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Abstract: Inspired by the surprising performances of deep generative models, in this paper we present the preliminary
results of an overly ambitious task: estimating computationally the additional spectral bands of a color aerial image. We
have harnessed the expressive power of deep generative models to estimate the distribution of mostly infrared bands of
aerial scenes, using only color RGB channels as input. Our approach has been tested from multiple aspects, including the
reconstruction error of the additional bands and the effect of estimated bands on scene classification performance, as well
as through the transfer potential of the trained network to a distinct dataset. To our surprise, the initial experiments
have shown us that deep generative models can indeed learn to estimate additional bands up to a certain degree and can
thus computationally reinforce datasets stemming from color-only sensors.

Key words: Aerial scene classification, auto-encoder, generative models, convolutional neural network, spectral super-
resolution

1. Introduction
Thanks to advances in sensor technology, the spectral resolutions of remote sensing images have increased to
unprecedented levels, paving the way for new applications and improving the performances of existing ones. High
spectral resolution is known to improve the performance of a wide range of critical remote sensing applications,
ranging from target detection [1] and scene classification [2] all the way to pixel classification [3–7], through the
availability of complementary information.

However, even though such multi- and hyperspectral image acquisition devices are nowadays more
accessible than even before, they are still evidently not as widespread as RGB color sensors. Consequently, we
have chosen to investigate whether, given a RGB color scene, one can estimate computationally its appearance in
subsequent wavelengths. Obviously, one cannot expect to estimate/guess accurately the full spectral response of
an unknown material based only on its color. However, even a crude approximation can have enormous practical
value when all one possesses is color. In fact, doing so with entire aerial scenes where spatial information
is abundant and the surface material types are of a relatively limited variability might not necessarily be
implausible. If it were to be even partially possible, it could lead the way for spectral super-resolution.

Our motivation for this investigation lies in improving aerial scene classification performance. Even
though the number of datasets continues to increase [8], their majority remains color-only (UCM, AID, NWPU-
RESISC45, etc.), and consequently contemporary aerial scene classification methods are mostly mere adap-
tations of color image analysis approaches. For example, Liu et al. [2] trained in parallel two convolutional
architectures that are fused with a common loss function and showed the interest of using lower layer features
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as opposed to exploiting the fully connected layers’ output. Yu and Liu [4], on the other hand, focused on mul-
tilevel fusion and trained 3 convolutional neural networks (CNNs) concurrently, each with distinct resolutions
of the same input image, that were then fused together to propose a single output. In addition, Weng et al. [3]
presented the first use of extreme learning machines in the context of aerial scene classification by using it to
replace the fully connected layer classifier. For a comprehensive recent survey on aerial scene classification the
reader is referred to [8].

In this work we answer the question of whether it is possible to estimate additional EM spectra from
RGB images with the help of other multispectral image data. Our inspiration/optimism in undertaking this
task stems from the paradigm shift caused by deep neural networks in most visual data analysis fields, especially
lately through successful generative models, such as generative adversarial networks [9] and variational auto-
encoders [10], known in particular for their capacity for approximating latent distributions. That is why, in
this paper, we have explored harnessing the expressive power of deep encoder-decoder models through a custom
network architecture and have used it with the aim of estimating the distribution of mostly infrared bands of
aerial scenes, using as input only color RGB channels. We further propose an iterative estimation strategy
as well. This approach may seem counterintuitive, since EM emissions and scattering of a nonblack body can
not be estimated via numerical and algorithmic methods just by looking at the visual bandwidths. However,
we trust that the proposed model does not only inspect the colors of the given image but also scene content
and the relation between objects. Another drawback of the proposed method is the need for immense amounts
of training data. Generative models require substantially more training data in order to capture the latent
distribution of scene content. Even if a correlation exists between scene RGB content and the other spectra of
the given images, this will be scene-dependent. To overcome this shortcoming the proposed method requires
much training data with highly diversified content.

In order to prove our claim, the proposed approach has been tested from multiple aspects, including the
reconstruction error of the additional bands, qualitative evaluation of estimated bands, and effect of estimated
bands on scene classification performance, as well as through the transfer potential of the trained network to
a distinct dataset. To our surprise, the preliminary experiments have shown us that deep generative models
can indeed learn to estimate additional bands up to a certain degree and can thus computationally reinforce
datasets stemming from color-only sensors.

