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Abstract: In dynamic graphs, edge weights of the graph change with time and solving the shortest path problem in
such graphs is an important real-world problem. The studies in the literature require excessive computational time for
computing the dynamic shortest path since determining changing edge weights is difficult especially when the graph size
becomes large. In this paper, we propose a dynamic bio-inspired algorithm for finding the dynamic shortest path for
large graphs based on Physarum Solver, which is a shortest path algorithm for static graphs. The proposed method is
evaluated using three different large graph models representing diverse real-life applications. The effect of changing edge
weights on the solution time is evaluated for each graph model separately and compared against ∆ -stepping, which is
the most representative implementation of Dijkstra’s algorithm. Experimental results show that the proposed method
easily adapts edge weight changes and computes the dynamic shortest path efficiently.
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1. Introduction
The shortest path problems can be investigated in two categories, which are static and dynamic. While edge
weights of the graph do not change with time in the static shortest path problems, in dynamic shortest path
problems, the edge weights of the graph may increase, decrease, or both with time. Solving dynamic shortest
path problems is time-consuming when compared to static ones. Next, we formally define the shortest path
problem for static and dynamic graphs.

Given a graph G(V,E,w) , V is the set of vertices, E is the set of edges, and w is a weight function such
that E to R+ . When a source and destination vertices are given, the smallest weight path from one vertex
to another is determined as the single source–single target shortest path problem. If edge weights of the graph
G are changing over time, another graph G′(V,E,w′) is obtained such that G′ and G have the same set of
vertices and edges. The main goal is to compute the shortest path on G′ efficiently by using the shortest path
information obtained from G . The classical static shortest path algorithms such as Dijkstra’s algorithm can
be used repeatedly to compute the shortest path whenever the graph changes to solve the dynamic shortest
path problems. Those algorithms can be preferable when the number of changing edges is large. Otherwise, it
becomes inefficient. When the percentages of changing edges are small, dynamic algorithms are used to solve
the dynamic shortest path problems efficiently in order to minimize the shortest path’s recomputation time.

The real-world applications are dynamically changing, and to cope with such problems, many algorithms
inspired by nature have emerged, such as the ant colony algorithm, genetic algorithm, and Physarum Solver.
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Physarum Solver, which is an iterative amoeba algorithm, is able to solve shortest path problems. To solve
dynamic shortest path problems efficiently, in this study, dynamic Physarum Solver is presented. Our study
focuses on the solution of linear systems, which is required in each iteration of Physarum Solver. In earlier
studies, a direct solver was mostly used in this step, and it computes the solution with high accuracy that
is usually not needed. The results are evaluated using three different large dynamic sparse graph models
representing diverse real-life applications.

This paper is organized as follows: Section 2 discusses related work. The mathematical models of
Physarum and the ∆ -stepping algorithm are presented in Section 3. Section 4 explains the proposed bio-
inspired method for solving the dynamic shortest path efficiently. Section 5 presents experimental results, and
Section 6 includes conclusions.

2. Related work
In dynamic shortest path problems, the edge weights can change in three different ways: edge weights may
increase, decrease, or both. The algorithms that are designed for graphs whose edge weights either strictly
increase or decrease are called semidynamic. Moreover, the algorithms that permit mixed edge weight changes
are called fully dynamic. Therefore, dynamic algorithms are further divided into two categories, which are
semidynamic and fully dynamic. These algorithms compute the shortest path by recomputing only affected
vertices and so they save time when a small portion of the edge weights change.

King [1] proposed the first fully dynamic algorithm to solve all pairs shortest path problems on directed
graphs with positive edge weights. Then Demetrescu and Italiano [2] introduced the first fully dynamic algorithm
on directed graphs with real edge weights by improving King’s algorithm. Narvaez et al. [3] introduced a new
dynamic algorithm that makes use of the previously computed shortest path information in the graph to
overcome single edge weigh change [4]. To update changes more efficiently, Narvaez et al. [5] proposed another
algorithm called BallString [5], which is a semidynamic algorithm. They compared their results with existing
results and concluded that BallString is the best-performing algorithm when the changes are small. Chan
and Yang [6] proposed the DynDijkstra algorithm, which is a semidynamic version of the Dijkstra algorithm.
Ramalingam and Reps [7] proposed a fully dynamic version of the algorithm, which is called Dynamic SWSF-
FP. Later, it was optimized by Chan and Yang [6], and the resulting algorithm was called MFP. They concluded
that these algorithms should be used instead of the static Dijkstra algorithm if the percentage of edges changed
is smaller than a threshold. FMN [8, 9] and RR [7] are other fully dynamic algorithms. Firigioni et al. [10]
compared the performance of these algorithms. They showed that RR has a better performance than FMN due
to its efficient cache usage.

