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Abstract: In this paper, we consider a variant of the extended target tracking (ETT) problem, namely the multiel-
lipsoidal ETT problem. In multiellipsoidal ETT, target extent is represented by multiple ellipses, which correspond to
the origin of the measurements on the target surface. The problem involves estimating the target’s kinematic state and
solving the association problem between the measurements and the ellipses. We cast the problem in a sequential Monte
Carlo (SMC) framework and investigate different marginalization strategies to find an efficient particle filter. Under the
known extent assumption, we define association variables to find the correct association between the measurements and
the ellipses; hence, the posterior involves both discrete and continuous random variables. By expressing the measurement
likelihood as a mixture of Gaussians we derive and employ a marginalized particle filter for the independent association
variables without sampling the discrete states. We compare the performance of the method with its alternatives and
illustrate the gain in nonstandard marginalization.
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1. Introduction
Conventional target tracking methods consider point targets that generate at most one measurement per scan
[1, 2]. With the evolution of sensor technology, the focus of the target tracking literature shifted from point target
tracking to extended target tracking (ETT) algorithms, which aim at estimating target extent simultaneously
with the kinematic state using a set of measurements per scan. The extent of a target can be considered as the
region on the target’s surface from which the measurements are obtained. Early works on ETT used predefined
geometric shapes with a few degrees of freedom to represent target extent, such as rectangles, sticks, circles, or
ellipses [3–5].

The most popular ETT model is based on random matrices, which are used to define elliptical target
extents [6, 7]. More recent contributions involve detailed representations of complex shapes. These algorithms
are based on random hypersurface models that can represent so-called star convex shapes [8, 9]. Recent methods
use the Gaussian process-based random hypersurface models to represent target extents [10, 11].

The random matrix models [6, 7] can be extended to multiellipsoidal target extents to obtain a more
detailed representation of the extent [12]. In multiellipsoidal target extent models, the true associations of the
measurements and the ellipses are not known. Here, we assume that the target extent is known. Therefore, we
will focus on the association problem, which will be solved by defining discrete association variables. The joint
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density of the discrete and the continuous states will be approximated using different PF approaches [13–15].
We will derive and apply a nonstandard marginalization technique, which does not require sampling the discrete
variables. We will illustrate the advantages of the nonstandard marginalization approach by comparing it with
its alternatives in simulations.
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Figure 1. Target extent model with 3 subobjects and measurements assigned to true subobjects.

2. Target extent model
Here, we will assume that each target generates multiple measurements from multiple sources on its extent. The
target extent is represented by multiple ellipses. This model can be used to represent various shapes as shown
in Figure 1. Each of the ellipses in Figure 1 is called a subobject. Each subobject is associated with a known
symmetric positive definite matrix {Xℓ}Mℓ=1 ∈ Rd×d and a mean vector {µℓ}Mℓ=1 ∈ Rny , where M is the number
of subobjects and d is the dimension of the extent. Without loss of generality, µ1 can be assumed to be zero
to define one of the subobjects to be the main body of the target (see Figure 1). Suppose mk measurements
Yk = {yjk}

mk
j=1 ∈ Rny are collected at time k . Under additive Gaussian measurement noise assumption, the

measurement equation corresponding to this extent model can be written as a mixture of Gaussians:

p(yjk|x
c
k) =

M∑
ℓ=1

πℓN (yjk;x
c
k + µℓ, sXℓ +R), (1)

where xc
k is the position of the center point, R ∈ Rny×ny is the measurement noise covariance matrix, s ∈ R

is a positive constant scale factor, and πℓ ∈ [0, 1] is the ℓth mixture weight, i.e. the prior probability that a
measurement belongs to the ℓth subobject. We define our state vector xk to be the kinematic state vector that
holds the relevant variables:

xk ≜ [(xc
k)

T (x̃k)
T ]T , (2)

where x̃k denotes the additional state variables. In the Bayesian framework, one can define appropriate priors
to compute the posterior distribution of unknown variables. Our aim is to find a recursive update for the
posterior distribution:
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p(xk|Y1:k). (3)

Unfortunately, this posterior distribution is intractable because, given a set of measurements, we do not know
which measurement belongs to which subobject. This creates a combinatorial problem that grows exponentially
with time k . In order to solve this assignment problem, we first define an association variable rjk for each

measurement yjk . rjk indicates the index of the subobject that measurement yjk belongs to, and it takes integer
values between 1 and M . The prior probability that a measurement belongs to a certain subobject is assumed
to be known:

