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Abstract: In this paper, we propose a new accuracy measurement model for the video stabilization method based on
background motion that can accurately measure the performance of the video stabilization algorithm. Undesired residual
motion present in the video can quantitatively be measured by the pixel by pixel background motion displacement
between two consecutive background frames. First of all, foregrounds are removed from a stabilized video, and then
we find the two-dimensional flow vectors for each pixel separately between two consecutive background frames. After
that, we calculate a Euclidean distance between these two flow vectors for each pixel one by one, which is regarded as a
displacement of each pixel. Then a total Euclidean distance of each frame is averaged to get a mean displacement for
each pixel, which is called mean displacement error, and finally we calculate the average mean displacement error. Our
experimental results show the effectiveness of our proposed method.

Key words: Video stabilization assessment, video stability measurement, video quality assessment, video stabilization,
mean displacement error

1. Introduction
The demand for video stabilization (VS) is increasing over time [1]. Now many video processing software
programs and camcorders are using a video stabilization facility [2]. Most importantly, Apple uses gyroscopes on
the iPhone and iPad, but the devices cannot discard an unexpected large translational motion [3]. Microsoft [4–
6], Facebook [7], and Adobe [8] have been doing much research in this area, too. In addition, video stabilization
has major applications in aerial video surveillance, geo-registration, autonomous vehicle navigation, model-based
compression, structure from motion, motion analysis, and mosaicking [1]. The quality of a video depends on
the accuracy of video stabilization. All are to satisfy the human eye. The human eye is very sensitive to motion
frequency, amplitude, spatial image frequency, color, intensity, and context of a video [9–12]. Currently, a
large number of video stabilization algorithms are using subjective measurements to validate the VS algorithm.
Though subjective measurement has some usages in psycho-visual experiments, this evaluation strategy does
not reflect much in scientific measurements. Unfortunately, the state-of-the-art video stabilization algorithms
such as Subspace [13] and the L1 camera optimization path for rolling shutter removal [14] are evaluated based
on optimal user experience. If spatial consistency is not achieved for a video, the video frame will suffer from
noticeable unnatural seams [15]. Researchers observe that the nearest frame shows the smallest alignment error
[15], whereas Liu et al.[16] showed that consecutive background pixels have similarity over 90%. Safdarnejad et
∗Correspondence: johnhuh@khu.ac.kr
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al. [17] mentioned that the predominant foreground and textureless region are the main cause of video stability
failure. Most importantly, a foreground can moderately affect the accuracy of video stabilization [13, 15, 17].
Liu et al. [13] stated that a rolling shutter distortion is a noise and it cannot be modeled accurately. Grundmann
et al. [18] mentioned that compensating the rolling shutter effect [3, 4, 19] caused by the complementary metal
oxide semiconductor (CMOS) camera is a crucial task compared to a video captured a charge coupled device
(CCD) camera in video stabilization.

Though the video stabilization algorithm tries to entirely remove unwanted motions present in a video,
undesired motions always exist in the video. The sequences of video frame transformations in video stabilization
algorithms follow a background of a reference frame until the reference frame is changed. If a video is perfectly
stable, no residual motions will remain in the video except for the foreground motion [20], i.e. the difference
between consecutive background frames will be zero. Any deviation from zero background motion will be due
to inaccurate motion detection and estimation, transformation error, and accumulation error. Motivated by
the warping process of video stabilization, in this paper, we estimate a background motion, which is the key to
judging the stability of a video. Our hypothesis is that the background pixels in the coordinate (xi, yj , t) are
equal to the background pixels in the coordinate (xi, yj , t+dt) at time t and t+dt respectively in the case of a
nondynamic background. If the background pixels in the coordinate (xi, yj , t) are not equal to the background
pixels in the coordinate (xi, yj , t+ dt) at time t and t+ dt , respectively, we calculate each background pixel
displacement between frames It(xi, yj , t) and It+1(xi, yj , t+ dt) . To compute background pixel displacement,
the two-dimensional motion vectors in the horizontal direction and the vertical direction are calculated between
background frames It(xi, yj , t) and It+1(xi, yj , t + dt) , and then we calculate a Euclidean distance for the
horizontal and vertical directional motion vectors of each pixel separately, which is the displacement of each
pixel. Next, we compute a total sum of the L2 norm distance of each pixel per frame. Finally, a total sum of
the L2 norm distance is averaged out to get a mean displacement error (MDE) that indicates an average motion
of each background pixel present in the video. The overall architecture of our proposed algorithm is shown in
Figure 1. The main contribution of this paper is twofold: the proposed method can quantitatively measure
undesired motions present in the stabilized video, and we appraise the performance of three state-of-the-art VS
algorithms using our proposed MDE or average mean displacement error (AMDE) algorithm. In addition to
this, the accuracy of our proposed model is evaluated based on our synthetically created videos.

Figure 1. Overall structure of our algorithm.