Encoder Decoder

RGB Source

64x64x600
64x64x420 64x64x360

64x64x600

64x64x1

Iterative Spectrum Generation

64x64x360 64x64x420

Figure 1. Illustration of the proposed encoder-decoder architecture for spectral band generation.
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3x3x3x60 Conv. Layers Max PoolingBN 3x1x1x144 Conv. Layers Global Average Pooling

Figure 2. The convolutional blocks are composed of batch normalization, 3 convolutional layers, and a final max
pooling layer. These blocks are repeated 4 times with 60, 72, 84, and 96 filters, respectively, and finally fed to three 1 ×
1 convolution layers.

2. Explored approach
This section details the developed method for spectral band estimation.

2.1. Background on generative models
Although there are various definitions and mathematical models for generative models, in essence they assume
that some observed variable x that is mapped to a label Y by a discriminative method is produced by a
hidden process or variable z with some unknown distribution p(x, z) . Evidently, calculating this distribution
is challenging. A solution to this problem comes from a simple but ingenious idea. Let q be a distribution that
produces some x′ , which can be labeled Y by the same discriminative method. This makes one’s job relatively
easier by turning the problem from estimating an unknown distribution to generating x′ similar to x so that
our discriminative method cannot understand the difference. In other words, we just need to make x and x′

similar using a distance or similarity function:

dist(x, x′) = 0. (1)

There have been further advances in generative models that employ more sophisticated assumptions about the
a priori distribution, the choice of similarity function, or even the shape of the underlying manifold [10].

More specifically, most of the contemporary generative models stem from two major neural network
disciplines. The first is generative adversarial models that work through the interplay between two semiseparate
networks: a generator and a discriminator. The goal of the discriminator is to tell the difference between the
data generated by the generator and the real-world data we are trying to model [9], while the others are auto-
encoders, a fully unsupervised tool. They rely on standard backpropagation and set the target output values of
the network to be equal to their inputs; in other words, they learn an approximation of the identity function,
so as to output x̂ that is similar to x. In doing so, and through constraints on the network, such as limited
hidden units, auto-encoders can perform dimension reduction [11] as well as feature extraction [12].

Advances in recent years have evolved auto-encoders into more sophisticated variational forms [10]. These
networks are rooted in the pure mathematical realm of variational Bayes theory and attempt to approximate a
latent space embedding distribution with the help of a prior distribution while trying to reconstruct the given
data from estimated latent parameters.

2.2. Explored estimation strategy
Our approach for estimating spectral bands from RGB images consists of two components.

For the task of band generation we have chosen to use a CNN-based encoder-decoder network similar
to a convolutional auto-encoder that can receive as input arbitrary image bands (e.g., RGB color bands) and
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aims to construct the band that was presented to it as ground truth (e.g., a near infrared band) (Figure 1).
It possesses 3 encoding and 3 decoding convolutional layers, with 600, 420, and 360 filters, respectively, and is
equipped with a mean squared error loss function.

Since, however, reconstruction loss is not a convincing metric for the success of our strategy, we also used
a CNN (i.e. the discriminative model) to confirm whether our generative approach generates output similar to
the original bands of the image.

In particular, our discriminative model is a traditional CNN, bearing similarities to the well-known VGG
architecture. Our model is built with 4 special convolutional blocks (Figure 2), where every block consists of
one batch-normalization, 3 convolutional, and 1 max pooling layers. At the end of the final block, we employed
three 1 × 1 convolutional layers and global average pooling instead of a more classical dense layer and a final
flattening layer. This network’s loss function is cross-entropy.

We explored two distinct approaches for estimating the spectral bands of an aerial scene. In the first
direct strategy, we have used only RGB color bands as a priori distributions and have tried to estimate each
spectral band under the guidance of the original spectral bands of the input image. In the second iterative
strategy, we have taken the best generated band with respect to the reconstruction loss and have combined it
with the original RGB image, and used them together in estimating the next band. After each training, the
generated band has been once again combined with the input and used to reestimate another band.

The next section will elaborate on the effect of generated spectra on the performance of aerial scene
classification.

2.3. Datasets
We have used the recently presented Eurosat [13] dataset for training our network. It contains 27,000 64 × 64
pixel, 13-band images labeled into 10 categories. Band descriptions and resolutions are provided in Table 1. We
have selected 2000 images for training and 500 for validation, and the rest have been kept for testing purposes.
The reason for this uneven split is the number of reported saturated performances when using even (50-50 or
80-20) train/test splits.