P(rjk = ℓ) = πℓ for ℓ = 1, . . . ,M. (4)

The augmented vector that holds the prior assignment probabilities of subobjects is denoted by π :

π ≜ [π1, . . . , πM ]. (5)

3. Inference
The system in this problem can be represented using a conditionally linear Gaussian system (CLGS), which can
be written as:

xk+1 = Fxk + uk, (6a)

yjk = Hxk + v
rjk
k , (6b)

where the Gaussian process noise is expressed as uk ∼ N (0, Q) . The conditional measurement noise can be

expressed as v
rjk
k ∼ N (0, sXrjk + R) . Our aim is to approximate the joint posterior density of the association

variables and the kinematic state:

p(xk, rk|Y1:k), (7)

where rk = [r1k . . . r
mk

k ]T . To solve this problem we will employ particle filters (PFs) whose details are explained
in the following subsections. We use two different marginalization (aka Rao–Blackwellization) approaches to
derive these algorithms [14, 15].

3.1. Bootstrap particle filter

The first algorithm that we will consider is the bootstrap particle filter (BPF) [16]. The general flow of the
BPF can be described as follows. For each time instant k , the association variables rk and the kinematic state
should be sampled from their prior densities:

x
(i)
k ∼ p(xk|x(i)

k−1), (8a)

r(i)k ∼ π, (8b)
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where the superscript (i) indicates the ith particle. To update the importance weights, the likelihood of the
multiple measurements can be expressed as:

p(Yk|x(i)
k , r(i)k ) =

mk∏
j=1

p(yjk|x
(i)
k , r

(i),j
k ), (9)

where we assume that each measurement obtained at time k is conditionally independent of the others. Using
the likelihood above, the weights are updated as follows:

w
(i)
k ∝ p(Yk|x(i)

k , r(i)k )w
(i)
k−1. (10)

After calculating the weights, resampling is performed if necessary.

Algorithm 1 Bootstrap particle filter pseudocode.
1: Initialization at k = 0 :
2: for all i = 1, . . . , N do
3: Sample x

(i)
0 ∼ p0 and r(i)0 ∼ π0

4: Set initial weights w
(i)
0 = 1

N
5: end for
6: Iterations:
7: for all k = 1, . . . , T do
8: for all i = 1, . . . , N do
9: Sample x

(i)
k ∼ p(xk|x(i)

k−1)

10: Sample r(i)k ∼ π
11: Update the importance weights according to Eq. (10)
12: end for
13: Normalize the weights
14: Resample, if necessary
15: end for

3.2. Marginalization

A generic PF approximates the posterior density by weighted random samples. This method is fairly efficient
when the state dimension is low. Unfortunately, the efficiency of a PF does not scale up with the dimension
of the state; hence, a vast number of particles is needed to approximate the posterior of high-dimensional
states. One way to alleviate this problem is to exploit some inherent analytical structures in the target density
p(xk|y1:k) , if available. Consider the factorization of the target density into conditionally linear and nonlinear
parts as follows:

p(xk|y1:k) = p(xl
k, x

n
0:k|y1:k) = p(xl

k|xn
0:k, y1:k)p(x

n
0:k|y1:k). (11)

A standard marginalized particle filter (MPF) aims at sampling the nonlinear states and computing analytical
expressions for the conditionally linear part of the state (first factor in Eq. (11)). By doing so, the target
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density can be represented as

p(xl
k, x

n,(i)
0:k |y1:k) ≈

N∑
i=1

w
(i)
k δ

x
n,(i)
0:k

(xn
0:k)p(x

l
k|x

n,(i)
0:k , y1:k). (12)

As an analogy, KF computes the posterior density as analytical expressions. PF approximates the posterior
density with weighted samples. MPF approximates the posterior by using both weighted samples and analytical
expressions. This results in sampling efficiency in PF because, depending on the system model, it might be
possible to sample a low-dimension nonlinear state xn

k and compute the posterior of the full state xk . The MPF
requires conditional analytical expressions in the posterior density that exists in our system. In the following
subsections, we will investigate two different marginalization approaches for this problem.

