Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci
(2019) 27: 1534 — 1545

© TUBITAK

TUBITAK Research Article doi:10.3906/elk-1807-212

http://journals.tubitak.gov.tr/elektrik/

Optimal training and test sets design for machine learning

Burkay GENC*©, Hiiseyin TUNC
Department of Policy and Strategy Studies, Hacettepe University, Ankara, Turkey

Received: 19.07.2018 . Accepted/Published Online: 11.02.2019 . Final Version: 22.03.2019

Abstract: In this paper, we describe histogram matching, a metric for measuring the distance of two datasets with
exactly the same features, and embed it into a mixed integer programming formulation to partition a dataset into fixed
size training and test subsets. The partition is done such that the pairwise distances between the dataset and the subsets
are minimized with respect to histogram matching. We then conduct a numerical study using a well-known machine
learning dataset. We demonstrate that the training set constructed with our approach provides feature distributions
almost the same as the whole dataset, whereas training sets constructed via random sampling end up with significant
differences. We also show that our method introduces neither positive nor negative bias in prediction accuracy of a

decision tree—used as a representative example of a machine learning method.

Key words: Distribution matching, instance selection, training set selection, optimization

1. Introduction

History of machine learning dates back to 1950s, if we do not classify earlier statistical advances as machine
learning studies. In his seminal paper, the computer science pioneer Alan Turing, for the first time, mentioned
“learning machine” in 1950 [1]. However, it was not until 2010s that machine learning was recognized as a
practical solution approach to many real-life problems. This was mostly due to the high hardware requirements
of machine learning algorithms which have been satisfied recently.

Roughly speaking, machine learning algorithms aim to extract information from data on hand and produce
viable prediction models. The general framework of any machine learning study can be summarized as follows.
A machine learning study starts with a dataset that contains existing data about the problem to be studied.
This data is then split into three parts: training set, validation set and test set. Next, a machine learning
model is somehow constructed from the training set. This is the “learning” part where the machine learning
algorithm analyzes the training set to establish a mathematical model representing the set itself. Next, this
model is tested on the validation set to evaluate its performance. At this stage, if the resulting performance
levels are not acceptable, the learning step is revisited to change the algorithm parameters to revise the model.
Once the validation performance reaches to a prescribed acceptable level, the model is evaluated on the test
set. The results obtained here represent the final score of the model and cannot be further tweaked.

Training, validation, and test sets are often selected based on simple random sampling with prescribed
ratios. Usually, these ratios are determined as 70/15/15, where 70% of the data goes to training, 15% goes

to validation, and the remaining 15% goes to testing. Other ratios may also be used based on the volume and

*Correspondence: burkay.genc@hacettepe.edu.tr

1534

[CO) This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0001-5134-1487
https://orcid.org/0000-0001-5508-3702

GENC and TUNC/Turk J Elec Eng & Comp Sci

variety of the data. Usually, it is preferable to keep as much data as possible for the training set to obtain a
stronger model.

Most machine learning algorithms, if not all, rely heavily on the selected training, validation, and test sets.
In particular, the results produced by the underlying tool could dramatically be different as these sets change
from one case to another. This is particularly evident for certain tools such as decision trees and boosting. The
performance of a robust algorithm can even be negatively affected due to an unfortunate splitting. This obviously
raises an important question regarding the reliability of the results produced by the underlying machine learning
algorithm within a framework where training, validation, and test sets are randomly drawn. In other words,
we cannot be sure about how good a machine learning algorithm results will be if we obtain different training,
validation, and test sets every time we start from scratch.

To clarify things further, let us consider the following toy dataset in Table 1. Here, there are 8 people
(observations) each of which has 3 distinct features, i.e. age, gender, and salary. For simplicity, assume that we

aim to split the entire set into two subsets: training and test sets.

Table 1. An example dataset.

Obs. | Age | Gender | Salary
1 20 M High

2 20 M Low

3 20 F Low

4 20 F Low

5 20 M High
6 40 F High
7 40 F High

8 40 F Low

A first look at this data shows that, on average, older people have high salaries while younger people
have low salaries, and males have high salaries while females have low salaries. Now, assume that we have
randomly drawn 6 observations to build a training set as in Table 2. If we consider this training set, we must
now conclude that neither age nor gender has a significant effect on salary. Moreover, we may also argue that an
average teenager earns a high salary, and the same holds for the average female. Hence, it seems like a female
teenager is very likely to have a high salary. Considering the remaining observations in rows 3 and 4 as a test
set, we face a major problem: both are young females with low salaries. As a result, our predictions failed for

all test cases yielding an impressive 100% error rate.