2. Related works
Basically, the peak signal to noise ratio (PSNR) and the structural similarity (SSIM) index [21] are the two
most important video quality assessment metrics that do not consider the jitters of the video [2, 21]. Mainly,
the PSNR [20–23] measures the quality of a compressed video pixel by pixel. Morimoto et al. [20] calculated
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interframe transform fidelity (ITF) and global transform fidelity (GTF) in the case of VS performance analysis.
Here, fidelity refers to the fitting capability of a motion model to the actual motion, ITF is the amount of PSNR
between two sequent frames, and GTF indicates PSNR between the ground truth frame and stabilized frame.

Mean opinion score (MOS) is calculated as a part of a subjective measurement [10, 11, 22, 23] to check
the quality of a video. Niskanen et al. [24] considered divergence, jitter, and blur to measure VS accuracy. Here,
jitter refers to a high-frequency motion in a video, whereas the divergence estimates latency between consecutive
frames. Later, researchers considered the point spread function (PSF) to measure the blur introduced by the
video stabilization method. In the end, the proposed method tests the accuracy of the two anonymous VS
methods A and B. Mean square error (MSE) [2] between a reference path and a path after stabilization
of a video is used to assess the stability of the VS method. Qu et al. [25] tested their proposed method
based on synthetically shaking video to measure the accuracy of the three stabilization algorithms of Deshaker,
Grundmann, and Qu. Zhang et al. [1] assessed the stability of intensity-based video stabilization and feature-
based video stabilization. From the ground truth motion and the estimated motion, the researchers computed
a mean square error (MSE) between consecutive frames and root mean square (RMS) error for the whole
sequences. Zhai et al. [26] took a threshold to categorize a high-frequency component (jitter) and a low-
frequency component (divergence) and decomposed these jitters and divergence utilizing a high-pass filter and
low-pass filter. Furthermore, synthetic jitters were added to a stable video to get an unstable video, and finally
the researchers assessed the stability of the video stabilization algorithm based on the MSE of the reference
path and the processed path. A major limitation of these methods is that the synthetically created motion and
the real undesired motion will not be the same. Zhang et al. [27] claimed that there are no methods that can
measure the stability of a video. The researchers claimed that an unstable video will have more average motions
than the average motions of a stable video. They computed the ratio of rotation and translation components
of a stabilized video to rotation and translation components of a real video. They called this procedure a
heuristic stability approach. Liu et al. [6] suggested an empirical process that assumes that if the more energy
is in the low-frequency part of a video, the video will be more stable. We see that most existing proposed
metrics [1, 2, 21, 25, 26] for VS approaches are either synthetically shaking video-based or heuristic approaches
[2, 6, 24, 27].

3. Design methodology

In this section, we discuss our accuracy assessment model. The model has basic three steps: preprocessing and
foreground mask generation, foreground removal and background, and MDE and AMDE model construction.
Figure 2 depicts the details of our accuracy measurement model for the VS method.

1) Preprocessing and foreground mask generation: First, an unstable or stabilized video is input into our
system. Then the unstable or stabilized video is converted into a gray-scale It(x, y) video. We borrow the
idea of foreground mask F (x, y) generation from the SuBSENSE background subtraction algorithm, where
St. Charles et al. [28] effectively modeled dynamic background. For each background pixel BG(x, y) , N

number of recent samples for a background BG(x, y) are stored as

BG(x, y) = {BG1(x, y), BG2(x, y), BG3(x, y), . . . , BGN (x, y)} . (1)

The foreground and background classification is shown in Eq. (2). Here, 1 and 0 represent the foreground
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and background, respectively.

Ft(x, y) =

{
1, if# {dist(It(x, y), BGn(x, y)) < R, ∀n} < #min

0, otherwise,
(2)

Figure 2. Accuracy assessment model for the VS algorithm.

where Ft(x, y) is the foreground mask, dist(It(x, y), BGn(x, y)) is the intensity and local binary similarity
pattern (LBSP ) distance between the current observation It(x, y) and BGn(x, y) , R is the current
updated decision threshold, and #min denotes minimum matching requirement.

2) Foreground removal and background: We assume that I(x, y) , B(x, y), and F (x, y) , are a gray-scale
video frame, a background frame, and a foreground frame respectively at the coordinate (x, y) . At time
t , we determine foreground mask Ft(x, y) as in Eq. (2), and the background model Bt(x, y) for the
grayscale video It(x, y) will be

Bt(x, y) = |It(x, y)− Ft(x, y)|. (3)

At time t+ 1 , we will get the following background:

Bt+1(x, y) = |It+1(x, y)− Ft+1(x, y)|. (4)

Therefore, according to Eqs. (3) and (4), we will get the background frame sequence B1(x, y), B2(x, y),

B3(x, y) . . . Bn(x, y) for the K number of gray-scale video sequences Ik(x, y) , where ∀k ≥ 2 and ∀n ≥ 1 .
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Then we calculate the vertical displacement vectors u and the horizontal displacement vectors v between
the background B1(x, y) and B2(x, y), B2(x, y) and B3(x, y), . . . , Bn−1(x, y) and Bn(x, y) for each
pixel one by one at the coordinate (x, y) , where ∀n ≥ 2 .

