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Abstract: Currently, large-scale solar farms are being rapidly integrated in electrical grids all over the world. However,
the photovoltaic (PV) output power is highly intermittent in nature and can also be correlated with other solar farms
located at different places. Moreover, the increasing PV penetration also results in large solar forecast error and its
impact on power system stability should be estimated. The effects of these quantities on small-signal stability are
difficult to quantify using deterministic techniques but can be conveniently estimated using probabilistic methods. For
this purpose, the authors have developed a method of probabilistic analysis based on combined cumulant and Gram–
Charlier expansion technique. The output from the proposed method provides the probability density function and
cumulative density function of the real part of the critical eigenvalue, from which information concerning the stability
of low-frequency oscillatory dynamics can be inferred. The proposed method gives accurate results in less computation
time compared to conventional techniques. The test system is a large modified IEEE 16-machine, 68-bus system, which
is a benchmark system to study low-frequency oscillatory dynamics in power systems. The results show that the PV
power fluctuation has the potential to cause oscillatory instability. Furthermore, the system is more prone to small-signal
instability when the PV farms are correlated as well as when large PV forecast error exists.

Key words: Cumulant method, forecast error, Gram–Charlier expansion, probability density function

1. Introduction
Recently, there has been a large proliferation of photovoltaic power generation (PVG) in electric power system
and its aggregated production capacity is rapidly approaching the conventional generation capacity. Photovoltaic
(PV) resources are highly attractive due to their inexhaustible availability in quantity and environmental
friendliness. The total world PV generation reached 303 GW by the end of 2016 and will continue to grow
as one of the most popular renewable sources. PV generation of 75 GW alone was added in the year 2016.
However, PVG is highly intermittent and can severely degrade power quality and more dangerously power
system stability [1].

There has been great effort in understanding the effect on probabilistic small-signal stability (PSSS).
Broadly speaking, the current probabilistic method to analyze small-signal stability can be categorized into
analytical and nonanalytical methods. The nonanalytical technique uses the Monte Carlo simulation (MCS)
method to obtain information about system eigenvalue distribution [2]. This technique is based on a numerical
method that requires running multiple deterministic small-signal stability analyses. As this method leads to a
huge computational burden, many researchers only prefer it for the purpose of benchmarking.
∗Correspondence: samundra24@gmail.com
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The analytical methods employ complex mathematical approximations to infer the probability distri-
bution of important electrical stability variables such as eigenvalues. A commonly used analytical method is
the cumulant approach [3]. It has attracted large popularity and in-depth research because of its flexibility
and computational efficiency [4]. The cumulant method is more accurate when compared with other analytical
methods such as the point estimate method or probability collocation method [5]. This method is also widely
used in PSSS [6–11]. More importantly, the effect of PV fluctuations on small-signal stability was studied in
[10–18]. The authors in [10, 11] did extensive research on analyzing the impact of stochastic PV output on
PSSS and observed that it can lead to a decrease in stability margin. The effect of combined PV and wind
generation using MCS for a microgrid was studied in [12], where the authors concluded that fluctuations due
to these two renewable sources have the potential to deteriorate small-signal stability. However, [10–12] were
all based on small networks. The impact of small-signal stability is more severe on a large system as it can
jeopardize system stability and ultimately lead to blackouts [13].

The impact of PVG on probabilistic low-frequency oscillatory stability using decision trees on a large
transmission network was studied in [14]. The researchers in [15] investigated the effect of PV on dynamic
stability on the IEEE-68 bus system using the cumulant method and concluded that the system can be
stochastically unstable even when it is deterministically stable. In [16], a new method based on stochastic
response surface was used to investigate the effect of PV uncertainties on a large system. The effect of different
power system uncertainties including PVG on small-signal stability using game theory approach was studied in
[17]. However, the methods proposed by the authors in [14, 17] require much computational time. Moreover,
the papers discussed so far have not considered the possibility of correlation between solar farms. Different
solar farms can be correlated due to insolation, temperature, and other environmental factors and can have
detrimental effects on the system [1]. The effect of correlation between solar farms on PSSS was studied in [18]
using copula theory and the authors found that correlation can lead to a decrease in system stability margin.
However, the copula method is time-consuming and so computationally inefficient. Thus, there is a need to
quantify the effect of correlation between PV farms on small-signal stability with an accurate and fast method.