3.3. Marginalization by sampling the discrete states
In CLGSs, a standard choice of the target density is the posterior of the continuous and discrete states
p(xk, r0:k|Y1:k) . Consider the following factorization of the target density:

p(xk, r0:k|Y1:k) = p(xk|r0:k,Y1:k)p(r0:k|Y1:k). (13)

Within the MPF framework, the posterior of the discrete states can be approximated using particles:

p̂N (r0:k|Y1:k) =

N∑
i=1

w
(i)
k δr(i)

0:k

(r0:k). (14)

Conditioned on the discrete states, the system equations become linear and Gaussian. Therefore, the conditional

posterior of the continuous state can be written as a Gaussian density p(xk|r(i)0:k,Y1:k) = N (xk; x̂
(i)
k|k, P

(i)
k|k) . The

mean and covariance of this density are calculated analytically using a KF. Furthermore, the posterior density
of the continuous and the discrete states are approximated as

p(xk, r(i)0:k|Y1:k) ≈
N∑
i=1

w
(i)
k δr(i)

0:k

(r0:k)N (xk; x̂
(i)
k|k, P

(i)
k|k). (15)

Iterations of a MPF at each time include:

- ‘Measurement Update’ and ‘Time Update’ steps for continuous variables;

- ‘Sampling’ and ‘Weight Update’ steps for discrete variables.

The details of the aforementioned steps are given below.
At any time k , we first propagate the conditional density of the continuous states per particle, which corresponds
to the KF’s time update equations given by

x̂
(i)
k|k−1 = Fkx̂

(i)
k−1, (16a)

P
(i)
k|k−1 = FkP

(i)
k−1F

T
k +Q. (16b)

Then we sample the discrete state rk from the importance density:

1550



KARA and ÖZKAN/Turk J Elec Eng & Comp Sci

r(i)k ∼ q(·). (17)

Here, if we want to use the bootstrap proposal density, the importance density q(·) is chosen to be equal to the
prior density π . Alternatively, one can use the optimal proposal density to increase the performance:

π
(i),j
opt ≜ p(r

(i),j
k |yj1:k, r

(i),j
k−1 ) ∝ p(yjk|r

(i),j
k , yj1:k−1)p(r

(i),j
k |r(i),jk−1 ), (18)

where the predictive likelihood p(yjk|r
(i),j
k , yj1:k−1) is expressed further as

p(yjk|r
(i),j
k , yj1:k−1) =

∫
p(yjk|x

(i)
k , r

(i),j
k , yj1:k−1)p(x

(i)
k |r

(i),j
k , yj1:k−1)dxk

=

∫
N (yjk;Hx

(i)
k + µrjk , R+ sXrjk)N (x

(i)
k ;x

(i)
k|k−1, P

(i)
k|k−1)dxk

=N (yjk;Hx̂
(i)
k|k−1 + µrjk ,HP

(i)
k|k−1H

T +R+ sXrjk). (19)

The optimal proposal density is calculated using the following expressions for each subobject ℓ :

π̃
(i),j
opt,ℓ = N

(
yjk;Hx̂

(i)
k|k−1 + µℓ,HP

(i)
k|k−1H

T + sXℓ +R
)
πℓ, (20a)

π
(i),j
opt,ℓ =

π̃
(i),j
opt,ℓ∑M

n=1 π̃
(i),j
opt,n

, (20b)

where x̂
(i)
k|k−1 and P

(i)
k|k−1 are calculated in the time update step. Next, the particle weights are updated

according to the following equation:

w
(i)
k ∝

mk∏
j=1

p(yjk|r
(i),j
k , yj1:k−1)πr

(i),j
k

q(r
(i),j
k )

w
(i)
k−1. (21)

For the continuous state, the measurement update is performed using the KF measurement update equations.
Measurement update of the continuous state is performed consecutively for each measurement yjk :

x̂
(i)
k = x̂

(i)
k|k−1 +Kk(y

j
k −Hx̂

(i)
k|k−1 − µrjk), (22a)

P
(i)
k = (I −KkH)P

(i)
k|k−1, (22b)

Kk = P
(i)
k|k−1H

T (HP
(i)
k|k−1H

T + sXrjk +R)−1, (22c)

where we assign x̂
(i)
k|k−1 ← x̂

(i)
k , P

(i)
k|k−1 ← P

(i)
k and iterate for j = 1, . . . ,mk . As a last step, resampling is

employed if necessary. We will refer to the MPF where we can perform the marginalization over the continuous
states analytically as the CMPF. The CMPF is summarized in Algorithm 2.
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Algorithm 2 Summary of the CMPF for multimeasurement case.
1: Initialization at k = 0 :
2: for all particles i = 1, . . . , N do
3: Set initial weights w

