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Abstract: Unmanned aerial vehicles are becoming an important part of the modern life. Despite some recent advances
in GPS-aided navigation of quadrotors, the concern of crash and collision still overshadows their reliability and safety,
especially in GPS-denied environments. Therefore, the necessity for developing fully automatic methods for safe, accurate,
and independent landing of drones increases over time. This paper investigates the autolanding process by focusing on an
accurate and continuous position estimation of the drone using a monocular vision system and the fusion with the inertial
measurement unit and ultrasonic sensors’ data. An ARUCO marker is used as the landing pad, and the information is
processed in the ground station through a real-time Wi-Fi link. In order to overcome the closed loop instability caused by
the communication and localization delays, we propose a method called ”movement slicing method”. This method divides
the moves around the marker into moving and waiting slices and makes the landing process not only more accurate but
also faster. Experimental results show a successful landing of the UAV on a predefined location, while it is accurately
aligned with the marker using the proposed method.
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1. Introduction
Unmanned aerial vehicles (UAVs) have recently attracted a great attention among aerospace, control, and
robotic researchers. Quadrotors are one of the most useful types of UAVs and have been widely used in various
research projects due to their simplicity, great controllability, and vertical take-off and landing capabilities.
Manual landing of a quadrotor usually has some difficulties. For instance, it is hard for a pilot to reduce the
height of the quadrotor gradually and land it smoothly and accurately on an intended location. Moreover, in
most cases, we need to land the quadrotor without any human involvement. Although automatic landing of a
quadrotor can be done using GPS feedback, the landing in GPS-denied areas is still an open research subject.
In this paper, we propose a new method for automatic landing of UAVs which uses a monocular vision system
for precise positioning of the UAV. Increased landing accuracy, safety, and reliability is the main advantage of
our proposed method.

In the literature, simulation of various control methods such as sliding mode [1] and nonlinear controllers
[2] has been studied. Some researchers studied on landing quadrotors on predefined places and charging them via
wireless chargers [3] or by connecting them to some specific landing platforms [4, 5]. In [6, 7], the infrared camera
∗Correspondence: mshoaran@tabrizu.ac.ir
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is used for tracking the quadrotor. IR-Lock system1 has been also introduced as an off-the-shelf solution for
precise tracking and landing of UAVs. However, it has some shortcomings such as limited accuracy [8], necessity
of another dedicated infrared camera, and finally having a marker which consumes electrical power. On the
other hand, landing on a moving target is also an important research subject. Authors in [9–11] developed a
system, in which an AR.Drone UAV lands on a ground vehicle. Other researchers studied automatic landing of
a PID-controlled low-cost quadrotor [12], or used H-shaped markers on pushcart carriers as the landing target
[13]. However, the direction of the quadrotor was not considered in these studies. Researchers in [14] intended
to land the quadrotor while it was aligned with the marker. In some other studies, the automatic landing was
simulated in the Gazebo simulation environment [15–17]. Furthermore, load transporting problem in UAVs was
investigated using neural networks in [18], where the take-off, landing, and target tracking missions were all
carried out autonomously in real time. A report from Berkeley University [19] mostly focuses on the optimization
of a real-time image processing hardware and software, including multithread processing and pattern recognition
libraries. Authors in [20, 21] tried to determine a safe landing area for a quadrotor using several methods.

Clearly, some of the aforementioned solutions suffer from being expensive, or some others do not focus on
time efficiency and accuracy of the landing process. Therefore, in this article we implement an effective solution
for automatic landing of an AR.Drone 2.0 quadrotor on a predefined marker in the presence of closed loop
delays. As shown in Figure 1, first, the quadrotor approaches the marker using the inertial measurement unit
(IMU) sensor and the Kalman filter. Then, the drone position w.r.t. the marker is estimated once the marker
becomes visible in the drone camera. Finally, it aligns with the marker and lands on it. We illustrate different
types of landing markers in Section 2. The position estimation with IMU and vision sensors are discussed in
Section 3. In Section 4, the control loop and the proposed algorithm for landing using both IMU and vision
sensors are explained. Finally, the proposed method is evaluated by the experiments illustrated in Section 5.