Moreover, the growing penetration of renewable energy such as PV and wind has led to increased
uncertainty, which results in significant error in renewable energy (RE) forecasting. This causes a large imbalance
between electrical supply and demand and may lead to economic and reliability issues. Moreover, inaccuracy
in forecast error can also lead to increased risk in system stability [9, 19].

Subsequently, there is a high need to fill the research gaps described here, especially in the current era of
rapid large-scale integration of PVG, and to analyze its effect on small-signal stability of a large system using a
fast yet accurate technique. This work is an augmented version of [15], where the study of effect of correlation
between solar farms, impact of different penetration levels for various correlation coefficients, and effects of solar
forecast error is added. The theory of cumulants considering correlated random variables is also added in our
current work, which can be found in Section 5.3. Furthermore, we have also included a comparison between our
proposed method with the technique developed by the authors of [10]. The main objectives and contributions
of this paper are as follows:

• Development of a probabilistic model of PV output power using real measured data.
• Formulation of a framework to assess probabilistic small-signal stability in less computation time with

highly accurate results considering stochastic PV output.
• Study of the impact of correlation between solar farms, solar forecast error, and change in penetration

level on PSSS.

1277



GURUNG et al./Turk J Elec Eng & Comp Sci

2. Framework of proposed methodology

Modeling of  deterministic 

power system
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Figure 1. Proposed methodology to analyze probabilistic small-signal stability due to PV integration.

The proposed method to assess PSSS is shown in Figure 1 and can be stated as follows:

1. The first step involves running deterministic small-signal stability analysis. This process mainly comprises
modeling of power system components and eigenvalue analysis, which are explained in Section 3.

2. The other major initial step requires modeling of uncertainty sources. The uncertainties are usually
described by probability density function (PDF) or cumulative density function (CDF). This paper
considers two uncertainties: one due to PV power fluctuations and another due to error in solar forecast,
which are discussed in more detail in Section 4.

3. Once the deterministic power system and stochastic uncertainties are appropriately modeled, the combined
method of cumulant and Gram–Charlier expansion is applied to obtain the statistical information about
small-signal stability. More explanation of this step can be found in Section 5.

3. Deterministic small-signal stability

3.1. Modeling of deterministic power system

The power system consists of different components such as a synchronous generator, excitation system, and PV.
All the synchronous generators are modeled using a sixth-order model and excitation systems are modeled as
fast-acting IEEE ST1A type in this paper [20].

The PV model is developed as suggested by the North American Electric Reliability Corporation (NERC)
and Western Electricity Coordinating Council (WECC) and is similar to the grid-side converter model of wind
turbine generators (type 4 wind turbine generator) [21]. More details on PV converter and controller modeling
can be found in [22, 23]. All the PV models are built using DIGSILENT in this paper.

3.2. Eigenvalue analysis

The power system’s dynamic behavior can be represented with the following differential algebraic set of equations
[20]:

ẋ = f(x, y),

0 = g(x, y),
(1)
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where f is the vector of differential equations, x represents the vector of state variables, y is the vector of
algebraic variables, and g is the vector of algebraic equations. The state matrix (AS ) can be obtained after
linearizing and eliminating algebraic variables in Eq. (1) and thus it is implicitly assumed that the algebraic
Jacobian matrix (gy ) is not singular (i.e. absence of singularity-induced bifurcation point) and is expressed as
[13]:

AS = fx − fyg
−1
y gx, (2)

where fx ,fy ,gx , and gy are the gradients computed at the operating point. Let the eigenvalue (λ) of Eq. (2)
be

λ = −σ ± jω, (3)

where σ is the real part of the eigenvalue and ω is the imaginary part of the eigenvalue. The eigenvalues
thus obtained from state matrix play a vital role in the field of deterministic small-signal stability analysis, as
they exclusively determine the small-signal stability of the system. A system is said to be small-signal-stable
if and only if all the real parts of the eigenvalues are negative. The imaginary part of the eigenvalue provides
information about the frequency of the oscillation. As the real system can have hundreds of eigenvalues, only
the critical eigenvalue (the eigenvalue whose real part is nearest to the origin) is used to analyze PSSS in this
paper.