Recently, to cope with the complex optimization problems in real-world applications, many algorithms
inspired by nature have emerged. Physarum Solver [11] is a popular bio-inspired method to solve the shortest
path problem efficiently. This method is inspired by the behavior of a single-celled amoeba-like organism called
Physarum polycephalum, which is able to find the shortest path in a labyrinth. The mathematical model of
Physarum polycephalum, which exhibits behavior of path finding in a labyrinth, was described by Tero et al. [12].
Then Miyaji and Ohnishi [13] mathematically proved that Physarum can solve the shortest path problem on
Riemann surfaces.

Physarum-related algorithms have various application areas. Liu et al. used the Physarum algorithm
to solve the Steiner tree problem [14] in networks. Zhang et al. [15] described a Physarum-related bio-inspired
algorithm in transportation networks for identification of critical components. Another Physarum-inspired
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algorithm was used to solve the minimal exposure problem in wireless sensor networks in [16]. Zhang et
al. [17] combined the Physarum model with the ant colony approach and they called the resulting algorithm
PMACO, which is more efficient than the original ant colony algorithm. Zhang et al. [18] proposed another
Physarum-related algorithm to solve the 0-1 knapsack problem. Arslan and Manguoglu [19] proposed a parallel
Physarum Solver in order to solve the shortest path problem in large graphs. Additionally, different applications
of Physarum-related algorithms can be found in [20–22]. When compared to the existing methods, the main
advantages of the Physarum algorithm is its adaptivity in network design. Zhang et al. [4] used this property
to solve dynamic shortest path problems. In this paper, we reveal another advantage in terms of the solution
time using numerical linear algebra and the previous iteration is completely fed into the next one.

3. Background
In this study, dynamic Physarum Solver is proposed to solve the dynamic shortest path efficiently. To present
the effectiveness of the proposed method, results are compared with the ∆ -stepping algorithm, which is a static
implementation of Dijkstra’s algorithm. The reason for choosing a static algorithm to compare results is that in
our test data, the percentage of changing edges is large, so dynamic algorithms in the literature are infeasible.

3.1. Mathematical model of Physarum
Physarum polycephalum is a single-celled amoeboid organism that is able to find the shortest path connecting
food resources in a maze. Tero et al. [11, 12] proposed a mathematical model based on physiological observations
of the organism, which is called Physarum Solver. In this model, the network may be considered as a graph. Two
special nodes (or vertices), called N1 and Nn , correspond to the food sources, and other nodes are represented
as N2 , N3 , N4 , N5 , and so on. In this representation, N1 is the source node and Nn is the sink node. The
edge connecting Ni to Nj is denoted as Mij . The variable Qij represents the flux through Mij from Ni to
Nj . If it is assumed that the flow through Mij approximates the Poiseuille flow, the flux Qij is computed by

Qij =
Dij

Lij
(pi − pj), (1)

where pi is the pressure at the node Ni , and Dij and Lij are the conductivity and the length of the edge Mij ,
respectively. If Kirchhoff’s law is applied at each node, Eq. (2) is obtained:

∑
(i,j)∈M

Qij = 0, (j ̸= 1, n). (2)

The source node N1 and the sink node Nn hold for the following equations:

∑
i

Qi1 + I0 = 0, (3)

∑
i

Qin − I0 = 0, (4)

where I0 is the flux from the source node. Next, the graph Poisson equation is represented in Eq. (5) for the
pressure:
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∑
i

Dij

Lij
(pi − pj) =

 I0 for j = 1
−I0 for j = n
0 otherwise,

(5)

where pn = 0 (at the basic pressure level), and pi is determined by solving the system of equations in Eq. (5),
which can also be written in matrix form as follows:

Ap = b, (6)

where p=(p1, p2, ..., pn)
T is the pressure (unknown) and b = (1, 0, 0, ...,−1)T is the right-hand side vectors, and

A = (Aij) is a symmetric M-matrix [13] given by Eq. (7):

Aij =

{ ∑
l ̸=i Til if i = j

−Tij otherwise,
(7)

where Tij = Dij/Lij . Now we give the definition of the M-matrix.
Let A be an n× n square matrix with nonpositive off-diagonal entries. If A can be written as αI − B

where B is a nonnegative matrix and ρ(B) ≤ α , then A is called an M-matrix. M-matrices have some properties
such as positivity of principal minors, inverse positivity and splittings, stability, semipositivity, and diagonal
dominance [23].