2. Landing markers

One of the key points in vision-based landing is to use a proper marker. Various types of markers used in the
former studies are shown in Figure 2. Markers a and b, which were used in [22] and [23], have an advantage
of simplicity, but their symmetrical shapes do not let us estimate 3D position. Marker c, which was used in
[13, 14], and also marker f used in [9], are good symbols for the landing pad due to their distinguishable shapes
and colors, but they are also symmetric. We can estimate the height using marker e by detecting different sizes
of circles [24]. Marker d in [25] consists of two colors for better detection, and marker g used in [19, 26], is a little
more complex. Despite the fact that both of the markers d and e enable us to perform 3D pose estimation, their
unique configuration prevents us from having multiple markers with different ID codes. Marker h (ARUCO
marker [27]), however, can produce 1024 markers with various ID numbers. Marker i (AprilTag marker) which
is utilized by the researchers in [17] is a multilevel marker and can be detected from a wide range of distances.
Detection of these markers could be very challenging though, due to the presence of small black and white
features. Researchers in [28] conducted a useful survey on various markers and approaches to recognize them.
In this research, we use ARUCO marker.

3. Position estimation
We need a reliable feedback of the states in order to control an unstable system like a quadrotor. Due to the
IMU sensor’s aggregated error through time, we use both vision and IMU feedbacks for more accuracy. There

1IR-LOCK (2019) infrared tracking systems for drones [online]. Website https://irlock.com [Accessed on 01/01/2019].
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Figure 1. Various stages of drone navigation.

are two reference systems to formulate the quadrotor’s equations, (1) the ground coordinate system XG, YG ,
ZG , and (2) the drone’s body coordinate system Xc, Yc , Zc . The center of the marker is assumed to be the
center of the ground coordinate system, while optical center of the camera is assumed to be the center of the
drone’s coordinate system. We use u and v in this paper to represent the image coordinate system. Figure 3
illustrates the aforementioned coordinate systems.

3.1. Position estimation using inertial sensors
The IMU sensor is used to provide the velocity, the acceleration, and the angle of the drone in all directions.
We can estimate the drone’s current position using dead reckoning [29] and the drone’s former positions and
velocities. The Kalman Filter is employed in order to improve measurements of the IMU sensor [30–32].
Therefore, the state vector in step k , xk , is as follows:

xk =
[
xGIMU

yGIMU
zGIMU

ẋGIMU
ẏGIMU

żGIMU

]T
k
, (1)

where xGIMU
, yGIMU

, and zGIMU
are the drone’s position w.r.t. the ground frame and ẋGIMU

, ẏGIMU
and

żGIMU
are the drone’s velocity in three directions w.r.t. the ground frame. According to the Kalman filter

model, the state of the system in step k could be obtained from the state of the system in step k− 1 , with the
following equation,

xk = Fkxk−1 +Bkuk + wk, (2)

where Fk is the state transition matrix, Bk is the control–input matrix, and wk is the process noise which is
assumed to be a zero mean Gaussian white noise with covariance Qk .

wk = N(0, Qk) (3)

We define the state transition matrix (Fk ), and the observation matrix (Hk ) as in the following,

Fk =

[
I3 dtI3
O3 I3

]
, Hk =

[
O4×2 I4

]
(4)
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Figure 2. Various types of landing markers used in different studies.

where dt = 0.041 s is the sampling time, Ix is x × x identity matrix, and Ox is x × x zero matrix. A
measurement of the state xk at step k is performed according to the following equation:

mk = Hkxk + vk, (5)

where vk is the observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk .

vk = N(0, Rk). (6)
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Figure 3. All three frames: drone’s camera frame, image frame, and reference or ground frame

We assume that Qk and Rk of the Kalman filter obtained from the experimental tests are as follows.