Table 2. A randomly sampled training set.

Obs. | Age | Gender | Salary
1 20 | M High
2 20 M Low

5 20 M High

6 40 F High
7 40 F High

8 40 F Low

1535

GENC and TUNC/Turk J Elec Eng & Comp Sci

Although this example contains exaggerations to a certain extent, it can successfully reflect the very core
of the problem: the evaluation scores obtained in a machine learning study depends on how we split the training
and test sets. It is possible to increase or decrease the final error rates simply by splitting the sets in a different
way as is the case in random sampling.

One may even think that by randomly producing many training sets, it is possible to train a model with
a lower error rate. However, this approach leads us to an overwhelmingly biased model performing great with
the test set but fails significantly with any other given test set. This issue is known as “overfitting” and must
be avoided to increase the accuracy of the model.

By now, it should be clear that, this anomaly is due to the fact that training and test sets, and the
whole dataset are all characteristically different. Unfortunately, it is not trivial to formally define the term
“characteristically different”. In the example above, the difference lies in the fact that the ratios of the levels of
the target feature within the sampled subset with respect to the input features does not match (or represent) the
ratios within the original dataset. In another example, the culprit may be the difference of variances, correlations,
or some other statistical measures between the original dataset and the subsets. Having an unbalanced class
distribution for the target variable, also known as “underrepresentation”; is yet another reason for producing a
weak model with a high error variance. All the above mentioned issues then result in a robustness problem for
the resulting model.

In this paper, we address the problem of designing the training and test sets aiming to eliminate the
aforementioned robustness problem once and for all. To the best of our knowledge, this problem has not been
considered in the literature earlier. However, there are studies on how to reduce the size of a given dataset.
The literature reflects a clear dichotomy on how to reduce the size of a dataset between feature selection and
instance selection. The former refers to reducing the number of features in the dataset (i.e. columns in a tabular
view), whereas the latter stands for reducing the number of observations (i.e. instances or rows in a tabular
view). Feature selection aims to find an input dataset by reducing the irrelevant and/or low impact features
(variables) without diminishing prediction efficiency. To this end, a variety of approaches has been proposed
including filter methods [e.g., 2-5] and wrapper methods [e.g., 6-9]. Here, we refer the interested reader to [10]
for a detailed survey on feature selection methods. Instance selection, on the other hand, is often referred to
decreasing the number of observations (rows) in a given training set. This is mostly needed due to the space
and time complexities inherited in machine learning tools. Here, the idea is to find a condensed training set out
of a given larger training set so as to increase the efficiency of the approach without sacrificing the predictive
power of the underlying method. To this end, the literature provides a variety of approaches. There are instance
selection methods deliberately designed for specific classifiers including K —nearest neighbors [e.g., 11-15] and
support vector machine [e.g., 16-18]. Also, there are studies on more general methods mostly constructed on
a prescribed distance metrics and applications [e.g., 19-23]. Here, the idea is to somehow cluster the instances
based on their pairwise distances so as to determine the critical instances in terms of prediction. Nevertheless,
none of these approaches indeed take care of the aforementioned robustness issue occurred due to the selection
of the training and test sets.

Here, we introduce an approach constructed on matching the distributions of datasets. In particular,
we propose a heuristic measure to evaluate the difference between the datasets and show how one can employ
optimization method to split a dataset (population) into fixed-size training and test subsets so as to minimize
the difference between the distribution of the population and those of the subsets. We provide a mixed integer

programming formulation of the problem to solve the optimization problem. In our numerical study, we illustrate

1536

GENC and TUNC/Turk J Elec Eng & Comp Sci

the dispersion of the error induced due to random sampling of the training set. We also demonstrate how our
approach perform on an actual machine learning scenario. More specifically, by means of a simulation study, we
show that a decision tree trained by our subsets results in neither positive nor negative error bias. Our results
reflect that the resulting error of our approach is indeed found to be located around the median of the entire
error space of the simulation study conducted.

The remainder of the paper is organized as follows. In Section 2, we provide the problem description, set
the notation, and provide the mixed integer programming formulation. In Section 3, we introduce our numerical

study and discuss our findings. Finally, we provide conclusive remarks in Section 4.