3) MDE and AMDE model construction: Our proposed MDE or AMDE method models the undesired
motion of the background pixels. We know that the optical flow algorithm takes the assumption that
pixel intensities between consecutive frames do not change much and neighboring pixels have similar
motion characteristics, so pixel intensities will be

I(x, y, t) = I(x+ dx, y + dy, t+ dt), (5)

where dx and dy are the vertical and the horizontal distance in case of the pixel moving at the time
dt (https://docs.opencv.org/3.3.1/d7/d8b/tutorial_py_lucas_kanade.html). Utilizing the Taylor
series, discarding common elements, and dividing by dt in Eq. (5), we get the following equation:

fxu+ fyv + ft. (6)

Here,

fx =
∂f

∂x
, fy =

∂f

∂y
, u =

dx

dt
, v =

dy

dt
. (7)

Therefore, we will get the optical flow vectors {(ui, vj) | (ui, vj) ∈ {Bt(x, y), Bt+1(x, y)}, ∀t ≥ 1} . We
use Farnebäck's dense optical flow method [29] to calculate the vertical flow vector u and horizontal flow
vector v for each pixel separately for the M ×N -pixel video frame. Now we estimate the displacement
for the pixels between background Bt(x, y) and background Bt+1(x, y) by calculating the norm of the
vectors u and v . The Manhattan distance (L1 norm) is presented as

||d||1 = |ui|+ |vj |. (8)

For the L1 distance, the MDE is defined as

||MDE|| = 1

M ×N

∑M

i=1

∑N

j=1
||ui||+ ||vj ||. (9)

We know that the Manhattan distance (L1 norm) measures the shortest path to move horizontally and
vertically, whereas the Euclidean (L2 norm) distance computes the smallest distance in the plane. In our
cases, we use the Euclidean (L2 norm) distance. The L2 norm, ||dk||2 , is calculated from the optical flow
vectors u⃗ ∈ {0, 1, 2, 3, . . . ,M} and v⃗ ∈ {0, 1, 2, 3, . . . , N} , where k = M ×N :

||dk||2 =
√
||ui||2 + ||vj ||2. (10)

Therefore, the mean of the displacement of each pixel between the background frames B1(x, y) and
B2(x, y) is

||MDE1|| =
1

M ×N

∑M

i=1

∑N

j=1

√
||ui||2 + ||vj ||2. (11)

1264

https://docs.opencv.org/3.3.1/d7/d8b/tutorial_py_lucas_kanade.html


HOSSAIN et al./Turk J Elec Eng & Comp Sci

The MDE between the background frames B2(x, y) and B3(x, y) is

||MDE2|| =
1

M ×N

∑M

i=1

∑N

j=1

√
||ui||2 + ||vj ||2. (12)

We continue the MDE calculation like in Eqs. (11) and (12), and finally we determine the MDE between
background frames BN−1(x, y) and BN (x, y) :

||MDEN−1|| =
1

M ×N

∑M

i=1

∑N

j=1

√
||ui||2 + ||vj ||2. (13)

The average of the MDEs is calculated for the N video frames as

||AMDE|| = 1

N − 1
(||MDE1||+ ||MDE2||+ ||MDE3||+ · · ·+ ||MDEN−2||+ ||MDEN−1||)

||AMDE|| = 1

N − 1

∑N−1

j=1
||MDEj−1||.

(14)

Algorithm 1. Video assessment model without the foreground.
Input : Video was taken after stabilization
Output: MDE, AMDE

1 read the previousframe from a video;
2 convert the previousframe into the gray scale;
3 remove foreground pixels from the previousframe using SubSENSE algorithm;
4 amde← 0, sum_mde← 0, count_mde← 0 ;
5 while video frame ̸= 0 do
6 read the nextframe;
7 if nextframe empty then
8 break;
9 else

10 convert the nextframe into the gray scale;
11 remove foreground pixels from the nextframe using the SubSENSE algorithm;
12 calculate Gunnar Farnebäck's dense optical flow vectors u and v in the vertical and