Qk =

[
0.1I3 O3

O3 0.3I3

]
, Rk =

[
0.1I2 O2

O2 0.05I2

]
(7)

The vector of the measured velocity of the drone (VC ) w.r.t. to the local frame is as follows.

VC =
[
ẋCIMU

ẏCIMU
żCIMU

]T
. (8)

In order to transform these vectors to the ground frame, we have to multiply them by the rotation matrix.
This matrix is formed through multiplying three other matrices R(φ), R(θ) , and R(ψ) , where R(φ) represents
rotation around its own longitudinal axis, R(θ) denotes rotation around its own transverse axis, and R(ψ)

indicates rotation around an axis which is perpendicular to the other two axes [33], and φ , θ , and ψ are given
by the AR.Drone’s gyroscope sensor. Therefore, the velocity vector w.r.t. the ground frame (VG ) is as follows.

VG = R (ψ) ∗R (θ) ∗R (φ) ∗ VC . (9)

Finally, the measurement vector for the Kalman filter will be as follows.

mk =
[
zGIMU

VG
]T

=
[
zGIMU

ẋGIMU
ẏGIMU

żGIMU

]T
. (10)

3.2. Position estimation using visual signs
In this section, first, we address the methods used for detection and identification of the marker. Then, vision-
based position estimation is explained.
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3.2.1. Detection and identification of the landing marker

We use the ARUCO marker [27] in this study, which is very popular in augmented reality projects for estimating
the position of the camera. The RGB image (Figure 4a) provided by the drone’s camera is converted to a gray-
scale one (Figure 4b) at the first stage. Then, the gray-scale image is converted to a binary image (Figure 4c)
through applying an adaptive threshold method. This process is performed in order to achieve a smaller
processing time.

Figure 4. (a) Original image captured by AR.drone’s downward camera, (b) gray-scale converted image, (c) binary
image, (d) detected contours, (e) rotation and perspective correction of detected markers, (f) the zoned marker with the
code of 586, and (g) detected markers.

To detect the marker contour detection algorithm explained in [34] is applied to the binary image.
Figure 4d shows the results. This method returns a list of detected contours described by quadrilaterals. Next,
the contours which are five times smaller than the original image are filtered out because they most probably
do not contain any valid or detectable markers [35]. Similarly, after finding contours, if they have more or less
than four corners, definitely they are not the appropriate ones. The effect of perspective projection should be
compensated before we could detect the marker’s code. Therefore, the perspective transformation of the image
is found using four corresponding pairs of points, and then, this transformation is applied to our marker to make
it a frontal view as shown in Figure 4e. At this stage, we apply another threshold function on the candidate
marked area. This time we employ Otsu’s algorithm which is more accurate [36]. This algorithm assumes a
bimodal distribution and finds the threshold value that maximizes the extraclass variance while keeping a low
intraclass variance. A marker is seen as a 7 × 7 binary matrix. The outer blocks form a black square so that
it can easily be detected with image processing methods. Remaining parts form a 5 × 5 matrix as shown in
Figure 4f, each row of which is composed of five bits. Just two bits out of five are data bits and the other three
bits exist for the purpose of fault detection. Fault detection is done using a method similar to the hamming
code. The difference between the hamming code and this code is in the first bit which is inverted here. So a
zero line, which has the hamming code of 00000, is coded as 10000 here to prevent a blank square of becoming
valid. This is due to the fact that a blank square could be easily found in the real world and we do not want to
detect it as a marker. Eventually, we have 10 bit code as an outcome of the aforementioned procedure, using
which we can identify 1024 various IDs of ARUCO markers [16]. At this point, correct rotation of the marker
could be found by comparing the error values in each line because the proper rotation of the marker should
end up having no error at all [35]. Now another corner finder function with subpixel accuracy is applied to the
candidate contours to achieve a better performance. Figure 4g shows the contours found.
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3.2.2. 3D position estimation