3. Experiments and discussion

In the later stage of our experiments, where we have explored the possibility of transferring the trained network’s
band estimation skill to another dataset, we have used the UC Merced [14] (UCM) and AID [15] datasets. UCM
data comprise 2100 color scenes of 21 categories, each with 100 samples, at a spatial resolution of 0.3 m. Original
images of the UCM dataset are directly downloaded from United States Geological Survey (USGS) databases
and resized into 256 × 256 pixel images. This dataset contains highly overlapping land use cases like dense
residential areas, medium residential areas, and sparse residential areas. This unique property makes UCM a
challenging dataset for discriminative tasks, but from the perspective of generative tasks, our proposed method
can learn the differences in NIR bands between many visually similar scenes. The AID dataset contains 10,000
RGB color images of size 600 × 600 pixels, with 30 classes. The AID dataset is directly sampled from Google
Earth images. Unlike UCM images, the AID dataset is multiresolution. The spatial resolution ranges from
about 8 m to about 0.5 m.

3.1. Setup

Our experiments consist of two parts. In the first part (Part A), the networks presented in the previous section
are trained and tested with the Eurosat dataset. More specifically, we started by conducting scene classification
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Table 1. Properties of the Eurosat dataset [13].

Band Spatial resolution (m) Central wavelength (nm)
Aerosols 60 443
Blue 10 490
Red 10 560
Green 10 665
Red Edge 1 20 705
Red Edge 2 20 740
Red Edge 3 20 783
NIR 10 842
Red Edge 4 20 865
Water Vapour 60 945
Cirrus 60 1375
SWIR 1 20 1610
SWIR 2 20 2190

experiments with the actual data (actual) in order to form a baseline where no generated data are employed.
Then we repeated the experiments with directly generated bands from RGB input (direct), as well as using the
iterative generation method (iterative). The results of this batch of experiments are shown in Table 2.

In the second part of our experiments (Part B), we have used the network trained with Eurosat data
in order to estimate spectral bands of another distinct dataset (UCM) acquired from a different sensor, over
different geographical regions. UCM is a purely color dataset; hence, even though we cannot validate the
accuracy of the computed estimations, we can all the same measure their effect on scene classification (Table 3).

Furthermore, a core question is which bands to estimate. Two approaches have been explored in this
regard. In the first, the decision was intuitively made depending on which band minimized the reconstruction
loss in the noniterative experiments. This, however, did not lead to satisfactory validation losses (Figure 3).
Consequently, we adopted a different second approach, where the bands between RGB and the band with
the least reconstruction loss were selected. This led to a significant drop in validation loss (Figure 4). This
phenomenon is presumed to be related to the strong affinity of neural networks to interpolate between given
boundaries.

3.2. Training
We employed aggressive data augmentation in training both our generative and discriminative models, through
flipping, mirroring, random translations around 10 pixels, and random rotations between –20 and 20 degrees.
Both of our models operate with batches of 16 images and no other regularization other than batch normalization
has been employed.

Training started with a very high learning rate of 0.05 and lasted for 5 epochs. If the training loss descends
below a certain threshold then it is further dropped to 0.01 for 15 more epochs and training continues for 60 more
epochs with the learning rate being halved every 10 epochs. If the loss value does not fall rapidly enough, training
is stopped completely for that particular band. Please note that in Part B of our experiments, no hyperparameter
search has been conducted for the UCM dataset; instead, in order to simulate a practical scenario, all model-
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Figure 3. Validation loss of the direct generative process
w.r.t. epochs.

Figure 4. Validation loss of iterative generative process
w.r.t. epochs. Readers should notice the significant drop
in the reconstruction loss in the NIR, Vapour, and Red
Edge 2 bands.

related hyperparameters have been transferred from Eurosat. We performed all our experiments on a humble
computer with i5 processor, 16 GB of RAM, and 2 SLI’ed NVIDIA GTX 1070 graphics card.

Our generative model has over 8.4 million parameters and training per image required 19 ms and testing
consumed 9 ms. The discriminative model was of course faster. Training a batch lasted only 30 ms and average
prediction duration was no more than 2 ms. All implementations were based on TensorFlow.

3.3. Results
The results of our quantitative scene classification experiments are reported in Tables 2 and 3 as classification
accuracies averaged across 5 training runs for Eurosat and 50 runs for UCM. The standard deviations were
negligible, so they were omitted.

In Part A of our experiments (Table 2), where we worked exclusively with the Eurosat dataset, our
baseline (Actual) performance was measured using the available original bands progressively together with
RGB to obtain a baseline of how well the network performs without any estimation involved. As expected,
classification performance increased from 0.868 using only RGB data, all the way to 0.937 with 6 more additional
spectra.