horizontal direction between the consecutive background previousframe and nextframe;
13 ||dk||2 ← 0, sum_d← 0, mde← 0 ;
14 for i← 1 to N do
15 for j ← 1 to M do
16 ||dk||2 ← sqrt(u ∗ u+ v ∗ v) ;
17 sum_d← sum_d+ ||dk||2 ;
18 end
19 end
20 mde← sum_d/(N ∗M) ;
21 count_mde++ ;
22 print mde ;
23 sum_mde← sum_mde+mde ;
24 previousframe← nextframe ;
25 end
26 end
27 amde← sum_mde/count_mde ;
28 print amde ;
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Finally, our video assessment algorithm is organized in order: Algorithm 1 displays the video assessment model
without the foreground. In the case of video assessment with the foreground, it needs to escape lines 3 and
11 of Algorithm 1. The displacement is calculated in pixels (unit=pixel). The MDE as in Eq. (11) is the
mean displacement of each pixel per frame. If the background pixels have d pixels displacement from the
background Bt(x, y) in Eq. (3) to the background Bt+1(x, y) in Eq. (4), we can claim that the foreground
pixels Ft(x, y) in Eq. (2) will also displace the same distance d pixels from the video frame It(x, y) in Eq.
(3) to the video frame It+1(x, y) in Eq. (4), since all the pixels for a video frame move at the same rate when
a camera unintentionally moves. The displacement of each pixel in pixels indicates the amount of undesired
motion for each pixel separately. In practice, all pixels will not move the same amount for both types of pixels
(background pixel, foreground pixel) in the case of a CMOS camera. The camera will have rolling shutter
effects. That is why we find the separate background pixel movements and calculate the average movement of
the pixels for each frame, which we call MDE. Therefore, we can conclude that the foreground pixel movement
also follows the background MDE or AMDE as in Eq. (14) on an average. In this way, our proposed MDE and
AMDE models measure the performance of the different video stabilization algorithms. The proposed method
is absolutely effective, as our experiment proves. The displacement is due to estimation, transformation, and
accumulation errors that come from different steps of the video stabilization process. Our proposed MDE in
Eqs. (11)–(13) and AMDE in Eq. (14) estimate the error amount numerically. MDEs of ≈ 0 and AMDEs of
≈ 0 mean that there are no errors in the processed video. A better video stabilization method will have lower
MDEs and AMDEs. The main goal of the VS method is to remove the unwanted motion present in the input
video while maintaining the other perceptual video quality.

3.1. Methodology for synthetically shaking video

To validate our proposed method, we generate synthetically shaking videos having the geometric transformation
of the images. Our created artificial video types are based on 1) translation, 2) rotation, 3) translation and
rotation (TR), 4) rotation and translation (RT), and 5) scaling, rotation, and translation (SRT). To create
a shaking video, each pixel (x, y) of each frame is transformed by adding a translational vector ⟨h, k⟩ . The
transformed pixels (x′, y′) are x′ = x+h , and y′ = y+k . The transformation matrix as in Eq. (15) is obtained
by adding a homogeneous coordinate. When a pixel (x, y, 1) of a frame spins an angle θ about the origin,
the transformed matrix for a rotation of each pixel (x′, y′, 1) is represented as in Eq. (16). In the case of TR
video, if a pixel (x, y, 1) is translated first by a translational vector ⟨h, k⟩ , followed by a rotation of an angle
θ about the coordinate origin, the transformed matrix will be like Eq. (17). Regarding rotation translation,
the matrix representation will be different as in Eq. (18). To create a more real shaking video, each pixel is
transformed in terms of scaling, rotation, and translation. To generate a SRT video, the new pixel position
(x′, y′) is transformed as x′ = sx cos θ− sy sin θ+h , y′ = sx sin θ+ sy cos θ+ k , and its matrix is represented
as in Eq. (19). We create all these types of videos to prove that our method can detect all kinds of the motion.

x′

y′

1

 =

1 0 h
0 1 k
0 0 1

 .

xy
1

 . (15)

x′

y′

1

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

xy
1

 . (16)
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x′

y′

1

 =

cos θ − sin θ h cos θ − k sin θ
sin θ cos θ h sin θ + k cos θ
0 0 1

 .

xy
1

 . (17)

x′

y′

1

 =

cos θ − sin θ h
sin θ cos θ k
0 0 1

 .

xy
1

 . (18)

x′

y′

1

 =

s cos θ −s sin θ h
s sin θ s cos θ k

0 0 1

 .

xy
1

 . (19)

4. Experimental results

This section explains experimental results of our proposed method, evaluates our proposed method based on
synthetically created unstable videos and real videos, and appraises the performance of three of the state-of-
the-art VS approaches using our proposed model. Finally, we compare our method with the PSNR and SSIM.
We use Eqs. (11)–(13) and (14) to compute the MDE and AMDE, respectively, throughout our research.

4.1. Dataset

We use the changedetection dataset of 20141 to prove that the background motion between consecutive frames
will be zero. Also, we create eight different types of videos of different frame dimensions using the images shown
in Figures 3a–3h and based on the translation, rotation, composition of translation and rotation, composition
of rotation and translation, and composition of scaling, rotation, and translation (SRT) transformation of Eqs.
(15) to (19). Figures 3a–3d are images collected from the Internet, whereas images of 3a–3h are captured by a
camera. All the images shown in Figure 3 are used only for creating the synthetically shaking videos.