Experimental observations show that while tubes that have larger fluxes are reinforced, those with smaller
fluxes are eliminated [12]. Thus, the change of the conductivities is expressed with respect to time as follows:

d

dt
Dij = f(|Qij |)−Dij , (8)

where f(|Qij |) is generally given by f(|Qij |) = |Qij | as in [12]. To solve Eq. (8), the following equation is
obtained by discretizing conductivity values:

Dn+1
ij −Dn

ij

∆t
= |Qn

ij | −Dn+1
ij , (9)

where ∆t indicates the duration of one discrete time step. Becchetti et al. [24] proved that the discretization
of the model approximates the shortest path in O(|E|L(log|V |+ logL)/ϵ3) iterations where |V | is the number
of vertices, |E| is the number of edges, L is the largest length of an edge, and ϵ ∈ (0, 1/300) .

In the next section, we describe the proposed dynamic algorithm, dynamic Physarum Solver, by focusing
on the solution of the linear systems in Eq. (6), which is the most time-consuming step of Physarum Solver.

3.2. ∆-stepping

∆ -stepping, described by Meyer and Sanders [26], is a single source shortest path algorithm. Two classical
approaches for solving the single source shortest problem are the Dijkstra and Bellmann–Ford algorithms. When
the edge weights of the graph are positive, Dijkstra’s algorithm is preferable and runs in O(|V |log|V |+|E|) time.
Dijkstra’s algorithm uses a priority queue in which only a single node is processed once per time. On the other
hand, ∆ -stepping uses a bucket-based priority queue and may be considered as the bucket implementation of
Dijkstra’s algorithm. The bucket, a one-dimensional array, is a structure of vertices and its size is ∆ . Similar to
Dijktra’s algorithm, a tentative distance (tentative(v)) is assigned to each node v in the ∆ -stepping algorithm.
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Algorithm 1 ∆ -stepping Algorithm [25].
Input: A graph given by its vertices V , edges E , cost function L , source vertex s , target vertex t , and
∆ parameter
Output: The shortest path from s to t

1: for v1 ∈ V do
2: tentative(v1)←∞
3: heavy(v1)← {(v1, v2) ∈ E : L(v1, v2) > ∆}
4: light(v1)← {(v1, v2) ∈ E : L(v1, v2) ≤ ∆}
5: end for
6: tentative(s)← 0
7: k ← 0
8: while B ̸= ∅ do
9: S ← ∅

10: while B[k] ̸= ∅ do
11: Req ← {(v2, tentative(v1) + L(v1, v2)) : v1 ∈ B[k] ∧ (v1, v2) ∈ light(v1)}
12: S ← S ∪B[k]
13: B[k]← ∅
14: RelaxReq(Req)
15: end while
16: Req ← {(v2, tentative(v1) + L(v1, v2)) : v1 ∈ S ∧ (v1, v2) ∈ heavy(v1)}
17: RelaxReq(Req)
18: if t is processed then
19: break
20: end if
21: k ← k + 1
22: end while

23: function RelaxReq(Req)
24: for (u, x) ∈ Req do
25: if x < tentative(u) then
26: B[tentative(u)/∆ ] ← B[tentative(u)/∆ ] \{u}
27: B[x/∆ ] ← B[x/∆ ] ∪{u}
28: tentative(u)← x
29: end if
30: end for
31: end function

This distance is the weight of a path from the source node to v . The bucket B[i] stores the vertices whose
tentative distances are within [i∆, (i+1)∆] . The vertices in the same bucket are processed simultaneously. The
pseudocode of the algorithm is given in Algorithm 1. The ∆ -stepping algorithm processes each bucket B[i]

starting with B[0] . In each iteration, all light edges (whose weights are less than or equal to ∆) are processed in
steps 10–15 in Algorithm 1. This may result in reinsertion in the bucket that is being processed. The RelaxReq
function is called at the end of each inner while loop iteration in step 14 in Algorithm 1 and updates the tentative
distance. The inner loop continues until B is empty, and when B is empty, heavy edges (whose weights are
greater than ∆) are processed in steps 16 and 17 in Algorithm 1. When the shortest path from the source to the
target nodes is found, the ∆ -stepping algorithm halts. We note that if the single source shortest path is desired,
steps 18–20 in Algorithm 1 are ignored. The running time of the algorithm is O(log3|V |/loglog|V |) [27].
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4. The proposed dynamic algorithm