4. Modeling of uncertainties

4.1. Probabilistic modeling of PV fluctuation

4.1.1. Determination of probabilistic model of PV irradiance

The actual daily irradiance data collected from 2013 to 2016 by the CES Solar Cells Testing Center (CSSC),
Thonburi, are used for analysis in this paper. The hourly data from 1200 to 1300 hours for the month of May are
first used to construct the histogram for the purpose of fitting it to a distribution. This histogram is bimodal,
with one peak lying on the lower irradiance and the other peak lying on the higher irradiance. However, only the
histogram whose peak lies on higher irradiance is used here for fitting as it contains the majority of data, and
no stability problem is found when the histogram with a peak lying on the low irradiance portion is considered
during our analysis. The histogram of irradiance and the fitted distribution can be seen in Figure 2.

The histogram of irradiance best fits as a beta distribution, which can be seen from Table 1. Thus, the
PDF of the solar irradiance can be written as [24]:
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Figure 2. Distribution fit of solar irradiance.
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Table 1. Parameters related to solar irradiance distribution.

Name Value
Log likelihood 108.716
a 12.2101
b 2.48237
Mean (p.u) 0.831045
Variance 0.00894751
Base irradiance (W/m2) 1100
ARMS (%) 0.242

f(S) =
1

B(a, b)
Sa−1(1− S)b−1, (4)

where S is the irradiance, a and b are the shape parameters, and B is the beta function. The accuracy of the
proposed probabilistic power model is calculated using the average root mean square (ARMS) [1]:

ARMS =

√∑N
i=1 (FMod,i − FRef,i)

2

N
, (5)

where FMod,i and FRef,i are the ith values on the CDF curves of the fitted model and the reference model,
respectively, and N is the selected number of points. The ARMS for this case is 0.242%, showing the validity
of the proposed probabilistic model.

4.1.2. Probabilistic modeling of PV output power

The power output of PVG varies linearly with the irradiance and is given by [25]:

Pi =

(
S

Sbase

)
Prated, (6)

where Pi is the power injection for the ith PV, Prated is the rated PV output power, S is the actual irradiance
(W/m2 ), and Sbase is the base irradiance. The PDF of PVG for the ith farm (fpi

) can be obtained by
substituting Eq. (4) in Eq. (6) and then using the well-known transformation method [19]:

fpi(Pi) =
1

Prated

1

B(a, b)

(
Pi

Prated

)a−1(
1− Pi

Prated

)b−1

, for 0 < Pi < Pmax, (7)

where Pmax is the maximum output power.

4.2. Modeling of solar forecast error
Forecast error varies widely with the hour of the day as well as the feeding power. The PV forecast error is
normally modeled as a Gaussian distribution and the expression for the PDF of the ith PV farm output is
given by [26, 27]:

f(XPi) =
1

σ
√
2π

exp

(
−
[XPi

− (XPi0
+ µ)]

2

2σ2

)
, (8)

where XPi is the actual output of the ith PV farm; XPi0
is the forecast value of the ith PV farm, which is

deterministic; and µ and σ are the mean and standard deviation of PV forecast error, respectively.
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5. Proposed method to solve PSSS

The proposed method uses a combined cumulant and Gram–Charlier expansion technique to solve the PSSS.

5.1. Calculation of input cumulants

The PV power variation is defined as ∆Pi = Pi−Pd , where Pi is the active power supplied by the ith PV farm

and Pd is the deterministic PV power generation. The nth raw moment of the PV power variation (α(n)
∆Pi

) can
be computed as follows [24]:

α
(n)
∆Pi

=

∫ Prated

0

xnfpi
(x)dx

=
1

B(a, b)

∫ Prated

0

xn × (x+ Pi)
a−1[1− (x+ Pi)]

b−1dx.

(9)

Let t = x+ Pi . Then dt = dx , and then Eq. (9) becomes:

α
(v)
∆Pi

=
1

B(a, b)

∫ 1

0

(t− Pi)
n × ta−1 × (1− t)b−1dt

=
1

B(a, b)

n∑
k=0

Cn
k

∫ 1

0

tk(−Pi)
n−k × ta−1(1− t)b−1dt

=

n∑
k=0

Cn
k

(−Pi)
n−k

B(a, b)

∫ 1

0

t(a+k)−1 × (1− t)b−1dt

=

n∑
k=0

Cn
k (−Pi)

n−k × B(a+ k, b)

B(a, b)
,

(10)

where Ck
n = n!/(k!(n − k)!) , B(a + k, b) = Γ(a + k)Γ(b)/Γ(a + b + k) , and Γ is the gamma function. Eq.