The synthetically created shaking videos are only used to ensure our proposed method’s accuracy.
Afterward, we select five categories of videos (regular, quick rotation, crowd, parallax, and running) with
the foreground objects from the video database.2 All the categories of the videos are very complex except the
regular category. The quick rotation category has very large motion among the other categories. We select
three digital video stabilization software programs: VirtualDub-Deshaker,3 Google YouTube Stabilizer,4 and
Adobe Premiere Pro Warp Stabilizer.5 Adobe Premiere Pro generally applies the subspace video stabilization
[13] approach and the YouTube Stabilizer uses the L1 optimal camera path algorithm [14]. The comparison
of the three digital VS (DVS) approaches is performed by our method with the same dataset.2 Finally, the
comparison of our proposed approach with the PSNR and the SSIM is carried out by the MOS of the videos
stabilized by the DVS algorithms.

1http://www.changedetection.net/
2 http://liushuaicheng.org/SIGGRAPH2013/database.html
3https://www.guthspot.se/video/deshaker.htm
4http://www.youtube.com
5https://www.adobe.com/products/premiere.html
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(a) le (b) right (c) lenna (d) schefflera

(e) flower (f ) street flower (g) tree (h) indoor

Figure 3. Video created using the images.

4.2. Background motion and our method’s robustness

To evaluate our algorithm, we executed the experiments extensively. Our hypothesis is that the nondynamic
background motion of a video will be zero if a video is perfectly stable. In Table 1, background motions (AMDE)
of all the videos are going to approach zero. The motions are not exactly zero because each BG6 of the videos
is not completely static. We find 0.00019, 0.00051, 0.00034, and 0.00016 MDEs between the two same video
frames for four different cases. Therefore, the above experiments prove that nondynamic background motions
between consecutive frames will be zero.

Table 1. Background motion.

Sl. Video name Only_background
motion (average MDE)

1. Baseline / highway 0.0730
2. Baseline / office 0.0782
3. Baseline / pedestrians 0.0943
4. Shadow / busstation 0.0691
5. Shadow / backdoor 0.0816

Based on this motionless background criterion, we can measure the stability of a video. We also analyze
the unstable and stabilized videos of the four different categories provided in the above mentioned dataset. The
analysis is tabulated in Table 2 and depicted in Figure 4. All the videos have undesired background motions.
The background motion of the simple case video is less than the other cases. For the crowd and the running
videos, the unwanted background motions are larger than the others. The observation is that it is easy to

6Background.
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Table 2. BG motion of the unstable and stabilized videos.

Sl. Video name Unstable_BG_ Stable_BG _
motion (AMDE) motion (AMDE)

1. Simple / 0.avi 2.125 0.321
2. Simple / 2.avi 2.423 0.207
3. Simple / 4.avi 0.975 0.582
4. Simple / 5.avi 1.451 0.255
5. Simple / 8.avi 1.812 0.311
6. Crowd / 1.avi 2.343 1.693
7. Crowd / 2.avi 1.762 1.032
8. Crowd / 4.avi 1.725 0.841
9. Crowd / 14.avi 1.837 0.721
10. Parallax / 5.avi 1.322 0.427
11. Parallax / 13.avi 2.007 0.966
12. Parallax / 17.avi 2.181 0.511
13. Running / 3.avi 3.181 1.334
14. Running / 15.avi 2.996 1.022
15. Running / 16.avi 2.678 0.788

Background Motion of the Unstable and Stabilized Video 
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Figure 4. Unstable BG and stabilized BG for videos. Figure 5. Unstable BG and stabilized BG for frames.

discard the simpler motion than complex motion. In Figure 5, we depict frame by frame MDEs of an unstable
and stabilized video named 8.avi of the regular category provided online.2 Clearly, the MDEs of the unstable
video are higher than the MDEs of the stabilized video. Therefore, we can check the stability of a video based
on the background motion.

Afterward, to test our method’s accuracy, we compare the ground truth values with the measured values
of the synthetically shaking videos. The ground truth values and the measured values are tabulated in the
experiments in the case of translation, rotation, TR, RT, and SRT in Eqs. (15) to (19). The average errors
in the case of a single translation and single rotation are 0.023 and 0.084 (Table 3 and Table 4), respectively,
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whereas the average errors of both composite transformation TR and RT are 0.12 (Table 5 and Table 6).
Though the composite translation and rotation (TR) and the composite rotation and translation (RT) are not
commutative, our results (Table 5 and Table 6) have no noticeable differences. In the case of the SRT video, the
average error is 0.13 (Table 7). Moreover, the error is increasing for the composite transformation compared to
the single translation and the single rotation. In the above mentioned five cases, In the above mentioned five
cases, the differences between the ground truth AMDEs and our measured AMDEs are very small, which are
negligible. From Tables 3 to 7, it is concluded that the translational displacement is easyier to detect than the
scaling and rotational displacement. Therefore, our proposed method is robust and it can detect the background
motion, which will quantify the accuracy of the VS methods.

Table 3. Accuracy for translation.