In this section, we present an iterative algorithm based on Physarum Solver for computing the dynamic shortest
path from the source to target vertices, which is called dynamic Physarum Solver. The pseudocode of the
algorithm is given in Algorithm 2. In the beginning of the algorithm, Dij is initialized if there is an edge
between node i and node j in step 1. Next, the percentage of changing edge (pce) parameter is initialized to a
number between 0 and 1 and presents how many edges will be updated in the graph. We note that if pce equals
0, the original graph is used. In this study, pce is set to 0.2. There is a for loop between step 4 and step 15 of the
algorithm and the graph is dynamically changing in each for loop iteration. In each for loop iteration, the pce is
updated by multiplying itself with k in step 5. Thus, the percentage of the changing edges increases with each
for loop iteration. Then we randomly select pce×nnz edges where nnz is the total number of nonzero edges in
step 6. Next, the edge weights are updated in step 7 and there are different updation mechanisms explained in
the following subsection. After the graph is dynamically changed in step 7, Physarum Solver is applied to find
the shortest path in the current graph. Physarum Solver includes a while loop updating Qij and Dij values in
step 11 and 12, respectively. Moreover, in each while loop iteration, it is required to solve the linear systems
whose coefficient matrix is a symmetric M-matrix in step 9 and this step is the most time-consuming step of
the algorithm. We use the conjugate gradient method as the iterative linear solver and Gauss–Seidel method
as the preconditioner for solving such systems, and stopping tolerance is set to 10−3 [19].

Iterative methods are preferred for solving large sparse linear systems since they usually require less
memory and operation counts than direct methods, especially when an approximate solution of relatively low
accuracy is sought. Iterative methods start with an initial guess and try to converge to the exact solution.
Therefore, starting with an initial guess close to the exact solution decreases the number of iterations required
for solving the linear systems significantly. In our method, the solution vector of the linear systems computed
in the previous iteration is used as an initial guess for solving the linear systems in the current iteration.
Therefore, a small number of iterations is enough to converge to the exact solution. The complexity of the
proposed algorithm is determined by the number of the for loop iterations (depending on how many times the

Algorithm 2 Dynamic Physarum Solver
Input: G = (L , source, target) where L is the adjacency matrix of G
Result: The dynamic shortest path from source to target nodes

1: Dij ← 1 where Lij ̸= 0
2: pce← 0.2
3: p← 0
4: for k = 0 to n do
5: pce ← pce × k
6: Randomly select pce×nnz edges
7: update edge weights (increase or decrease)
8: while a termination criterion do
9: solve Ap = b iteratively (Eq. (6))

10: pn ← 0

11: Qij ← Dij

Lij
x (pi − pj)

12: Dij ← 1
2 (|Qij |+Dij)

13: iter ← iter + 1
14: end while
15: end for
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graph changes), the number of the while loop iterations (depending on the accuracy of the shortest path), and
the cost of solving the linear systems (step 9 in Algorithm 2). When a direct solver is used for solving the linear
systems, it takes O(|V |3) time. On the other hand, the proposed preconditioned iterative method requires
O(|E|) time per iteration to approach the solution [28]. In the Physarum-related algorithms [11, 12, 14, 29],
a direct solver was used to solve such systems and the direct solver is infeasible when the graph size is large.
Therefore, the results of these algorithms are shown only using small graphs.

The most important feature of the algorithm is its adaptivity. As the graph dynamically changes, Q and
D matrices as well as the p vector computed for finding the shortest path in the previous graph are used in order
to compute the shortest path on the current updated graph. Therefore, the proposed method uses information
directly coming from the previous computations and it can efficiently find the dynamic shortest path even if the
percentage of changing edge weights is large. That is, affected vertices and edges are automatically determined
and processed without making any additional computations.