In this section, we are going to find the rotation and translation matrices between drone’s camera frame and the
reference or ground frame using the images taken by the drone’s vision system. The following equation defines
how the points in the image plane are the projections of the corresponding points in the world coordinate system
(11),

spi = A[RG|TG]qi, (11)

where s is an arbitrary scale factor, qi (i=0…n) is an arbitrary point in the world coordinates, and pi is its
projection in the image plane. RG shows the rotation of a rigid body from camera to the world frame and
TG is the translation vector for camera-to-world frame. The joint matrix of [RG|TG] is the camera’s extrinsic
parameters, whereas A is usually called the intrinsic parameters of the camera [37]. Matrix A can be found
through the camera calibration. Eq. (11) can be reformed as follows,

s

 u
v
1

 =

 fx γ cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r13 r32 r33 t3



XG

YG
ZG
1

 , (12)

where XG , YG , ZG , and (u, v)T represent a point in 3D world coordinate and its projection in 2D image
coordinate system, respectively. (cx, cy)

T denotes the center of the image. rij represents an element from
(RG ), whereas ti represents an element from (TG ). fx and fy stand for focal lengths in the scale of pixel.
Finally, γ is the skew factor.

Given that the marker is placed at the center of the ground frame, the coordinates of four corners of the
marker are known (q1–q4). On the other hand, four corresponding corners of the marker in the image plan
(p1–p4) are already found using the image processing step. Figure 5 better illustrates this fact. Therefore, RG
and TG can be found using Eq. (11) and the EPnP method proposed in [38].

Figure 5. Projection of n points from the real world into the image plan (C is the camera center).
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To convert a rotation vector into a rotation matrix with the same number of rows, Rodrigues’ equation
is utilized [16]. After calculating RG and TG of the marker frame w.r.t. the camera frame, we have to find
RG and TG of the camera frame w.r.t. the world frame. Given that D is any vector in the camera frame, by
applying transformation on this vector we have:

D′ = RGD + TG, (13)

where D′ is the transformed matrix of D in the ground frame. By reforming (13), we have:

D = RTG(D
′ − TG), D = RTGD

′ −RTGTG. (14)

Thus, RC = RTG and TC = −RTG.TG represent rotation and translation matrices from the ground frame
to the camera frame, respectively [16]. Thus, we have:

[RC |TC ] =

 r′11 r′12 r′13 t′1
r′21 r′22 r′23 t′2
r′31 r′32 r′33 t′3

 . (15)

Now quadrotor’s position and rotation could be found as follows:

xGV ision
= t′1, yGV ision

= t′2, zGV ision
= t′3, φGV ision

= tan−1(
r′32
r′33

), (16)

θGV ision
= tan−1(

−r′31√
(r′32)

2 + (r′33)
2
), ψGV ision

= tan−1(
r′21
r′11

), (17)

where xGV ision
, yGV ision

, zGV ision
, and φGV ision

, θGV ision
, and ψGV ision

are vision-based position and roll,
pitch, and yaw angles of the quadrotor w.r.t. the reference frame, respectively.

4. Autolanding control algorithm

Our algorithm is divided into two main parts, position control with the IMU feedback and with the vision
feedback, each of which is discussed in this section.

4.1. Navigation control algorithm using IMU

The drone is far from the landing area at the beginning, and the marker is out of the camera’s field of view. The
approximate location of the marker is given to the drone, and the drone moves toward the marker using the IMU
sensors’ feedback. One of the famous controllers that can be used for this purpose is the PID (proportional–
integral–derivative) controller. For calculating the gains of the controller, first, the proportional gain is improved
up to the point that the system starts to oscillate. Then, the derivative gain is added until the system reaches
the border of damping. Finally, some integral gain is added to compensate the steady state error.