(10) provides a very simple analytical solution for input power deviation of a solar farm and can be used in
other probabilistic methods based on the cumulant method to analyze different aspects of power systems such
as probabilistic load-flow, reliability assessment, or stability, which contains the PVG with beta distribution in
the test system. Similarly, the raw moments when forecast error is considered can be computed as:

α
(n)
∆Pi

=

∫ ∞

−∞
xnf(x)dx. (11)

The v th order cumulants of input power fluctuation (K(v)
∆Pi

) can be calculated as follows [1]:

K
(1)
∆Pi

= α
(1)
∆Pi

,

K
(2)
∆Pi

= α
(2)
∆Pi

− α
(1)
∆Pi

,

K
(3)
∆Pi

= α
(3)
∆Pi

− 3α
(1)
∆Pi

α
(2)
∆Pi

+ 2
(
α
(1)
∆Pi

)3
,

...

(12)
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5.2. Linearization and sensitivity calculation
Assuming there are N PV systems in the power system and λk = σk + jωk , which denotes the k th eigenvalue
(critical) of the power system with real part (σk ) and imaginary part (ωk ), the following relationship can be
established after linearization [28]:

∆λk = ∆σk + j∆ωk =

N∑
i=1

∂λk

∂Pi
∆Pi, (13)

∂λk

∂Pi
=

λk(Pi +∆Pi)− λk(Pi)

∆Pi
. (14)

The sensitivity term of Eq. (14) can be derived either analytically or numerically. It is calculated numerically
here as it is much simpler and still gives high accuracy results [28].

5.3. Calculation of output cumulants

The self cumulants for the first and second order of the critical eigenvalue (output) can be written as [29]:

K
(1)
∆σk

=

N∑
i=1

Re

(
∂λk

∂Pi

)
µ∆Pi

,

K
(2)
∆σk

=

N∑
i=1

Re

(
∂λk

∂Pi

)2

+ 2

N∑
i=1,i<j

Re

(
∂λk

∂Pi

)
Re

(
∂λk

∂Pj

)
K∆Pi,∆Pj

,

...

(15)

More importantly, K∆Pi,∆Pj
= σ2

∆Pi
, K∆Pi,∆Pj

= cov(∆Pi,∆Pj) = ρ∆Pi∆Pj , where ρ is the correlation
coefficient between two random variables ∆Pi and ∆Pj and σ∆Pi is the standard deviation of power fluctuation

for the ith PV farm. If ∆P1 ,∆P2 ,...,∆Pn are independent, the v th order output cumulant (K(v)
∆σk

) is given
by [3]:

K
(v)
∆σk

=

N∑
i=1

[
Re

(
∂λk

∂Pi

)]v
K

(v)
∆Pi

. (16)

5.4. Gram–Charlier expansion to find PDF and CDF of the output variable
When the output cumulants are calculated, the PDF and CDF of the critical eigenvalue can be constructed
with the help of Gram-0Charlier expansion [3]. Unlike other expansion techniques such as Edgeworth expansion,
Cornish–Fisher expansion, etc., this expansion method does not show error in the tail regions [1] and is widely
used in the field of PSSS [6–8, 10, 11].

5.5. Calculation of stability index

Finally, the probability of instability (PIS) is calculated [6] as:

Fσk
(0) = P (σk ≤ 0) =

∫ 0

−∞
fσk

(x)dx,

PIS = 1− Fσk
(0),

(17)
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where Fσk
is the CDF of the real part of the critical eigenvalue and fσk

is the PDF of the real part of the critical
eigenvalue. The PIS gives the probability of the real part of the critical eigenvalue being greater than zero or
alternatively provides the information about the probability of the power system being small-signal-unstable.