4.1. Obtaining the dynamic graph

In this part, we provide some details about how the graph is dynamically changing in steps 5, 6, and 7 of
Algorithm 2. The pce presents the percentage of changing edges in the graph. In our implementation, the for
loop iterates four times, so the graph changes four times, and the pce changes between 0 and 0.6. The number
of iterations of for loop may increase if it is desired that the dynamic graph changes more than four times. In
the first for loop iteration, pce is 0. This means that the original edge weights are used. In the other for loop
iterations, pce is set to 0.2, 0.4, and 0.6 in step 5, respectively. This means that 20, 40, and 60 percent of the
edges are randomly chosen in order to change their weights. For instance, if the pce is 0.4 and the graph consists
of 1000 edges, 400 edges are randomly selected in order to change their weights. In the increasing case, the edge
weights are multiplied by 2. For instance, if the edge weight is 100, then the new edge weight will be 200. In
the decreasing case, the edge weights are decreased by 20%. For instance, if the edge weight is 100, the new
edge weight will be 80 in the decreasing case.

To illustrate how the proposed method works, we give a small example for the increasing case. In this
example, critical steps of the proposed method are shown. We point out that the proposed algorithm follows
the same steps for the edge weight decreasing case.

Example 1 An example graph with six vertices (V1 , V2 ,...,V6 ) and nine edges (Edge1, Edge2,..., Edge9) is
given in Figure 1a. The edge weights and labels are shown on the lines. By setting the source vertex as V1

and the target vertex as V6 , our goal is to find the shortest path from V1 to V6 as the graph is dynamically
changing. In the beginning of the algorithm, required initialization is performed. In the first for loop iteration,
the original graph is used to find the shortest path. Physarum Solver converges to the shortest path by computing
Q and D values in the while loop. While the edges whose conductivity values converge to 0 do not form the
shortest path, the edges whose conductivity values converge to 1 constitute the shortest path. Thus, the shortest
path is V1 -V2 -V3 -V5 -V6 including Edge1, Edge3, Edge6, and Edge9 as shown in Figure 1b. In the second
for loop iteration, the graph dynamically changes and the new graph is shown in Figure 1c. In this graph,
two edges, Edge3 and Edge6, are randomly selected and their weights are doubled. Next, Physarum Solver is
applied to find the shortest path in the current graph. Our goal is to compute the current shortest path by using
previous computations. Since Edge6 and Edge9 are not included in the current shortest path, their conductivity
values converge to 0 in the second for loop iteration. We remark that the proposed algorithm automatically
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Figure 1. Dynamic Physarum Solver on an example. (a) Simple graph G with six vertices and nine edges. Vertices V1

and V6 act as source and target nodes, respectively. (b) The shortest path from source to target nodes is shown by the
blue edges. (c) Graph G after modified Edge3 and Edge6. (d) The final shortest path from the source to target nodes
is shown by blue lines.
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Figure 2. Conductivity values computed by dynamic Physarum Solver on the dynamic graph shown in Figure 1.

determines affected edges and efficiently finds the current shortest path. As a result, the current shortest path
is V1 -V2 -V3 -V6 including Edge1, Edge3, and Edge7 as shown in Figure 1d. The change of the conductivity
values (D) for each edge in each while loop iteration is presented in Figure 2. We note that the conductivity
values are shown for ten while loop iterations in each for loop iteration. The conductivity values with respect to
the second for loop iteration are presented in Figure 2 (where while loop iterations change from 11 to 20). In
the other for loop iterations, the dynamic shortest path may be computed in a similar way. In the next section,
the results for larger graphs are shown.
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5. Experimental evaluation
We present experimental results in terms of time and accuracy and compare them to the ∆ -stepping algorithm,
which is the baseline algorithm. ∆ -stepping is the efficient implementation of the static Dijkstra algorithm.
The reason for using the static algorithm for comparison is that when the percentage of changing edges is
large, classical dynamic algorithms are known to be infeasible since the processing of affected vertices is too
time-consuming [30].