To apply the PID controller, a desired point Xd = (xdG , ydG , zdG) , is defined above the marker. Assuming
X = (xGIMU

, yGIMU
, zGIMU

) as the current position of the drone, the PID controller is applied on the position
error E = Xd−X , where E = (ex, ey, ez) , and ex, ey , and ez are the position errors in directions XG, YG , and
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ZG , respectively. Considering that the error may not be differentiable, we apply the differential gain directly
to the feedback value instead of the error [16]. Equations of this phase are as follows,

Vx = KpxIMU
ex −KdxIMU

dxGIMU

dt
+KixIMU

∫ t

0

exdt, (18)

Vy = KpyIMU
ey −KdyIMU

dyGIMU

dt
+KiyIMU

∫ t

0

eydt, (19)

Vz = KpzIMU
ez −KdzIMU

dzGIMU

dt
+KizIMU

∫ t

0

ezdt, (20)

where Vx, Vy , and Vz are linear velocities which are applied to the drone in directions XG, YG , and ZG ,
respectively, Kp,Ki , and Kd are the proportional, integral, and differential coefficients of the PID controller,
respectively, which are obtained experimentally as follows. KpxIMU

KixIMU

KdxIMU

 =

 KpyIMU

KiyIMU

KdyIMU

 =

 KpzIMU

KizIMU

KdzIMU

 =

 0.4
0.001
0.01

 . (21)

4.2. Vision-based position control algorithm
When the landing marker becomes visible by the drone’s camera, the vision-based position estimation turns
active. Unfortunately, the drone does not move linearly proportional to the desired velocity, and slips easily.
Furthermore, the position estimation and communication delays are other problems in this regard. It means
that the commands, which should be executed in a particular position and time, would be executed later due
to the drone’s inertia, delay, and internal controller. Therefore, it will not stop at the desired position, and the
drone will oscillate around the marker. In order to overcome this problem, close to the marker we divide the
moving time into smaller time slots and we place halting slots between every moving slot to control the drone
accurately. We call this method ”movement slicing method”.

The drone’s speed is usually set proportional to the drone’s position error as in the following,

Vx = KpxV ision
(xdG − xGV ision

), Vy = KpyV ision
(ydG − yGV ision

), Vz = KpzV ision
(zdG − zG), (22)

where KpxV ision
, KpyV ision

, and KpzV ision
are the proportional coefficients of the controller in directions

XG, YG , and ZG , respectively, xGV ision
and yGV ision

are the vision-based estimated positions w.r.t. the ground
frame in directions XG and YG , respectively, and zG is the weighted sum of the data received from the vision,
barometer sensor, and ultrasonic sensors as follows:

zG = w1zGS
+ w2zGV ision

, (23)

where the value zGS
is received from the ultrasonic and barometer sensors of the AR.Drone and zGV ision

is the
vision-based zG estimation. The best values of coefficients w1 and w2 are 0.7 and 0.3, respectively, obtained
through the experiments. However, we also set the moving time proportional to the drone’s position error as in
the following,

Tx = KptxV ision
(xdG − xGV ision

), Ty = KptyV ision
(ydG − yGV ision

), (24)

1829



SANI et al./Turk J Elec Eng & Comp Sci

where KptxV ision
and KptyV ision

are the proportional coefficients and Tx and Ty are the calculated moving
periods in directions of XG and YG , respectively. Figure 6 shows the movement slicing method in direction
XG . There are two periods of actions: moving slot and halting slot. For example, in time slot 1, the drone is
moving with the velocity of Vx for the calculated period of Tx . Next, it waits in time slot 2 until the drone
becomes stable and the unwanted slips disappear completely, and then, it moves during the time slot 3 again.
This is repeated until the drone reaches an acceptable area around the center of the marker. This algorithm
eliminates the effects of any kind of time delays in the robot control, thereby ensuring its stability. In addition,
the position estimations are taken into account during the halting period rather than the moving period, which
also increases the accuracy of the estimations. Finally, according to the experimental results, the drones using
the proposed algorithm perform the landing mission more smoothly with almost no oscillations around the
target.
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Figure 6. Timing graph of the moving and halting time slots in the movement slicing method in direction XG .