2. Data and algorithms

Data comes in many formats; nonetheless, it is often stored and presented in tabular form. It is presented by
means of rows and columns in tabular format in which each row of data refers to a single observation, whereas
each column corresponds to a feature. Each feature has a specific format, usually one of numeric, character,
categorical, or logical. Numeric features may take any value within a range of numbers in a continuous fashion.
Categorical features may only have a fixed number of distinct and predetermined values. Logical features are
similar to categorical ones; however they are limited to take only two different values, such as “true” and “false”.
Finally, character features cover what is not covered by the other types. In this paper, we consider datasets

where each feature is categorical.

2.1. Methodology

Suppose that we have a dataset (i.e. population) with N observations and a set of features C each of which
has a set of levels K;j, where j € C. In this study, we consider a problem on how to split the entire dataset
into two mutually exclusive fixed size subsets forming a partition—a training set H having h observations (i.e.
|H| = h) and a test set having N — h observations. To do so, we provide a novel approach and develop its
computational method to select unique training and test sets establishing a natural benchmark for the given
dataset. The proposed approach is simply built on the idea of matching the distributions of training and test
sets to the distribution of the population itself. Eventually, we hereby argue that the training and test sets which
respectively possess very similar probability distributions with that of the population would naturally provide
a convenient frame for a machine learning algorithm. To this end, we convert this problem to an optimization
problem and develop its mixed integer programming formulation (MIP) which will be introduced later on.

An important question to consider here is how to measure the similarity between two distributions, in our
case the population and the selected training and/or test sets. The conventional methods such as Kolmogorov—
Smirnov and chi-square tests would not fit for serving our aim since they mostly require a specific family of
distributions or even univariate distributions. Also, even if it is applicable, it is not easy to implement those
conventional tests in a multivariate setting. Furthermore, it is also not trivial to embed those tests into a
mathematical model. Therefore, in this study, we adopt a simple yet pragmatic approach to measure the
similarity, i.e. hereby referred to as “histogram matching”. This approach simply assumes each variate (i.e.
feature) is independent and treat them as if they are indeed univariate distributions. Then, the aim is to

measure the distance, DY'Z , between two distributions Y and Z by the following,

DYZ =3 "M |P(X =t) - P/(X =1t)

jeCtek;

, (1)

1537

GENC and TUNC/Turk J Elec Eng & Comp Sci

where PjY (X =t) represents the probability of having the value of ¢ for feature j in distribution Y, whereas
PjZ (X = t) stands for that of Z. This distance metric can obviously be regarded as a proxy since it ignores
the relation within features.

As stated earlier, we want to select the optimal training and test sets by simply minimizing the total
distance between their distributions and that of population. Here, the following results enable us to simplify

our analysis:

Proposition 1 Given a dataset S with n observations, and a partition of S into S and So with ny and ne

observations, respectively; the following holds for any level t € K; and any feature j € C:

P}(X =t)n =P (X =t)ny + PP*(X = t)ns. (2)

Proof The left hand side of Eq. (2) provides the frequency of observations in S, where the observed level of
feature j has the value of ¢. Similarly, the first and second terms on the right hand side respectively give the
frequency of ¢ values in S; and S,. Since S; and So defines a partition on S of S, the frequency on the left is

equal to the sum of the frequencies on the right. O

We can now provide the following derivation:

PR(X =t)ny = PY(X =t)n— PPY(X =t)m

P3(X =t)n— P> (X =t)n
PJS2(X:t):]() 7 () 1

n—mny

Using Eq. (1),

D> =3"N"IPY(X =t) - PP*(X =1t)

JEC teK;

_ S | —tg
=22 [P =1 —

JEC teK;

D =

JeC tekK;
-y Yy ‘P].S(X — 1) - PO(X = t)‘ .
T Sec tek,
Hence,
DS:S2 — EDS,S1_ (3)
N2

The following lemma is based on this result:

Lemma 1 Given a dataset S with n observations, and a subset S1 € S of size ny; Sy is closest to S among

all subsets of size my with respect to D, if and only if S — Sy is closest to S.

