters is
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not available. The organization of this paper is as follows: after the introduction of the paper in Section 1,
Section 2 provides the review of concepts and techniques and Section 3 provides the mathematical model for

the proposed strategy. The experimental results and conclusion are presented in Sections 4 and 5, respectively.

1.1. Preliminaries

1.1.1. Problem definition

G(V,E) is a social network with F edges and V nodes. V' € RP is used to denote the p-dimensional vertex
attribute vector of a € V. V* = [v{, ....,vg] are the attributes of node a, where p is the number of node
attributes. The adjacency matrix of social network G(V, E) is denoted by A. If (i,j) € E, A;; = 1, denoting
that the edge (4,7) is present; otherwise, A;; = 0. Using A,V information, the aim is to find sets Si,..., Sk

such that Va € V;a € ¢,51,...,S; and S; N S; may or may not be ¢.

1.1.2. Social network generative model: J-R model

Jackson et al. proposed a social network generative model where nodes of the social network are allowed to form
links to other nodes using a hybrid strategy that encapsulates elements of the preferential attachment model
and the Erdos—Rényi model. Thus, if there are preexisting m nodes in a network, then a newborn node links
to a*m of them chosen uniformly at random (chance-based links) and (1 —a) *m using a neighborhood search

strategy (choice-based links) and attaches to them. Thus, the distribution of the expected degree is:

dd;(t) /dt = a*m+(1—a)*di2—(tt),di(i)=m, (1)
where:
e dd;(t)/dt is change in degree if node ¢ with time,
e d;(i) is degree of node i at time = 0,
di(t) = (m+ 2am/(1 — a))(t/i) =92 = 2am/(1 — a). (2)

The frequency distribution is given by:

m -+ 2am/(1 - a)) ]2/(1—a).

_ (
Fld)=1-1 d+2am/(1 — a)

(3)

The hyperparameter a (ratio of chance-based interactions to choice-based) of the model has to be
estimated and can be found out by random parameter search or grid search. The value has to be selected
that gives the best fit to the degree distribution. This model is thus effective in estimating the generative
process of a social network. It is used in the proposed social circle detection technique for obtaining the

characteristics of the degree distribution of the ego-nets.

2. Review of the literature
Clustering and community detection methods are abundantly available in literature. Clustering approaches
have their own biases in identifying coarse-grained summaries of data. Fach type of clustering algorithm has

an objective function (measurement of similarity) and an optimizing criterion. Hence, there exist multiple
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algorithms for clustering due to the multiple and diverse interpretations of similarity. Standard clustering
techniques tend to ignore the ‘hidden’ incompleteness of social network data and are found to be unsuitable for
detection of social circles [2, 12]. Community detection techniques based on Newman’s modularity as a quality
measure aim to partition a graph into communities (modules) in which the edges mostly reside among nodes
that belong to the same communities. These seek subgraphs with small cut sizes and are infeasible for use on
ego-nets as they require knowledge of the global network structure [6, 13, 14].

Perozzi et al. argued that the existing approaches for social circle detection focus on unattributed or plain
graphs and hence only utilize the structure of the social network. A review of existing social circle detection
methods led the authors to speculate that a majority of these approaches only quantified the structural quality
of a network and failed to utilize node attributes. The authors proposed a new measure to overcome this
drawback of existing approaches. This measure, ‘normality’, was a quality function related to topology of the
network as well as the attributes (side information) of the nodes [15]. McAuley et al. proposed the affiliation
graph model (AGM), a new line of research for detecting communities by utilizing metadata associated with
the entities. However, the AGM framework is unsuitable for social circle detection as it does not allow any
individual node to have high participation strength to multiple separate communities concurrently. Finally, it
has a large time complexity and computation cost. This makes it unsuitable for application on graphs with more
than 1000 nodes [8, 9]. Yang et al. extended the framework of AGM to propose a bipartite affiliation graph
(BAG). The BAG is denoted as B(X,C, M), with X as the nodes, C' as the attribute value, and M as the
directed edge from X to C if node X has attribute value C'. Detecting a set of communities S = S, S, ..., Sk
in B(X,C, M) is done by using a variant of the nonnegative matrix factorization method [10]. The metadata
or attribute information used by these techniques is the local optimal community membership of nodes. Thus,
both AGM and BAG techniques are unsuitable for ego-nets with attributed data.