(i)
0 = 1

N

4: Set initial kinematic state of each particle x̂
(i)
0 = x̄0 , P̂

(i)
0 = P̄0

5: end for
6: Iterations:
7: for time k = 1, . . . , T do
8: for all particles i = 1, . . . , N do
9: Perform time update of the kinematic state

10: Sample the association variables, r(i)k ∼ q(·)
11: Update the weights according to Eq. (21)
12: end for
13: Normalize the weights
14: for all particles i = 1, . . . , N do
15: for all measurements j = 1, . . . ,mk do
16: Perform measurement update of the kinematic states according to Eq. (22)
17: Assign x̂

(i)
k|k−1 ← x̂

(i)
k , P

(i)
k|k−1 ← P

(i)
k and iterate

18: end for
19: end for
20: Resample, if necessary
21: end for

3.4. Marginalization by sampling the continuous states

In order to marginalize the discrete state, we slightly modify the target density as p(x0:k, rk|Y1:k) . In CLGSs,
it is possible to obtain an analytical expression for the density of the discrete state when conditioned on the
continuous states. Consider the following factorization of the target density:

p(x0:k, rk|Y1:k) = p(rk|x0:k,Y1:k)p(x0:k|Y1:k). (23)

The posterior of the continuous states can be approximated using particles:

p̂N (x0:k|Y1:k) =

N∑
i=1

w
(i)
0:kδx(i)

0:k

(x0:k). (24)

When x0:k is given, the conditional distribution of rk can be expressed analytically [15]. Unlike the model
given in [15], the discrete states are conditionally independent in our model. We define the mode probabilities
as

α
(i),j
k (ℓ) ≜ P(rjk = ℓ|x(i)

0:k, y1:k). (25)

We will refer to the MPF where we can perform the marginalization over the discrete states analytically as the
DMPF. The basic flow of the DMPF for each time instant k can be summarized as follows. Due to independence
assumption in our CLGS, we can propagate the mode probabilities according to:

α
(i),j
k|k−1(·) = α

(i),j
k−1(·), (26)
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where {α(i),j
k−1(ℓ)}Mℓ=1 is represented with α

(i),j
k−1(·) for the sake of simplicity. The continuous state xk is propagated

by sampling from the importance density:

x
(i)
k ∼ qk(xk|x(i)

0:k−1,Y1:k). (27)

Here, one can use the bootstrap proposal density:

q(xk|x(i)
0:k−1, y

j
1:k) =p(xk|x(i)

0:k−1, y
j
1:k−1)

=

M∑
ℓ=1

p(xk|x(i)
k−1)α

(i),j
k|k−1(ℓ). (28)

When a new measurement is available, we perform the weight update. Since the continuous state x
(i)
k carries

information about the discrete state rk , it serves as an extra measurement [15]. αk(·) in Eq. (25) can also be
expressed in terms of the joint density:

α
(i),j
k (·) = P(rjk|x

(i)
k , x

(i)
0:k−1, y

j
k, y

j
1:k−1)

=
P(rjk, x

(i)
k , yjk|x

(i)
0:k−1, y

j
1:k−1)

P(x(i)
k , yjk|x

(i)
0:k−1, y

j
1:k−1)

∝ P(rjk, x
(i)
k , yjk|x

(i)
0:k−1, y

j
1:k−1). (29)

For simplicity, we define a mid quantity γk :

γ
(i)
k (rjk) ≜ p(rjk, x

(i)
k , yjk|x

(i)
0:k−1, y

j
1:k−1)

= p(yjk|x
(i)
k , rjk)p(x

(i)
k |x

(i)
k−1)α

(i),j
k|k−1(r

j
k). (30)

Using γk(·) , we can compute αk(·) :

α
(i),j
k (ℓ) ∝ γ

(i),j
k (ℓ), (31a)

α
(i),j
k (ℓ) =

γ
(i),j
k (ℓ)∑M

m=1 γ
(i),j
k (m)

. (31b)

The importance weights are updated with the following:

w
(i)
k ∝

mk∏
j=1

p(x
(i)
k , yjk|x

(i)
0:k−1, y

j
1:k−1)

q(x
(i)
k |x

(i)
0:k−1, y

j
1:k)

w
(i)
k−1, (32)

where the numerator of Eq. (32) is the marginalization of Eq. (30) over rk , which is equal to
∑M

m=1 γ
(i),j
k (m) .