1538

GENC and TUNC/Turk J Elec Eng & Comp Sci

Proof Eq. (3) clearly shows that for a fixed nj/ng ratio, the distance between S and S — S is linearly
dependent on the distance between S and S;. Hence, minimizing one is indeed equivalent to minimizing the
other. O

This lemma explicitly shows that once the optimal training set minimizing the total distance between its
distribution and that of the population is found, the remaining set used for the test will be optimal in the same
sense. As such, this observation enables us to restrict our attention solely on selection of the training set.

To be able to compute the distance, we need to compute the probability mass function of each feature in
a given dataset within a mathematical model. To this end, we employ the following binary parameter defined
for each i € {1,...,N}, j € C, and t € K;;

1 if Q5 = t
Tjti = .
0 otherwise,

where a;; stands for the entry of observation i and feature j in the dataset.
Here, zj;; simply takes the value of 1 if an observation ¢ has the value of t in its feature j. The

probability mass function of each feature can now be easily expressed as follows;
Di1 Tjti
P(X = 1) = S=L0 (@
n

where n is the number of observations in the set considered.

Now, let PjY denote the probability mass function of the entire dataset (i.e. the population), whereas
PjZ denotes that of a subset (i.e. the training set) in Eq. (1). Then, we can easily compute the total distance
between the training set and the population and rewrite Eq. (1) via Eq. (4) as follows:

N

Z Z Zi:]\lijti B Zzelg Titi| (5)

JEC tek,

Having established these, we now focus on the mixed integer programming formulation of concern. The
problem entails selecting the observations fixed size in number for the training set so as to minimize the total
distance between training set distribution and the population. We construct our model by using the following

decision variables:

Ajy absolute value of the difference between the probability of level ¢ € K; of feature j € C in the

population and that of training set,

Yi binary variable that equals 1 if observation i is chosen in the training set, and 0 otherwise.

Notice that the definition given above explicitly states Aj; = |P} (X = t) — P7(X = t)|. Let us, for
now, omit the fact that the absolute value is not a linear function. Later on, we introduce a set of constraints
to represent absolute value function with linear expressions. Also, recall that the objective of the problem is
to minimize the total distance between the population and the training set. Then, we can write the objective

function as follows:

min Z Z Ajy. (6)

jeC tek;

1539

GENC and TUNC/Turk J Elec Eng & Comp Sci

Next, we can introduce the set of constraints ensuring that the decision variable A;; indeed equal to
absolute error between two distributions. To do so, we need to compute the probability values of the population
and the training set for each feature and level. The former is constant, but the latter, in fact, depends on
our training set selection. Therefore, we can compute the probability values of the training set by simply
conditioning each observation with decision variable y;. Also, to be able to make sure that Aj; takes the
absolute value of the gap, we bound Aj; from below by simply negative and positive values of the gap itself.

These can be written as follows:

N N
thjti — NZ:cjtiyi S NhAjt V] S (C,t S Kj, (7)
=1 =1
N N
Nzxjtiyi_hzxjtiSNhAjt VjGC,tEKj. (8)

i=1 i=1

As mentioned earlier, we want to select a training set having h observations. This can be expressed as

Zyi =h. 9)

This finalizes our MIP model. For convenience, we provide the entire model below:
min Fq. (6)
subject to Egs. (7) — (9)
Aj; >0 VjeC,tek,
y; € {0,1} Vie{l,...,N}

3. Results and evaluation

The aim of this numerical study was to demonstrate the efficiency of the proposed methods compared to using
simple random sampling in generating training and test tests. In particular, we provided an illustrative example
and provide some test statistics to evaluate the performance of our method. The implementation was done in
two parts. The optimization part was carried out on a 3.40 GHz Intel Core i7-3770 CPU with 16 GB RAM.
Gurobi v6.5 was used as an MIP solver. We terminated the solver when the objective value reached to le-4, i.e.
the so-called objective value to stop optimization. The data analysis part, on the other hand, was conducted
using the R language and various R add-on packages.

For testing purposes, we used the mushroom dataset obtained from UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets/mushroom). The dataset contains 8124 mushroom instances observed
in 22 categorical features. The target feature codes whether the mushroom is edible or not. The remaining
features represent attributes related to size, color, shape etc. To demonstrate the effectiveness of our method,
we produced training sets with different sizes varying between 500 and 6500, with incremental steps of size
500. For each set size, we generated one optimized training set by using our method—abbreviated as OS, and
randomly drawn 500 samples (randomly generated training sets). We then compared the histogram matching
errors between the generated training sets and the entire dataset computed via Eq. (1). Table 3 outlines

the results in tabular form. In this table, we provide the summary statistics of histogram matching errors for

1540

GENC and TUNC/Turk J Elec Eng & Comp Sci

Table 3. Distribution matching errors obtained by random sampling and optimized training set.