Network science (graph theory)-based approaches for social network analysis are increasingly being
advocated for assessing the structure and functions of complex systems such as multilevel biological networks
[16, 17], epidemiology networks [18, 19], social networks [20, 21], coauthorship networks [22], collective behavior
[23], and political networks [24]. Researchers in these domains have traditionally relied on network-specific
feature engineering using degree statistics or kernel functions from graph theory to analyze the complex systems
in these domains that have been represented in graph format [25, 26]. This feature engineering made the
network analysis process task-dependent. Hence, there is a need for investigation of frameworks for efficient task-
independent feature learning. The frameworks that achieve this purpose are known in the literature as network
representation learning or network embedding frameworks. The goal of such frameworks is to encode network
structure into low-dimensional embeddings. The literature consists of several such NRL frameworks based on
matrix factorization [27-36], the word2vec (skip-gram) model of Mikolov et al. [37-46], deep convolutional neural
networks [47-51], the random walk and neural network unified framework [52], hyperbolic space embedding
techniques [22, 53], latent-space models [54-59], and multidimensionality reduction [60, 61]. A key drawback of
these frameworks is their inability to handle missing information.

Summarizing the literature review, it is found that only the work of Perozzi et al. utilized node attribute
information along with the graph topology for social circle detection. The current inquiry aims to extend this
research by focusing on the relationship that exists between an ego and its alters to detect social circles. This
aspect is not captured in previous works that aimed to jointly model attributes and network structure to detect
social circles. Social science research has observed homophily in human interactions, i.e. individuals choosing

to connect to ‘like-minded’ individuals in order to obtain incentives. This offline behavior of people has been
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found to exist in human interactions on OSNs [4, 62, 63]. Thus, the assumption that homophily could play
an important role in the online socialization process would be valid. Hence, understanding homophily could
help us in identifying social circles in networks. The current inquiry is based on this intuition and aims to
decode the social circles formation process in popular OSNs. A data-based inquiry is performed on ego-nets
from Facebook, Google+, and Twitter to understand the presence of homophily in social networks. It proposes
a mathematical model to obtain a representative set of features from an ego-net using homophily. Then it

combines this information with the structural characteristics of the ego-net to detect social circles.

3. Feature extraction for social circles (FESC) discovery

This section provides the concepts that form the basis for the proposed FESC algorithm. The explanation of

the algorithm and its stages are provided along with the block diagram in Figure 1.

3.1. FESC algorithm stage I: calculation of structural and behavioral characteristics of ego-nets

Adhesion or edge connectivity E for connected graph G is the minimum number of edges A\(G) whose deletion
from a graph G disconnects G.
— VB du,v)
Average path length L = Y] (G)%
Degree distribution of graph P(k) = %= is fraction of nodes in the network with degree k, i.e. nj where n is
the graph order.
Verification of power laws f(k) oc k~¢ in networks related to eigenvectors distribution z1, xa, ...220, component
distribution Cy,Cs,...,Cy.
Assortativity measures the level of homophily of the graph:
i Jk(ejr — a4k
- Z]k ( J J ) 7 (4)

2
%

where:

e @i is number of edges leaving the node, other than the one that connects the pair j,k;
e 0, is standard deviation of g;
o ¢, refers to the joint probability distribution of the remaining degrees of the two vertices.

Graph density (Gp) is the number of edges present in graph G among all possible edges in G. Gp for
undirected and directed graphs is given by Egs. (5) and (6), respectively.

2| E|

VIIVI= D) )
£

VIV = D) ©)

Reciprocity p is the probability of vertices in a directed network to be mutually linked.

Zi (aij—a)(i#£j(aj;—a
o= #j(aij—a)(i#j(aji—a) (7)

SUMiztj(a;;—a)?
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3.2. FESC algorithm stage II: comparison of degree distribution in the ego-net

Algorithm 1: Comparison of degree distribution.

Result: X?, P-value, df
Divide degree distribution Py into 6 quantiles;

Perform binning and obtain data in equal bins;
For same graph order obtain degree distributions P} of J-R model;

Perform Pearson’s chi-square test and compare P, with PL Obtain X2, P-value, degrees of
freedom df

3.3. FESC algorithm stage III: calculate feature similarity value of alters

Algorithm 2: Calculate feature similarity value.