5.1. The dataset
We present experiments with real-world and synthetic graph sets in order to demonstrate the performance of
the methods. The properties of the dataset are shown in the Table. While the number of vertices changes
from 1M to 2M, the number of edges changes from 2.8M to 100M. Real-world graphs, which are CAL and
NW, are obtained from 9th DIMACS Implementation Challenge-Shortest Paths [31]. Synthetic graphs, which
are Erdos and Smallworld, are generated by using the Erdos-Renyi and Watts and Strogatz models in the R
language, respectively. When comparing the synthetic graphs, the real-world graphs are sparser. The graphs in
the dataset have different properties. First, we mention the properties of the real-world graphs. First of all, they
are sparser and any two vertices are likely connected with their neighbors. Therefore, degrees of vertices are
lower. Moreover, they present power law degree distribution. Second, the Erdos-Renyi random graphs model
was presented by Erdos and Renyi [32]. These graphs are produced with respect to two parameters, which are
number of vertices and an edge existing probability. They present a binomial degree distribution and degrees
of vertices are high. Moreover, they have a low average path length. Third, small-world graphs are described
by Watts and Strogatz [33]. The pairs of the vertices in a regular graph are rewired with a probability and
the resulting small-world graph has a structure between a regular graph and a random graph. It is possible to
connect any two vertices in the graph through just a few edges. This property gives the name ‘small-world’ to
these graphs. They have symmetric degree distribution. Moreover, they are highly clustered, like real-world
graphs, and they have low path length, like synthetic graphs. We note that all graphs are undirected, and while
we use distances for edge weights in the real-world graphs, we use unit weights in synthetic graphs, namely
Smallworld and Erdos.

Table. Graph properties.

Graph name Vertices Edges Model

CAL ∼2M ∼4.6M Real-world
NW ∼1.2M ∼2.8M Real-world

Erdos 1M 100M Erdos-Renyi
Smallworld 1M 100M Small-world

5.2. Computational framework
The numerical results are obtained on a machine that has 2x Intel Xeon E5-2690 V4 2.60 GHz processors and 16
GB memory by the Scientific and Technological Research Council of Turkey. The operating system is CentOS
7.3. The proposed method is implemented in C language and the Portable Extensible Toolkit for Scientific
Computation (PETSc) [34] is used for solving the linear systems. PETSc, which is a state-of-the-art library,
is developed by the Argonne National Laboratory and includes efficient linear solvers and preconditioners.
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The ∆ -stepping algorithm is implemented by using the Boost Graph Library [35]. We note that ∆ -stepping
halts when the shortest path from the source to the target vertices is found without performing any additional
computations.

5.3. Experimental results
We evaluate our results based on the solution time and accuracy. Results are investigated for the edge weight
increasing and decreasing cases separately. First, we look at results of the edge weight increasing case.
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Figure 3. Time results of the increasing case.

Figure 3 presents the solution time results of the dynamic Physarum Solver and ∆ -stepping algorithms
in seconds for the dataset. First, we look at the results for real-world graphs. Figure 3a presents the solution
time results for the CAL graph. As the pce is 0, the solution time of ∆ -stepping is lower than the solution
time of dynamic Physarum Solver. However, when pce is 0.6, dynamic Physarum Solver is about 3 times faster
than ∆ -stepping. Figure 3b presents the solution time results for the NW graph. While the solution time of
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Figure 4. Time results of the decreasing case.

dynamic Physarum Solver is about 5 times faster than ∆ -stepping when the pce is 0, it is about 18.6 times faster
than the baseline when pce is 0.6. Moreover, while the solution time of dynamic Physarum Solver decreases, the
solution time of ∆ -stepping increases for real-world graphs. This presents the efficiency of the proposed method.
Figures 3c and 3d present the solution time results for Erdos and Smallworld graphs, respectively. The solution
time of dynamic Physarum Solver is 8 and 9 times faster than ∆ -stepping for Erdos and Small, respectively.
The solution time is about constant for both the dynamic Physarum Solver and ∆ -stepping methods.

Now we evaluate the edge weight decreasing case results. Figure 4 presents the solution time for each
graph as pce increases. For the CAL graph in Figure 4a, while the solution time of ∆ -stepping is lower than
the solution time of dynamic Physarum Solver when pce is 0, it is about 3.6 times higher than the solution
time of dynamic Physarum Solver when pce is 0.6. Moreover, the solution time of dynamic Physarum Solver
decreases as pce increases, similar to the increasing case. For the NW graph in Figure 4b, the proposed method
is about 10 times faster than ∆ -stepping on average. We note that as the pce increases, the solution time of
∆ -stepping is almost constant for real-world graphs while it increases for the edge weight increasing case. For
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synthetic graphs, the solution time of both methods is almost constant, and the proposed method is 7.5 and 9
times faster than ∆ -stepping as shown in Figures 4c and 4d for Erdos and Smallworld graphs, respectively.