Next, using the Direct strategy, were each additional spectral band was estimated only from RGB, the
estimated spectral bands were progressively stacked together and a minor improvement of 1.5 percentile points
was observed; albeit minor this result convinced us that the network can in fact produce useful data.

Then, with the Iterative strategy, the best generated band with respect to the reconstruction loss was
combined with the original RGB image and used together in estimating the next band. In this case, the
improvement w.r.t. using only RGB was recorded as 3.6 percentile points (0.904), indicating that the network
has estimated a significant amount of classification-wise useful data.

Nevertheless, despite the promising improvements, one can easily argue the practical interest of this
validation strategy, since Eurosat already possesses non-RGB bands. That is why we put the method to
test in Part B using UCM, which is an RGB-only dataset, at a much finer spatial resolution and explored
whether a network trained to estimate non-RGB bands with one dataset (Eurosat) can transfer its know-how
to another that it has not witnessed before. Surprisingly, it turned out (Table 3) that this is not impossible, as
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an improvement of 1.4 percentile points was observed (0.931 from 0.917). In order to safely rule out network
biases, these values were computed as means across 50 runs.

Table 2. Scene classification accuracy with the Eurosat dataset (Part A). Each column represents the spectral band
included along the data to its left during testing; e.g., “+ Red 2” denotes “RGB, Red 1 and Red 2”. Best results are
given in bold font.

RGB + Red 1 + Red 2 + Red 3 + NIR + Red 4 + Vapour
Actual 0.868 0.883 0.925 0.931 0.933 0.935 0.937
Direct 0.868 0.882 0.879 0.883 0.879 0.880 0.876
Iterative 0.868 0.882 0.895 0.898 0.896 0.894 0.904

Table 3. Scene classification accuracies with the AID and UCM datasets, using estimated channels along with RGB
data (Part B). Best results are given in bold font.

RGB ..+Red 1 ..+Red 2 ..+Red 3 ..+NIR ..+Red 4 ..+Vapour
UCM 0.917 0.922 0.926 0.924 0.931 0.922 0.927
AID 0.864 0.872 0.874 0.87 0.874 0.88 0.879

4. Discussion
Our work proposes that scene information can be used to estimate additional spectra of that particular scene.
Numerical results presented in the previous section are encouraging in this direction. Intuitively, this claim is not
bulletproof. From a scientific point of view, it not possible to estimate EM emission or scattering of a nonblack
body from its visual spectra. We are well aware that our empirical demonstration does not present proof that
the developed generative model is in fact estimating non-RGB bands from RGB, but our assumptions and the
proposed method do not rely on deterministic mathematical models but rather draw power from statistical
learning theory. We assume that there are statistically significant amounts of data to capture the relations
between various channels and between scene content. If there is a statistical relation between these objects and
channels, the generative model tries to approximate the latent distribution between content and the channels.
In Table 3 we presented that there is a small but significant correlation between channels and content.

The main weakness of the proposed method is that the generative model needs immense amounts of data
to capture the latent distribution. This is not unique to our case. This behavior can be seen in almost all
statistical learning machinery. Lacking the necessary amount of training data hurts our model severely, since
our solution depends not only on relations between bands but also relations between content and source of these
multiband image samples. Intuitively, another drawback of our model is that training samples should cover a
vast number of multiband images with highly diversified scene content; in other words, it needs very different
scene images with high intraclass variance so that it can encode the relation between content, scene, and the
channels.

Nevertheless, the proposed method shows promising results although the performance of estimated bands
is not as high as original bands on classification tasks. We show that our method encoded some information
between scene bands and scene contents. We chose to refer to this information as side-channel information,
and the practical potential of this information has been measured in the context of our scene classification
tests as positively nonnegligible. The knowledge transfer test to a distinct dataset (from Eurosat to UCM) was
particularly important from this regard, as it showed that the learned relations between RGB and near infrared
bands are not specific to the training Eurosat dataset and are not impossible to generalize. This opens a wide
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direction of research especially in terms of pixel-based spectrum estimation and its effect on pixel classification
performance and land-cover map calculation.

5. Conclusion
This paper has explored the estimation of infrared channels through neural generative models and their practical
use in a scene classification context. Two alternative strategies have been explored; the first relies on the use
of only RGB bands and the second approach, which we named iterative generation, is based on merging the
estimated bands with RGB to subsequently predict unseen bands. The selection of these bands to target for
estimation has been also investigated. Overall, at this preliminary stage our qualitative and quantitative results
have shown promising empirical indications that generative models can contribute up to a certain degree to the
estimation of non-RGB bands and definitely merit further research.
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