Result: feature similarity scores
select user social circles; while feature set is not empty do
for each circle aggregate unique attribute values f;

for each circle count total values fiotar;
fe

ftotal

Similarity value =
end

3.4. FESC algorithm and block diagram

Stage I: Calculation of Structural and Behavioral characteristics
Avleerr?ggtehPath Assortativity Density
Clustering Power law coefficient
Coefficient for total degree
Stage II: Stage III:
Pearson chisquare test
(04, Ei) Calculate sim(f) for each feature in

circle

Choose coefficient of J-R model
for minimum X-squared

Figure 1. Block diagram of FESC algorithm shows the components of the three stages and individual components of
each stage. The statistical features of the ego-nets are extracted from the social networks in Stage I. Stage II uses the
J-R model to understand the characteristics of the degree distribution. The third stage provides a similarity value for
each feature of the ego using the attribute information of the alters.

4. Experimental study
The procedure highlighted in Section 3 was applied on datasets from [64] of OSNs such as Facebook, Twitter,

and Google+. The list of features extracted at the end of the analysis for each OSN showed the criteria of users

in each OSN to form social circles.

4.1. Datasets
The Google+ (Gp-net) dataset has 128 ego-nets with features of both alters and egos. Each ego-net has different

features related to gender, education, work, interests, etc. The Facebook (Fb-net) dataset has 110 ego-nets with
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Algorithm 3: Feature extraction for social circles discovery.
Result: Set of features f € f1, fa,.., fn
Calculate structural characteristics such as diameter, average path length, density, degree
distribution of graphs;
Calculate behavioral characteristics such as reciprocity, transitivity, assortativity;

Calculate features of circles such as number of members, circles per user;
Compare degree distribution with Jackson-Rogers model to understand behavior;
if Degree distribution Jackson—Rogers model then
Calculate feature similarity value;
Select features with lowest similarity values;
else
‘ conclude no evidence of homophily;
end

each ego-net having 57 features, such as name, education, work, and locale. All features are anonymized to hide
the identity of the users. The Twitter (Twt-net) dataset has 938 ego-nets with each having different features.
The features of the Twitter dataset are based on regular tweets by the users. In each dataset, ground truth

communities of groups, circles, and lists are provided by the users for the ego-nets.

4.2. Results and discussion

Table 1, Table 2, and Table 3 give the structural and behavioral characteristics of the datasets. Socially
generated networks tend to have the average distance between a pair of nodes on the order of the log of the
number of nodes. The geodesic of such networks is also on the order of the log of the number of nodes. Both
these features are evident from Table 1, Table 2, and Table 3 below. Transitivity in the below networks is
larger than in networks where links are generated by an independent random process. Thus, homophily could

be present in the networks and there is a need to compare the degree distribution of these networks with the
J-R model.

Table 1. Calculated structural and behavioral characteristics of Fb-net.

Characteristics Min. 1st Qu. | Median | Mean 3rd Qu. | Max.
Order of graph 5.0 80.0 134.5 133.5 188.0 247.0
Size of graph 5 698 1828 2397 3549 17930
Degree distribution of total-degree 0.0028 | 0.0066 | 0.0101 0.0143 | 0.0169 0.2
Average path length 1.219 2.110 2.438 2.537 2.895 6.403
Assortativity -0.6124 | -0.1601 | -0.0825 | -0.0727 | 0.0068 | 0.6252
Density 0.0212 | 0.07387 | 0.1092 | 0.1417 | 0.1750 | 0.7115
Transitivity 0.0000 | 0.3892 | 0.5238 | 0.5219 | 0.6581 1.0000
Power law coefficient for total degree | -0.9725 | 0.1608 | 0.3293 | 0.3409 | 0.5129 1.4020

In Stage II of the algorithm, the degree distributions of the OSNs are compared with the J-R model to
estimate the role of chance (network-based interactions) ps and choice (random interactions) p, among the

actors (participants) in the OSNs.
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Table 2. Calculated structural and behavioral characteristics of Twt-net.

Characteristics Min. 1st Qu. | Median | Mean 3rd Qu. | Max.
Order of graph 13.0 120.2 216.0 251.7 338.8 782.0
Size of graph 26.0 788.2 1926.0 | 3639.0 | 4409.0 26020.0
Degree distribution of total-degree 0.0013 | 0.003 0.0046 | 0.0073 | 0.0083 0.0769
Average path length 1.667 1.858 1.910 1.893 1.937 1.978
Assortativity -0.5792 | -0.1814 | -0.1356 | -0.1418 | -0.0923 | 0.0972
Density 0.0223 | 0.0630 | 0.0902 | 0.1066 | 0.1418 0.3333
Transitivity 0.1477 | 0.3349 | 0.4354 | 0.4279 | 0.5113 0.7257
Power law coefficient for total degree | -0.1308 | 0.4249 | 0.5907 | 0.5616 | 0.7088 0.9589

Table 3. Calculated structural and behavioral characteristics of Gp-net.