Random sampling error
Size | Min. 1st Qu. | Median | Mean | 3rd Qu. | Max. OS Err.
500 | 0.714 | 0.9819 | 1.1014 | 1.1235 | 1.2601 1.7903 | 0.0572
1000 | 0.4845 | 0.6774 | 0.7433 | 0.7651 | 0.8423 1.3166 | 0.0301
1500 | 0.3611 | 0.536 0.592 0.6072 | 0.6727 1.0569 | 0.0211
2000 | 0.3122 | 0.4412 | 0.4908 | 0.5018 | 0.5544 0.8516 | 0.0139
2500 | 0.2817 | 0.3827 | 0.4274 | 0.4333 | 0.4759 0.7327 | 0.0107
3000 | 0.2301 | 0.3314 | 0.3718 | 0.3787 | 0.4176 0.6467 | 0.0118
3500 | 0.197 | 0.2926 | 0.3244 | 0.3296 | 0.3613 0.5193 | 0.0117
4000 | 0.1749 | 0.2582 | 0.2858 | 0.2939 | 0.3201 0.4973 | 0.0089
4500 | 0.1633 | 0.2249 | 0.2542 | 0.2582 | 0.286 0.3962 | 0.0089
5000 | 0.1348 | 0.1982 | 0.2215 | 0.2261 | 0.2458 0.3567 | 0.0068
5500 | 0.1166 | 0.1751 | 0.1944 | 0.1994 | 0.2198 0.3295 | 0.008
6000 | 0.105 | 0.1482 | 0.1663 | 0.1702 | 0.1865 0.2907 | 0.0073
6500 | 0.0949 | 0.1241 | 0.1386 | 0.1423 | 0.1557 0.23 0.0094

randomly drawn 500 samples and present the error of our method for each training size. We can clearly see from
this table that our method produces training sets with much smaller distribution matching errors. For example,
with a training set size of 2500 observations, the minimum error obtained by random sampling is 26 times larger
than that of OS. If we consider the median error, the rate becomes 40. Even with very large training set sizes,
such as 6500 (corresponding to 80% of the original dataset), OS is matching the whole dataset 10 times better
than the best set produced by random sampling.

We further provide some plots to visualize the distribution of histogram matching errors obtained by the
random sampling and that of OS in Figure 1. In this figure, the density curves represent the error distribution
and the dashed vertical line represents the error of OS for 4 selected training set sizes. In all four plots, it is
easy to observe OS establishes a natural benchmark and provides far better training sets compared to random
sampling.

We can also focus on a specific training set size and a feature to see how OS provides a much better
distribution match compared to random sampling. Here, we randomly draw a training set—abbreviated as RS,
and compare it with the corresponding OS. In Figures 2-5, we demonstrate examples of level frequencies for
different training set sizes and features. In each figure, we look at a specific feature and a training set size. The
x axis represents the different categoric levels of that feature, and the y axis represents the percentage error
of OS and RS for each level of the feature. The percentage error represents the magnitude of the difference
between the training set’s level frequency and the population’s level frequency as compared to the population’s
level frequency. Suppose that a level has a frequency of 0.10 within the population. An error percentage of
50% then means that the frequency of the level within the training set is either 0.05 or 0.15.

For example, in Figure 2, we consider the gill-color feature for a training set size of 500. The gill-color
feature contains 12 different levels, represented by single character labels on the z axis. There are two bars for
each level: the left represents OS, whereas the right refers to RS. We can observe that, for almost all levels, OS
matches the population significantly better than RS does. Moreover, RS can produce errors as large as 100%,

which could introduce a significant bias in any machine learning algorithm.