Sl. Video
name

Ground
truth
(AMDE)

Our
result
(AMDE)

Diff.
(AMDE)

1. leftT 1.414 1.390 0.024
2. rightT 1.414 1.406 0.008
3. lenaT 1.414 1.329 0.085
4. flowerT 1.414 1.415 0.001
5. sflowerT 1.414 1.416 0.002
6. treeT 1.414 1.420 0.006
7. indoorT 1.414 1.377 0.037

Average error = 0.023

Table 4. Accuracy for rotation.

Sl. Video
name

Ground
truth
(AMDE)

Our
result
(AMDE)

Diff.
(AMDE)

8. leftR 5.511 5.373 0.138
9. rightR 5.511 5.391 0.120
10. lenaR 2.993 2.862 0.131
11. flowerR 5.133 5.134 0.001
12. sflowerR 5.386 5.395 0.009
13. treeR 5.040 5.079 0.039
14. indoorR 5.199 5.044 0.155

Average error = 0.084

Table 5. Accuracy for TR.

Sl. Video
name

Ground
truth
(AMDE)

Our
result
(AMDE)

Diff.
(AMDE)

1. leftTR 5.628 5.669 0.041
2. rightTR 5.628 5.687 0.061
3. lenaTR 3.330 3.122 0.208
4. ScheffaTR 6.546 6.418 0.128
5. sflowerTR 5.482 5.704 0.222
6. indoorTR 5.272 5.369 0.097

Average error = 0.126

Table 6. Accuracy for RT.

Sl. Video
name

Ground
truth
(AMDE)

Our
result
(AMDE)

Diff.
(AMDE)

1. leftRT 5.606 5.648 0.042
2. rightRT 5.606 5.662 0.056
3. lenaRT 3.310 3.104 0.206
4. ScheffaRT 6.524 6.397 0.127
5. sflowerRT 5.460 5.682 0.222
6. indoorRT 5.250 5.349 0.099

Average error = 0.125

Table 7. Accuracy for SRT.

Sl. Video
name

Ground
truth
(AMDE)

Our
result
(AMDE)

Diff.
(AMDE)

7. leftSRT 7.388 7.368 0.020
8. rightSRT 7.388 7.396 0.008
9. flowerSRT 6.770 7.037 0.267
10. sflowerSRT 7.185 7.319 0.134
11. indoorTR 6.885 7.108 0.223

Average error = 0.130
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Figure 6. Stability assessment for unfilled case.

Remark 1 When a video is stabilized, some methods crop the video like in Figure 6 due to the large motion.
The red line shows the filled image area and the blue line indicates the unfilled area. Our proposed method only
considers the filled image area in terms of stability of a video. The proposed MDE calculates the total motion
pixel by pixel between the two consecutive frames, then divides by the frame size. In the case of Figure 6, the
displacements of the black portion (the unfilled area) will be zero. Therefore, we only estimate the displacement
of the filled image area and divide the total displacement by the filled image area size. Another important issue
is that the frame rate should be the same when comparing the DVS algorithm.

4.3. Comparison of three DVS methods

The performance of the three DVS methods (the VirtualDub-Deshaker video stabilizer, the YouTube stabilizer,
and the Adobe warp stabilizer) is measured in terms of the background motion using our proposed model. The
dataset is taken from a website.2 The experiment is carried out on five different categories without foreground
videos. The summary of the performance is shown in Tables 8 to 12. All the methods fail to discard the
undesired motion entirely. The three DVS methods reduce more undesired motions for the regular case video
than the other cases. The average background motion is less than 0.65 pixel AMDE for the regular case videos,
whereas the other four cases of videos have more than 1.30 pixel AMDE background motion. On the average,
the YouTube stabilizer shows the best performance for all cases while the VirtualDub-Deshaker stabilizer gains
better performance and the the Adobe warp stabilizer scores well in all cases.

4.4. Our method compared with the other methods

We compare our proposed method with the PSNR7 and SSIM [21] based on the MOS of the five different
categories of videos stabilized by the three DVS algorithms. To the best of our knowledge, there is no dataset
with the MOS for video stabilization. Liu only provides some unstable and stabilized videos of different categories
at the url,2 but the MOS is not included there. Therefore, for the MOS, we use the Double Stimulus Continuous