Characteristics Min. 1st Qu. | Median | Mean 3rd Qu. | Max.
Order of graph 8.0 475.8 1424.0 | 1923.0 | 3374.0 | 4938.0
Size of graph 7 13110 71870 226300 | 310000 | 1615000
Degree distribution of total-degree 0.0003 | 0.0005 | 0.0012 | 0.0038 | 0.0025 0.1250
Average path length 1.000 2.166 2.477 2.466 2.688 3.942
Assortativity -0.4958 | -0.2275 | -0.1552 | -0.1625 | -0.1006 | 0.1663
Density 0.0048 | 0.0285 | 0.0455 | 0.0607 | 0.0806 | 0.2496
Transitivity 0.0000 | 0.2519 | 0.3511 | 0.3738 | 0.4693 1.0000
Power law coefficient for total degree | -0.1003 | 0.4658 | 0.6573 | 0.6235 | 0.8016 1.2220

Table 4. Chance and choice in social networks.

Sr. no. | Dataset | p. | ps

1 Fb-Net 0.1 0.9
2 Twt-Net | 0.3 | 0.7
3 Gp-Net | 0.2 | 0.8

Analysis of Google+, Facebook, and Twitter reveals a higher link creation between actors obtained
through network-based meetings than chance-based meetings as given in Table 4. The intuitive reason behind a
higher ratio of network-based links in these socially generated networks is due to the friendship recommendations
given by these websites. These recommendations are usually obtained by selecting potential candidates from an
actor’s local neighborhood. Thus, a typical actor would obtain a relatively higher ratio of friends through the
network-based search process than chance meetings with strangers. This agrees with the intuition that actors
in social networking websites would form links with other actors known to them rather than complete strangers.
Such networks tend to have higher clustering coefficients (transitivity). In Stage III of the FESC, it is clear
that Twitter users create more groups for friends. The feature similarity index was used and features given in

Table 5 were found to be influential.
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Table 5. Descriptive information about social circles.

Sr. no. | Dataset | Friends per group | Groups created by user
1 Fb-Net 27 8
2 Twt-Net | 26 13
3 Gp-Net | 33 3
Table 6. Significant features in social circles.
Sr. no. Dataset Significant features Less significant features
1 Fb-Net Religion, political affiliation, work loca- | Birth date, hometown, work location,
tion, work description, educational in- | employer name, graduation degree
stitute, batch in educational institute,
locale, gender
Twt-Net Celebrity, music Gender, literature
Gp-Net Workplace, college, hobbies Gender, hometown, school, work de-

scription

4.3. Social circle detection
The FESC algorithm is compared with the benchmark network embedding techniques of DeepWalk [37], LINE

[27], and MF and community discovery techniques of Walktrap, Fastgreedy, and Infomap. Performance measures

for evaluating the results are given below.

4.3.1. Performance measures

Modularity @ € —1,1 is a quality function for measuring the strength of division of a network into communities:

where:

1 & kik .
Q=5—> [Aij— 5 218(C:Cy),

2m 2m

.3

o A;; is edge weight between nodes i and j;

(®)

e k; and k; are degrees of nodes i and j in the case of unweighted graphs;

e m is the sum of all edge weights in graphs;

e ¢;, ¢; are communities of nodes;

o § is 1 if an edge exists between ¢;, ¢; and 0 otherwise.

Edit distance calculates the minimum number of edit operations needed for transformation of the pre-

dicted social circles into actual social circles. Converting the predicted social circles into actual social circles

requires readjustment of the users in them. Each of the following operations for readjustment costs one edit:

e Add user to an existing circle.

« Remove user from a circle.

1236




NERURKAR et al./Turk J Elec Eng & Comp Sci

e Create a circle with one user.

¢ Delete a circle with one user.