1541

GENGQ and TUNC/Turk J Elec Eng & Comp Sci

Size: 500 Size: 2500
1 1
20- ! 6- !
1 1
I I
I I
1 1
1.5 - : X
‘2\ 1 ‘2\4 b 1
£ . £]
<] 1 S 1
A L0 - | A |
1 1
1 1
1 2 - 1
0.5 - 1 l
1 1
1 1
I I
0.0 - : 0 - :
0.0 0.5 1.0 15 2.0 0.00 0.25 0.50 0.75
Total Error Total Error
Size: 4500 Size: 6500
1 1
1 1
8 - 1 1
| 15 - |
I I
1 1
6 b 1 1
S 1 Ny 1
G I F10- 1
= | =] |
& 4 . 1 & 1
1 1
1 1
| 5 . l
2 . 1 1
1 1
1 1
I I
0o - - 0 - 1
. I I . .
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2
Total Error Total Error

Figure 1. Comparison of error distributions of RS and OS for selected sample sizes.

Comparison of OS vs RS level errors Comparison of OS vs RS level errors

Size: 500, Feature: gill- color Size: 2500, Feature: odor
100-
Method
Method mos

75- oS RS
° BIRS
B0 L
s Y
5 =
S 50- S
k5 —
& &

25 I J

8
Level Level

Figure 2. Comparison of OS and RS level errors for Figure 3. Comparison of OS and RS level errors for
training set size 500 and gill-color feature. training set size 2500 and odor feature.

In Figure 3, we look at odor levels for a training set size of 2500. Again, OS is significantly better than
RS on all levels. In Figures 4 and 5, we consider features of cap-color and edible for sample sizes of 4500 and
6500, respectively. The results show a similar pattern as in the previous features.

Finally, we turned our attention to what OS could introduce to an actual machine learning algorithm.

1542

GENGQ and TUNC/Turk J Elec Eng & Comp Sci

Comparison of OS vs RS level errors

Size: 4500 , Feature: cap -color Comparison of OS vs RS level errors

Size: 6500 , Feature: edible

0.6 -
So
8 £ 04
o) 8
A 3
Ay

(=]
[\S}

30 -
Method
.%So Method
RS mos
| MRS
10 -
0. M=l I . J

b . 0.0 -

Level ¢ Level p

Figure 4. Comparison of OS and RS level errors for Figure 5. Comparison of OS and RS level errors for
training set size 4500 and cap-color feature. training set size 6500 and edibility feature.

To this end, we used four different training sizes: 500, 2500, 4500, and 6500. For each training set size
considered, we randomly generated 5000 training sets. Then, we used the CART (classification and regression
trees) algorithm to construct a decision tree using these samples and OS. We plotted classification error of OS
(represented by the dashed lines in the figure) and the random samples on the same plot in Figure 6. In this
figure, we provide 4 boxplots side by side with varying training set sizes. We can now see how the decision
tree classification accuracy changes as the training set size increases. We can also observe the placement of OS’

classification error among that of random samples.

Comparison of DT Errors

500 2500 4500 6500

0.03 -

0.02 -

Error

[
E E
0.01 - T

=
I

0.00 -

Figure 6. Comparison of decision tree error rates with respect to sample sizes and sampling method.

1543

GENC and TUNC/Turk J Elec Eng & Comp Sci

The first thing to notice in this figure is the variance of the classification errors in random samples. This
points out the fact that the classification error obtained over a randomly generated training set is subject to a
significant variance including numerous outliers. It should also be obvious that the test set is dependent on the
selected training set. This indeed brings additional uncertainty regarding the resulting classification score of
the entire learning process. Finally, our results clearly demonstrates that the classification error of OS almost
perfectly position at the median of the error distribution of the random samples. This is a clear indication that
OS is neither positively nor negatively biased. Lastly, we report that the computation time of the MIP model

is around a few minutes for all instances solved.

4. Conclusion

In this paper, as an alternative to using a random sampling approach, we propose a novel method for partitioning
a dataset into training and test subsets for a machine learning study. The proposed method is based on the
idea of finding training and test sets whose distributions best fit to that of the original dataset. This eventually
enables us to eliminate the noise introduced by standard random sampling approaches in selecting training and
test sets. To this end, we employed a simple yet effective distance metric referred to as histogram matching
and embed it to an optimization problem. We developed the mixed integer programming formulation of the
problem.