7 https://docs.opencv.org/2.4/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html
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Quality Scale (DSCQS)8 of the ITU-R standard to assess the perceptual quality in terms of the stability of
a video. According to the DSCQS, when taking a test, an input and processed video are displayed in the
consecutive windows. Then the observer directly assesses and puts a score according to the given scale. The
rating scale of 1–5 is used, where we designate 1 as excellent (perfect stability quality) and 5 as bad (very
difficult to understand the stability quality). The other scores of 2, 3, and 4 indicate good (very satisfactory),
fair (requires more stability), and poor (hard to understand the stability), respectively. We took 22 observers,
where two were female and rest of them were male. All the observers were students from five different labs who
came from two different countries. Among all the observers, some observers had experience in video and image
processing, computer vision, and video stabilization and rest of them were from artificial intelligence, cloud
computing, and big data analysis labs. For a single unstable input video, three videos stabilized by the three
DVS algorithms were displayed consecutively. The participants were asked to watch the videos carefully and
rate the overall stability according to the above mentioned rating scale. Finally, the collected scores from the 22
participants were averaged to get the final assessment MOS value. The Spearman rank correlation coefficient
(S-corr.) was used to estimate the correlation between our proposed method, the PSNR, and the SSIM with
the MOS of the stabilized video separately. The S-corr. shows the correlation between the two variables. When
the two variables increase, the S-corr. becomes positive. Alternatively, if one variable is increasing while the
other variable is decreasing, S-corr. will be negative. S-corr. of zero value means that there is no correlation
between the two variables. When the two variables are perfectly monotonically correlated, the S-corr. becomes
one.

The comparisons of our proposed method with the PSNR and SSIM are tabulated in Tables 8 to 12 in
terms of the correlation with the MOS. The correlation is computed for each video of each category separately.
In addition to the averages of the MOS, our MDE, the PSNR, and the SSIM are computed, and then the
S-corr. values for these average values are also estimated. Among the three methods, our method gains the
best correlation results, whereas the SSIM shows fewer correlation coefficients and the PSNR is in the second
position in the case of the five different categories where each category belongs to five different videos. Our
proposed method has the perfect S-corr. value of 1 in all cases. The PSNR achieves the S-corr. value of 1 only
for the two videos of the regular case and the quick rotation case separately, while the SSIM gives one S-corr.
value of 1 for each case and both the PSNR and SSIM score the S-corr. value of 0.5 for the rest of the videos.
The three methods obtain an average S-corr. value of 1 only for the quick rotation case. The PSNR is usually
used to check the image reconstruction quality and the SSIM estimates the image structural degradation. These
two methods can only measure the distortion of an image. When an unstable video is stabilized, most of the
pixels change their coordinate positions. Therefore, the PSNR and SSIM fail to estimate the stability of a video.
However, our proposed method can count the stability criterion. Our experimental results and MOS survey
data can be found online.9

5. Conclusion and future work
We have proposed a background motion-based novel performance metric, which can measure pixel-wise motion
errors of the stabilized video. Our hypothesis is that background pixels do not move too much in the consecutive
frames after video stabilization if a video is nearly perfectly stabilized. Similarly, the unwanted motions of
foreground pixels always follow the background pixels’ movement. To get a more accurate result, we remove the
foreground pixels from a stabilized video. Afterwards, 2 -dimensional motions are detected, and then the L2

8 https://tech.ebu.ch/docs/techreview/trev_271-evain.pdf
9 https://github.com/alamgir39/khuresearch
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Table 8. Our method compared with the PSNR and SSIM based on the MOS of the videos stabilized by the
three DVS algorithms (regular case).

Video Deshaker Youtube Adobe Warp S-corr.
MOS OUR PSNR SSIM MOS OUR PSNR SSIM MOS OUR PSNR SSIM OUR PSNR SSIM

#1 2.23 0.40 10.75 14.02 1.68 0.33 10.24 13.28 3.68 1.16 10.35 14.54 1 0.5 1
#2 2.59 0.34 13.65 28.55 1.82 0.24 13.42 28.55 2.41 0.31 13.61 29.94 1 1 0.5
#3 3.00 0.44 12.93 34.77 1.68 0.20 12.33 34.43 2.77 0.35 12.39 35.33 1 1 0.5
#4 2.50 0.14 15.84 56.01 1.50 0.13 14.11 51.88 3.50 0.24 14.94 54.44 1 0.5 0.5
#5 2.50 0.43 14.15 21.29 1.41 0.16 12.70 19.10 3.50 1.07 12.57 20.17 1 0.5 0.5
AVG. 2.56 0.35 13.46 30.93 1.62 0.21 12.56 29.45 3.17 0.63 12.77 30.88 1 0.5 0.5

Table 9. Our method compared with the PSNR and SSIM based on the MOS of the videos stabilized by the
three DVS algorithms (quick rotation case).

Video Deshaker Youtube Adobe Warp S-corr.
MOS OUR PSNR SSIM MOS OUR PSNR SSIM MOS OUR PSNR SSIM OUR PSNR SSIM

#1 2.91 1.74 12.04 22.60 1.73 1.03 11.89 22.13 2.41 1.40 11.84 23.60 1 0.5 0.5
#2 3.09 2.10 11.16 19.28 2.18 1.30 11.49 20.31 2.82 1.83 9.77 17.37 1 0.5 0.5
#3 2.95 2.93 11.51 19.95 2.68 2.24 11.77 19.97 2.77 2.93 7.54 4.84 1 0.5 0.5
#4 2.95 2.66 10.41 35.29 2.41 1.72 10.77 36.22 3.41 3.37 6.63 12.20 1 1 1
#5 2.45 1.03 12.66 53.77 2.18 0.93 12.71 52.99 3.59 1.61 8.25 30.62 1 1 0.5
AVG. 2.87 2.09 11.56 25.66 2.24 1.44 11.72 30.32 3.00 2.23 8.81 17.72 1 1 1

Table 10. Our method compared with the PSNR and SSIM based on the MOS of the videos stabilized by the
three DVS algorithms (crowd case).