5.6. Summary of PM to assess PSSS
The algorithm developed to assess PSSS can be summarized as:

1. Probabilistic modeling of PV fluctuation and solar forecast error by applying Eqs. (7) and (8), respectively.

2. The probabilistic models are then used to find the input moments by using Eq. (10) or Eq. (11) depending
on the input uncertainty. This is a crucial part as the expression for the input moment needs to be derived
and is unique for each uncertainty.

3. Calculation of sensitivity factor by applying Eq. (14).

4. The output cumulants are then found by using Eq. (15) for correlated and Eq. (16) for uncorrelated
cases.

5. Finally, Eq. (17) is used to calculate the PIS, which provides information about small-signal stability.

6. Results and discussion
6.1. Test system
Figure 3 shows the test system, which has 16 machines and 5 areas and is a reduced order equivalent to the
interconnected New England Test System (NETS) and New York Power System (NYPS). As the location of PV
farms is not the primary concern in our research, it is assumed that three PV farms are each connected at buses
18, 41, and 42. All the PV generators are rated at 100 MVA with unity power factor but are assumed to operate
at 0.83 p.u. (83 MW). A power oscillation damping controller and power system stabilizer are occasionally used
to improve small-signal stability for the test system considered in our work [15, 20]. However, we have not used
these controllers for our current study as we want this paper to focus exclusively on comprehensive quantification
of the effect of uncertainties due to solar energy under different conditions on small-signal stability. Thus, all
power system stabilizers are assumed to be disabled in our study. The parameters of excitation systems and
generators are taken from [20].

6.2. Analysis of case studies
6.2.1. PV penetration in uncorrelated case
In the first case, the PV farms located at three places in the test system are assumed to be uncorrelated. All the
case studies in this paper are computed using Intel Core i5-2400 CPU, 3.17 GHz processing speed with 8 GB
RAM. The comparison between the results obtained from the proposed method and MCS method (obtained
with 10,000 simulations) is shown in Table 2. The method proposed in [10] is also applied for comparison with
our proposed method. The important statistical parameters such as mean and standard deviation (Std) along
with PIS and the computation time are compared. The output from PM and MCS matches very closely as
ARMS is a mere 0.1416%. Furthermore, it can be seen that the compared method of [10] overestimates the value
for PIS, validating the higher accuracy of our technique. The PDF of the real part of the critical eigenvalue is
shown in Figure 4, which clearly has some part of its area lying on the positive half plane. Figure 5 shows the
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Figure 3. Modified IEEE 68-bus system.

CDF of the real part of the critical eigenvalue. This suggests that the given test system has a chance of being
small-signal-unstable, which is also confirmed from the PIS value of 18.04%.

Table 2. Comparison of results for real part of critical eigenvalue.

MCS PM Reference [10]
ARMS (%) - 0.1416 -
Mean -0.0002863 -0.00028431 -0.00028365
Std 0.000313292 0.000318756 0.000335977
PIS (%) 18.04 19.32 20.7682
Time (s) 4553.46 40.8 41.22
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Figure 4. PDF of the real part of critical eigenvalue.
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Figure 5. CDF of the real part of critical eigenvalue.
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6.2.2. Analysis during correlated condition

The second case deals with the condition when the PV farms located at three different locations are assumed
to be correlated. The correlation coefficient between PV farms is taken as 0.8 [30]. In this case, correlated
random numbers need to be generated while applying the MCS method. This paper uses the Gaussian copula
method for this purpose [31]. As can be seen from Table 3, the two methods relate closely, with ARMS of only
0.1486%. The computation time for PM is also 110.71 times faster than MCS. The correlation effect pushes PIS
to 23.723%, which is around 5.683% higher compared to the previous case. Additionally, it can be seen from
Table 3 that the method proposed in [10] underestimates the value of PIS. Figures 6 and 7 show the PDF and
CDF of the real part of the critical eigenvalue in the correlated case. As can be seen from Figure 6, the spread
of the PDF in the correlated case is much higher than in the uncorrelated case.

Table 3. Comparison of results for real part of critical eigenvalue in correlated case.

MCS PM Reference [10]
ARMS (%) - 0.1486 -

Mean -0.00027651 -0.0002843172 -0.000309873
Std 0.000385389 0.000388465 0.000395023

PIS (%) 23.723 23.13 21.6390
Time (s) 4705.3 42.5 43.33
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Figure 6. PDF of the real part of critical eigenvalue in
correlated case.