Substituting this expression in the numerator of Eq. (32) results in:
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w
(i)
k ∝

mk∏
j=1

∑M
m=1 γ

(i),j
k (m)

q(x
(i)
k |x

(i)
0:k−1, y

j
1:k)

w
(i)
k−1. (33)

Lastly, we perform resampling, if necessary. The DMPF algorithm is summarized in Algorithm 3. Since the
DMPF represents the posterior of the continuous states with particles, its computational requirements increase
with the dimension of the continuous state. If the dimension of the continuous state is high, the DMPF will
require more particles to represent the corresponding density. Consequently, it will be inefficient and slower.

Algorithm 3 Summary of the DMPF for multimeasurement case.
1: Initialization at k = 0 :
2: for all particles i = 1, . . . , N do
3: Sample the initial kinematic state x

(i)
0 ∼ p0

4: Set initial weights w
(i)
0 = 1

N
5: end for
6: Iterations:
7: for time k = 1, . . . , T do
8: for all particles i = 1, . . . , N do
9: for all measurements j = 1, . . . ,mk do

10: Compute α
(i),j
k|k−1(·) according to Eq. (26)

11: end for
12: Sample the kinematic state, x

(i)
k ∼ p(xk|x(i)

0:k−1,Y1:k)
13: for all measurements j = 1, . . . ,mk do
14: Compute γ

(i),j
k (·) according to Eq. (30)

15: Compute α
(i),j
k|k (·) according to Eq. (31)

16: end for
17: Update the weights according to Eq. (33)
18: end for
19: Normalize the weights
20: Resample, if necessary
21: end for

4. Performance evaluation

We test the algorithms in a simulation of a moving multiellipse object that consists of 3 ellipses (see Figure 1).
The object follows a linear path and the number of measurements at each scan is Poisson distributed with an
average of 7 measurements. A constant velocity model is used as the kinematic model of the object, which will
be explained in the following subsection.

4.1. 2-D constant velocity model

The nonmaneuvering 2-dimensional constant velocity model is one of the most commonly used models in target
tracking problems [17]. The target speed is assumed to be nearly constant through a linear path and the system
noise accounts for possible accelerations that disturb the speed. The state consists of two-dimensional positions
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and velocities x = [x y vx vy]
T . The system matrices in Eq. (6) are defined as:

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , H =

[
1 0 0 0
0 1 0 0

]
. (34)

The process noise covariance matrix Q is chosen as

Q = σ2


T 3/3 0 T 2/2 0
0 T 3/3 0 T 2/2

T 2/2 0 T 0
0 T 2/2 0 T

 ,

where T is the sampling time. The sampling time is set to T = 1 s. The above-defined system is the basic 2-D
nonmaneuvering constant velocity model, which can be extended by including other kinematic parameters such
as heading, jerk, or acceleration.

4.2. Simulation
We simulate the system in 100 MC runs with the same measurement realization to observe the estimation
consistency and variance. The numerical results provided here are an average of the MC runs. As a performance
metric, RMSE will be used:

RMSE =

√√√√ 1

N

T∑
k=1

(xk − x̂k)2. (35)

Here, xk indicates the true value and x̂k is the estimated value of the state at time k . In addition to RMSE,
the computation times of the algorithms are compared. The algorithms are denoted as follows: BPF, CMPF-B
(CMPF with bootstrap proposal density), CMPF-O (CMPF with optimal proposal density), and DMPF.

Since the BPF samples both the association variables rk and the kinematic state xk , it requires an
excessive number of particles to provide satisfying results when compared with the other two algorithms.
Therefore, the BPF is run with N = 20,000 particles while the CMPF-B, the CMPF-O, and the DMPF
are run with 200 particles.

The prior assignment probabilities are assumed to be equal, which is a reasonable assumption when
the measurement rates of the subobjects are unknown. The system noise variance is set to σ2 = 1 and the
measurement noise covariance is selected to be R = diag([10, 10])m2 . The scaling factor is taken as s = 1 .
Initial kinematics and their covariance matrix are chosen as x0 = [0, 0, 10m/s, 0]T , P0 = diag[400, 400, 100, 100] ,
respectively. All simulations are run in MATLAB R2016b on a standard laptop with an Intel Core i5-7200U
2.50 GHz platform with 8 GB of RAM running Windows. The position estimates of all four algorithms are
presented in Figure 2.