In summary, as the graph is dynamically changing, while the solution time of the proposed method
decreases for CAL and NW real-world graphs, the solution time of ∆ -stepping increases. This is due to the fact
that dynamic Physarum Solver uses the information coming from previous iterations directly. Furthermore,
in the solution of the linear systems, using the previous solution vector as an initial guess to solve the linear
systems in the current iteration decreases the solution time. The number of iterations for solving the linear
systems in step 9 of Algorithm 2 is shown in Figure 5 for CAL and NW graphs for increasing and decreasing
cases separately. When pce is 0.6, a small number of iterations is enough to converge the desired solution for the
CAL and NW graphs. Moreover, decreasing the edge weights has a positive effect on the solution time for the
proposed method. As shown in Figure 5, the edge weight decreasing case requires lower iteration counts when
compared to the increasing case for CAL and NW graphs. The reason for this is that in real-world graphs, there
are many edges in sparse regions with large weights. If the edges with large weights are randomly selected to
increase their weights, then large weights become larger. As the graph is dynamically changing, they are largely
unbalanced. However, in the decreasing case, the graph approaches the uniform distribution with decreasing
large weights as the graph is dynamically changing. Therefore, solving the linear systems in the increasing case
is more difficult than in the decreasing case. On the other hand, the reason for increasing the solution time of the
∆ -stepping method in the edge weight increasing case is that real-world graphs are largely unbalanced as the
graph is dynamically changing. This causes many reinsertions in the priority queue and increases the solution
time. Similar to the proposed method, decreasing of the edge weights has a positive effect when compared to
the increasing case for the ∆ -stepping method. We recall that in the edge weight decreasing case, the solution
time of ∆ -stepping is almost constant for real-world graphs.

For synthetic graphs, the solution time of dynamic Physarum Solver is almost constant. The main reason
for this is that solving the linear systems requires about the same amount of iterations and ∼20 iterations are
enough to converge to the desired solution. Similarly, the solution time of ∆ -stepping is almost constant since
synthetic graphs have uniform edge weight distribution as the graph is dynamically changing.
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Figure 5. The number of iterations to solve the linear systems shown in step 9 in Algorithm 2.

Next, we look into the results in terms of accuracy. The accuracy of dynamic Physarum Solver depends
on both the number of while loop iterations and the accuracy of the solution of linear systems. The number
of while loop iterations is set to three and stopping tolerance, which is the residual norm relative to the norm
of the right-hand side, is set to 10−3 . Figure 6 presents computed dynamic shortest path lengths by dynamic
Physarum Solver and ∆ -stepping for increasing and decreasing cases separately. ∆ -stepping and dynamic
Physarum Solver compute nearly the same shortest path lengths.

1500



ARSLAN/Turk J Elec Eng & Comp Sci

1

10

100

1000

10000

100000

1000000

CAL                  NW                 Erdos         Small world CAL                  NW                 Erdos         Small world

co
m

p
u

te
d

 d
yn

am
ic

 s
h

o
rt

es
t 

p
at

h
 

d
is

ta
n

ce
s

dynamic Physarum

Delta-stepping

dynamic Physarum

Delta-stepping

(a) increasing case

1

10

100

1000

10000

100000

co
m

p
u

te
d

 d
yn

am
ic

 s
h

o
rt

es
t 

p
at

h
 

d
is

ta
n

ce
s

(b) decreasing case

Figure 6. Computed shortest path distances for both ∆ -stepping and Dynamic Physarum Solver.

6. Conclusion
Dynamic Physarum Solver is presented for computing the shortest path in dynamically changing graphs
efficiently. Experimental results are performed on large synthetic and real-world graphs and compared to a
state-of-the-art implementation of Dijkstra’s algorithm, ∆ -stepping in the Boost Graph Library. Results show
that the proposed method efficiently computes the dynamic shortest path even if the number of changing
edges is large. An important reason for the better performance of dynamic Physarum Solver is that as the
graph dynamically changes, it distinguishes dynamically changing edges and affected vertices and recomputes
spontaneously. Another important reason for the better performance of dynamic Physarum Solver is that array-
based data structures are more suitable for the multiple levels of cache hierarchy as well as using an initial guess
and an effective linear solver with the preconditioner for solving the linear systems.
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