Figure 7. CDF of the real part of critical eigenvalue in
correlated case.

Table 4. Comparison of results for real part of critical eigenvalue for different correlated coefficients.

Corr. coeff.=0.8 Corr. coeff.=0.85 Corr. coeff.=0.9 Corr. coeff.=0.95 Corr. coeff.=1.0
Mean -0.000284312 -0.000284312 -0.000284312 -0.000284312 -0.000284312
Std 0.000388465 0.00039241 0.00039631749 0.0004040172 0.000404017297
PIS (%) 23.13 23.43708 23.58 24 24.0805

According to Table 4 and Figure 8, the PIS along with the standard deviation of the critical eigenvalue
increases by a very small amount with the increase in correlation coefficient.
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6.2.3. Impact of solar forecast error

The forecast value for all the PV farms is taken as 0.831 p.u. The standard deviation of forecast error (σ ) is
taken as 20% of the forecast value. The PDF of solar forecast error is shown in Figure 9.
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Figure 8. CDF for different correlation coefficients. Figure 9. Probability distribution of solar forecast error.

The PDF and CDF of the real part of the critical eigenvalue due to forecast error is shown in Figure 10
and Figure 11, respectively. The PIS as a result of forecast error is found to be 30.73%.
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Figure 10. PDF of the real part of critical eigenvalue due
to solar forecast error.

Figure 11. CDF of the real part of critical eigenvalue due
to solar forecast error.

According to the results in Table 5, the outputs from both methods match closely with ARMS of less
than 1%. Furthermore, the method proposed in [10] and PM both provide accurate estimation of the value of
PIS for this case.

Table 6 shows the results for different percentage values of standard deviation of forecast error for the
same forecast value (0.831 p.u.). The results depict that large forecast error leads to an increase in deterioration
of small-signal stability.

6.2.4. Increase in PV penetration

This case analyzes the impact of change in PV rating on PSSS, where the change is calculated with respect to
its base value (100 MVA). Thus, a 10% increase refers to the condition when all the PV farms are operating at
0.1 p.u. (10 MVA). The same values of shape parameters are used for the PDF of PV output power, which are
provided in Section 4.1.1, for this case study. Moreover, this case also analyzes PV penetration under different
correlation coefficients. According to Figure 12, PIS increases with the increase in penetration rating of PVG.
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Table 5. Comparison of results for real part of critical eigenvalue considering solar forecast error.

MCS PM Reference [10]
ARMS (%) - 0.1395 -
Mean -0.00028572 -0.000284311 -0.00028325
Std 0.00056756 0.000560121 0.00055311
PIS (%) 30.7335 30.587 30.4289
Time (s) 4689.64 39.5 43.33

Table 6. Comparison of results for real part of critical eigenvalue for different forecast error deviations.

σ = 10% σ = 20% σ = 30% σ = 40% σ = 50%
Mean -0.000284311 -0.000284311 -0.000284311 -0.000284311 0.000284311
Std 0.00027995 0.000560121 0.00083986 0.00111981 0.00139977
PIS (%) 15.408 30.587 36.7046 39.945 41.925

This condition is always more severe in correlated condition and is highest when the correlation coefficient
equals 1.0 compared to uncorrelated condition.
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Figure 12. Probability of instability in percentage for different penetration levels.

7. Conclusions
In this paper, the proposed probabilistic method is applied to analyze the effect of PV uncertainties arising
mainly due to stochastic PV fluctuations and forecast error on small-signal stability. The developed framework
can provide accurate results to assess PSSS in much less computation time compared to conventional MCS
and other analytical techniques. We observed that the fluctuation due to PVG results in the given test system
being stochastically unstable. Furthermore, the probability of the system being small-signal-stable reduces with
the increase in correlation coefficient between solar farms and is lowest when the value of coefficient is 1. It
is also seen that the increase in deviation of forecast error greatly reduces PSSS. Finally, the increase in PV
penetration increases the value of PIS for the given test system.

This research work can be highly useful for system planners for decision-making as it provides much
more information about system stability compared to the deterministic method. Our future works will involve
designing efficient damping controllers by directly considering the stochastic fluctuations due to PVG and
investigation of potential use of battery energy storage systems to improve PSSS.
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