4.3.2. Results and discussion on social circle detection
Community discovery techniques are classified into two families: modularity maximization and flow-based.
Walktrap is a agglomerative, hierarchical clustering algorithm that allows finding community structures at
different scales. Fastgreedy has a running time of O(mHlogn) on a graph with m = | £ | edges, n = | V|
vertices, and h = height of the dendrogram. Both these techniques are modularity maximization methods and
aim to find modules in the network that are densely connected regions. In contrast, for Infomap, the best
partition is the one that yields minimum description for the random walk. Figure 2 gives these results. This
flow-based method provides different partitions than the methods based on structural features of the network
like modularity. The communities uncovered by these class of families are in stark variation, especially when
the underlying network has directed links.

Network embedding techniques such as DeepWalk and MF preserve only first-order proximity, whereas
LINE preserves both first- and second-order proximity of the nodes. However, these methods prove ineffective
due to the large number of parameters ~ O(V?), nonsharing of parameters, and inability to handle attribute
information of nodes. FESC integrates attribute and structural information in detection of social circles of an
ego. The local structure of an ego-net as well as the attributes of the alters are factored for a unified framework
of social circle detection. Additional information being factored in the framework gives it an advantage over
traditional methods that consider only attribute information (clustering) or only structure (community discovery

or node embedding).

Techniques
©_ @ DeepWalk
S m LINE

@ MF

m Walktrap

O Fastgreedy

@ Infomap
<
= O FESC
o I
27 -

]
<
Twt—Net Fb—Net Gp—Net

Average Modularity

Figure 2. Results of average modularity metric in comparison of FESC with baseline frameworks. Modularity optimizing
algorithms such as Walktrap and Fastgreedy identified community structure with high modularity. Infomap technique
based on minimizing the expected description length of a random walkers trajectory outperformed other techniques.
Network embedding techniques with embedding dimensions set to 5 resulted in low modularity partitions. Performance
of FESC is comparative to community discovery techniques.
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Techniques
= @ DeepWalk
S = LINE
= ® MF

m Walktrap
§ - O Fastgreedy
S @ Infomap

O FESC
(=3
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(=3
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(=3
=)

(=3

S

(=3

o

(=3

=

(=]

=

S -

(=3

i i i
o -

Twt-Net Fb—Net Gp—Net
Average Edit Distance

Figure 3. Results of average edit distance metric in comparison of FESC with baseline frameworks. Modules discovered
by community detection frameworks do not correspond to social circle communities and hence the value of the edit
distance metric was high for modularity maximizing techniques such as Walktrap and Fastgreedy. Network embedding
techniques fared relatively better than community discovery techniques. FESC performed better than modularity
maximization and random walk-based techniques of community discovery.

Techniques

@ DeepWalk
m LI

= MF

m Walktrap
O Fastgreedy

@ Infomap
O FESC

Twt-Net Fb—Net Gp—Net
Average Run time

15

10

5
|

Figure 4. Results of average running time of FESC compared with baseline frameworks. Running time of network
embedding techniques is high due to nonsharing of parameters. FESC and community discovery techniques had a time
complexity of ~ O(V + E), resulting in lower running time.

5. Conclusion
Groupings of friends are common facilities offered by OSNs. However, this facility was not well received by
users. This is due to the requirement of physically creating social circles and allocating member connections to

appropriate lists manually. The responsibility of keeping the social circles up-to-date lies with the users, making
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this task tedious. However, social circles have effective applications in multiple downstream social network
analytic tasks such as link prediction, friend recommendation, node classification, and content recommendation.
Hence, the current investigation focuses on improvement of the performance of social circle detection mechanisms
by utilization of attribute information of alters as well as the structural characteristics of ego-nets (local network).

Existing techniques for exploratory data analysis such community discovery or clustering do not recognize
the importance of homophily in creation of new connections by users. Also, other state-of-the-art frameworks
either require knowledge of the global structure of the network or complete information of the entities in the
social network. As these criteria are not fulfilled in real-world systems, there is a need for a framework that can
perform the task but at the same time utilize local network information as well as handle incomplete data. The
FESC framework achieves this by jointly modeling structure and attribute information of ego-nets to identify
social circles. The extensive experiments as shown in Figure 3 and Figure 4 show this. These experiments
performed on ego-nets of popular OSNs are used to highlight the efficacy of this approach. Performance
measures reveal that the performance of FESC can match state-of-the-art community discovery and network
embedding techniques.

Graph convolutional neural networks (GCNNs) are increasingly being used to generate node embeddings
based on aggregating information from local neighborhoods. A modified FESC framework can be investigated
in future work, which consists of a GCNN as a intermediate stage. Theoretically deep learning frameworks learn

nonlinear relations in the data, which can be useful in social circle detection.
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