The average RMSE values for the position estimates are presented in the Table. The BPF has the largest
MC variance and RMSE value even if it runs with 100 times more particles than the other algorithms. Therefore,
one can claim that using marginalization (if possible) has a positive impact on the performance of the algorithms.
We obtained the lowest MC variance and RMSE value with the CMPF-O. The DMPF has the closest estimation
performance to the CMPF-O in the sense of RMSE and MC variance. One can also observe the effect of using
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(d) DMPF

Figure 2. The position estimates of the BPF, CMPF-B, CMPF-O, and DMPF algorithms. The BPF is run with 20,000
particles while other algorithms are run with 200 particles. A total of 100 MC runs are performed for the simulations.
The red and blue lines represent the average MC run results and the true positions, respectively. The transparent area
shows the upper and lower bounds of the MC estimates.

the optimal proposal density instead of the bootstrap proposal density by comparing the results of the CMPF-B
and the CMPF-O. The optimal proposal density has a positive impact on the performance of the algorithm.
A second simulation is performed to observe the relationship between the number of particles (N) and RMSE
values. In the simulation, all algorithms are run with N =100, 200, 500, 1000, 2000, and 4000 particles. The
results are presented in Figure 3. The performances of DMPF and CMPF-O are similar for N ≥ 500 whereas
CMPF-B always has a higher RMSE.

Although CMPF-O achieves smaller RMSE values for a low number of particles, it has one drawback.
Since the algorithm includes optimal proposal density computations and KF update equations performed per
particle, it requires vast computation effort when compared with the DMPF. Average computation times per
update are given in the Table. The DMPF has the smallest computation time since its implementation does
not include computationally heavy steps or equations.

4.3. Orientation tracking of a maneuvering target
Lastly, we would like to illustrate the potential of the DMPF on a challenging problem, where the orientation of
an extended target varies in time. Since the DMPF method samples the continuous states, it is straightforward
to augment the state vector with the heading angle of the target and carry out the nonlinearities without
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Table. RMSE of the position estimates and average computation times of the algorithms.

RMSE [m] Computation time [s]
BPF (with 20K particles) 2.91 0.089
CMPF-B (with 200 particles) 1.59 0.31
CMPF-O (with 200 particles) 1.33 0.32
DMPF (with 200 particles) 1.42 0.0019
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Figure 3. RMSE results versus the number of particles of the three algorithms. The blue line denotes the CMPF-B,
the orange line denotes the CMPF-O, and the yellow line denotes the DMPF.

any model approximations. Thanks to this property, a maneuvering target, as shown in Figure 4, can easily
be tracked by the DMPF. Note that the DMPF assumes a constant velocity model but the constant velocity
assumption is not valid during the maneuvers. The algorithm is robust enough to handle such a mismatch,
which is a common problem in most tracking applications. Estimates of the position and heading angle are
compared with their true values in Figures 4 and 5, respectively. The simulation is run with 1000 particles and
the number of measurements at each scan is Poisson distributed with an average of 15 measurements.
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Figure 4. Position estimate of the DMPF with 1000
particles. The orange and blue dashed lines represent the
position estimation result and the true value, respectively.
The green triangles show the measurements obtained per
time step and orange ellipses represent the target extent.

Figure 5. Heading angle estimate of the DMPF with
1000 particles. The purple and yellow lines represent the
estimated and the true heading angle, respectively.

5. Conclusion
In this paper, a multiellipsoidal ETT model is studied in the SMC framework under the assumption of known
extent. In this model, the posterior involves discrete and continuous random variables. In contrast to standard
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approaches, we adapt a nonstandard marginalization in which the posterior density of the continuous states is
represented using weighted random samples. In this way, the conditionally analytic part of the resulting PF is
dedicated to solving the difficult association problem. In simulations, we compare the performance of the pro-
posed method with its alternatives. The algorithm can achieve a similar performance of a marginalized particle
filter that relies on the optimal proposal density, but it requires far less computational power. Furthermore,
the proposed method can deal with nonlinearity and non-Gaussianity in ETT models without involving model
approximations or linearizations.
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