We then conducted a numerical study to investigate the efficiency of the proposed method and observe
its impact on an actual machine learning study. The numerical study demonstrated that the optimized training
set establishes a benchmark for the given dataset and training set size. Also, our results clearly revealed that
the optimized sets found by the proposed method have far less distribution matching error with respect to
histogram matching. Furthermore, we also compared the prediction accuracy of a decision tree trained by
random samples and optimized set found by our method. The former is highly dispersed with varying training
sets and subject to a significant level of uncertainty. The latter, on the other hand, uniquely positions itself onto
that of randomly generated sets corresponding to the median value. This indicates that our method introduces
neither positive nor negative bias in prediction accuracy. As such, the proposed method clearly enhances the
robustness of machine learning algorithms by eliminating the bias induced due to random sampling.

There are many avenues for further research. It is important to extend the proposed approach onto
datasets where features are not necessarily categorical. Also, it would be interesting to investigate the practical
extent of the proposed approach on a very comprehensive numerical study considering variety of datasets. It
would also be of interest to investigate computationally efficient solution methods for the proposed approach to
be able to work with big data.

Acknowledgment

We acknowledge that all work done, including the idea development, computer implementation, numerical

studies and authoring the paper, were shared equally by the authors.

References

[1] Turing AM. Computing machinery and intelligence. Mind 1950; 59: 433-460.

[2] Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research 2003;
3: 1157-1182.

1544

3]

[10]

[11]

[12]

[13]

[14]

GENC and TUNC/Turk J Elec Eng & Comp Sci

Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on
Neural Networks 1994; 5: 537-550.

Forman G. An extensive empirical study of feature selection metrics for text classification. Journal of Machine
Learning Research 2003; 3: 1289-1305.

Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance,
and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005; 27: 1226-1238.
Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence 1997; 97: 273-324.

Narendra PM, Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Transactions on

Computers 1977; 9: 917-922.

Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recognition Letters 1994;
15: 1119-1125.

Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning
Research 2003; 3: 1371-1382.

Chandrashekar G, Sahin F. A survey on feature selection methods. Computers & Electrical Engineering 2014; 40:
16-28.

Garcia S, Derrac J, Cano J, Herrera F. Prototype selection for nearest neighbor classification: Taxonomy and
empirical study. IEEE Transactions On Pattern Analysis and Machine Intelligence 2012; 34: 417-435.

Pkekalska E, Duin RPW, Paclik P. Prototype selection for dissimilarity-based classifiers. Pattern Recognition 2006;
39: 189-208.

Garcia S, Cano J, Herrera F. A memetic algorithm for evolutionary prototype selection: A scaling up approach.

Pattern Recognition 2008; 41: 2693-2709.

Arnaiz-Gonzalez A, Diez-Pastor JF, Rodriguez JJ, Garcia-Osorio C. Instance selection of linear complexity for big
data. Knowledge-Based Systems 2016; 107: 83-95.

Song Y, Liang J, Lu J, Zhao X. An efficient instance selection algorithm for k nearest neighbor regression.
Neurocomputing 2017; 251: 26-34.

Li Y, Hu Z, Cai Y, Zhang W. Support vector based prototype selection method for nearest neighbor rules. In:
International Conference on Natural Computation; 2005; Berlin, Germany: Springer 528-535.

Liu Chuan, Wang W, Wang M, Lv F, Konan M. An efficient instance selection algorithm to reconstruct training
set for support vector machine. Knowledge-Based Systems 2017; 116: 58-73.

Srisawat A, Phienthrakul T, Kijjsirikul B. SV-kNNC: An algorithm for improving the efficiency of k-nearest neighbor.
In: Pacific Rim International Conference on Artificial Intelligence; 2006; Berlin, Germany: Springer 975-979.

Brighton H, Mellish C. Advances in instance selection for instance-based learning algorithms. Data Mining and
Knowledge Discovery 2002; 6: 153-172.

Riquelme J, Aguilar-Ruiz J, Toro M. Finding representative patterns with ordered projections. Pattern Recognition
2003; 36: 1009-1018.

Raicharoen T, Lursinsap C. A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-
NN) algorithm. Pattern Recognition Letters 2005; 26: 1554-1567.

Silva DA, Souza LC, Motta G. An instance selection method for large datasets based on markov geometric diffusion.
Data & Knowledge Engineering 2016; 101: 24-41.

Ashfaq RAR, He Y, Chen D. Toward an efficient fuzziness based instance selection methodology for intrusion
detection system. International Journal of Machine Learning and Cybernetics 2017; 8: 767-1776.

1545

	Introduction
	Data and algorithms
	Methodology

	Results and evaluation
	Conclusion