Video Deshaker Youtube Adobe Warp S-corr.
MOS OUR PSNR SSIM MOS OUR PSNR SSIM MOS OUR PSNR SSIM OUR PSNR SSIM

#1 2.36 1.64 13.34 36.53 1.64 1.49 12.59 33.77 3.27 2.17 12.00 33.65 1 0.5 0.5
#2 2.36 2.50 11.50 32.98 1.86 2.17 12.17 34.03 3.50 2.85 10.81 30.45 1 1 1
#3 2.50 1.72 10.84 28.85 1.77 1.21 10.79 28.54 3.18 2.13 10.35 27.19 1 0.5 0.5
#4 2.59 2.13 11.50 34.68 1.91 2.03 10.57 31.85 3.45 2.58 10.82 32.55 1 0.5 0.5
#5 2.59 2.16 9.65 27.59 2.09 2.13 9.59 27.70 3.68 2.96 9.41 25.81 1 0.5 1
AVG. 2.48 2.03 11.40 32.13 1.85 1.80 11.14 31.18 3.42 2.54 10.68 29.93 1 0.5 0.5

Table 11. Our method compared with the PSNR and SSIM based on the MOS of the videos stabilized by the
three DVS algorithms (parallax case).

Video Deshaker Youtube Adobe Warp S-corr.
MOS OUR PSNR SSIM MOS OUR PSNR SSIM MOS OUR PSNR SSIM OUR PSNR SSIM

#1 2.23 2.02 11.44 33.80 1.55 1.87 12.24 37.09 2.91 2.38 12.32 37.95 1 0.5 0.5
#2 2.86 0.91 16.34 45.82 1.68 0.45 14.12 41.22 3.64 1.99 13.56 41.28 1 0.5 0.5
#3 2.77 2.41 11.43 37.75 1.73 2.33 11.17 35.44 3.00 2.48 11.44 37.92 1 1 1
#4 3.18 0.61 13.41 51.96 1.64 0.36 10.76 43.53 4.14 1.47 11.01 44.85 1 0.5 0.5
#5 2.73 1.90 9.32 26.10 2.00 1.61 9.76 26.73 3.64 1.93 9.39 26.07 1 0.5 0.5
AVG. 2.75 1.57 12.39 39.08 1.72 1.32 11.61 36.80 3.46 2.05 11.54 37.61 1 0.5 0.5
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Table 12. Our method compared with the PSNR and SSIM based on the MOS of the videos stabilized by the
three DVS algorithms (running case).

Video Deshaker Youtube Adobe Warp S-corr.
MOS OUR PSNR SSIM MOS OUR PSNR SSIM MOS OUR PSNR SSIM OUR PSNR SSIM

#1 2.77 3.08 10.35 27.78 1.95 2.98 10.30 26.92 4.00 3.23 9.50 23.21 1 0.5 0.5
#2 2.45 1.46 14.12 48.34 1.45 1.04 12.45 44.97 3.50 1.99 13.48 46.20 1 0.5 0.5
#3 2.73 1.59 10.91 45.88 2.00 1.47 11.16 46.56 4.00 1.71 9.59 40.39 1 1 1
#4 2.77 2.50 9.34 26.40 1.73 1.99 9.15 26.20 3.95 2.69 9.08 24.15 1 0.5 0.5
#5 2.77 2.07 11.27 30.89 1.68 1.71 11.19 30.28 3.64 2.73 10.41 28.03 1 0.5 0.5
AVG. 2.70 2.14 11.20 35.86 1.76 1.84 10.85 34.99 3.82 2.47 10.41 32.40 1 0.5 0.5

norm distance displacement is computed. As a result, our proposed algorithm detects a temporal inconsistency
effectively and distinguishes between a stable and unstable video clearly (Figure 5). Moreover, the small
differences between the experimental results and the ground truths (Tables 3 to 7) show our proposed method’s
robustness. Our proposed model sufficiently differentiates the three best DVS methods (Tables 8 to 12). The
distinguished results of the three latest algorithms in the case of real videos and our method’s validation by
the synthetically shaking videos show the effectiveness of our algorithm. Most importantly, our proposed MDE
method shows the best correlation scores with the MOS compared to the PSNR and the SSIM (Tables 8 to 12).
Our proposed algorithm neither depends on the synthetically shaking video nor assumes heuristic or empirical
assumptions. In the future, we plan to consider the blurring effect introduced by the video stabilization and the
unfilled spatial areas in addition to the stability criterion to distinguishably measure the accuracy of the DVS
method.
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