4.3. Drone’s alignment with the marker
The goal is landing the quadrotor aligned with the marker. First, the drone should be positioned above the
center of the marker so that the marker does not exit from the camera’s field of view when it is turning.
Therefore, we put a 3D reference point on the center of the marker to check whether this point’s image is in the
valid region of the image or not, as in Figure 7. Next, we apply a turn command in order to align the quadrotor
with the ground frame. Hence, another PID controller is designed for the angle (ψ ) error as follows:

eψ = ψdG − ψGV ision
, (25)

where ψdG is the drone’s desired angle w.r.t. the ground frame and eψ is the angle’s error. To align the drone
with the marker, the drone’s longitudinal axis is turned towards the marker’s XG axis with the rotation speed of
ωψ . This speed depends on the angle error between the drone and the marker, an integral term and a derivative
term which form the PID controller, as follows:

ωψ = Kpψeψ −Kdψ
dψGV ision

dt
+Kiψ

∫ t

0

eψdt, (26)

where Kpψ ,Kiψ , and Kdψ are coefficients of the controller found experimentally as follows:(
Kpψ, Kiψ, Kdψ

)
=

(
0.5, 0.001, 0.001

)
(27)
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Figure 7. Checking the reference point’s positioning in the valid central region of the image.

4.4. Landing algorithm

Prior to the landing, three important conditions have to be met. The drone should (I) be positioned exactly
above the center of the landing marker, (II) have zero speed (it should be still), and (III) have the zero yaw
angle w.r.t. the ground frame. After that, the quadrotor can gradually land on the marker. It is worth to
mention that in this step, vision, ultrasonic, and barometer sensors are utilized altogether to reach the highest
accuracy. In addition, another PID controller is used for the quadrotor’s height control as follows:

Vz = Kpzez −Kdz
dzG
dt

+Kiz

∫ t

0

ezdt (28)

where zG is the drone’s height (calculated by Eq. 23), ez is the height error, Kpz , Kiz , and Kdz are the
proportional, integral, and derivative coefficients, respectively obtained experimentally as follows:

(
Kpz, Kiz, Kdz

)
=

(
0.5, 0.01, 0.001

)
(29)

Figure 8 shows the autolanding procedure flowchart and Figure 9 shows the drone’s control flowchart.
According to the experimental studies, controlling the quadrotor gets very difficult when it is closer than 20 cm
to the ground. This behavior, which is caused by wind effect of the propellers, is called ”near ground effect”.
Researchers in [17] also reported unstable behavior of the AR. Drone due to the sensors’ recalibration and wrong
measurement in lower heights. Therefore, we found it safe enough to turn all of the four motors off as soon as
the drone is closer than 15 cm to the ground.
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5. Experimental results
The proposed method is implemented and evaluated on an AR.Drone 2.0 quadrotor using its downward camera,
with the quality of QVGA and the field of view of 64 degrees. Figure 10 shows AR.Drone 2.0 while it is landing
on a marker.

Start autolanding 
Operation

Is marker 
detectable ?

Vision-based 
navigation 
toward the 

marker

Navigation toward 
marker’s specified 
position using IMU 
and Kalman filter

Is drone in the 
center of the 

marker?

Is drone’s side 
aligned to marker’s 

side?

Is altitude lower 
than 20 cm?

Turn motors Off and 
finish

Decreasing the 
altitude with PID 

controller

Turn to desired side 
with PID controller

Is drone’s speed 
zero?

Move toward the 
marker with 

“Movement Slicing 
Method”

Moving toward the 
marker using PID 

controller

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Figure 8. Detailed flowchart of the UAV’s automaticlanding.

The main program which controls the drone through the Wi-Fi link runs on a laptop computer with the
following specifications: DELL Studio 1558; CPU: Core i-7 Q720 1.6GHz; Ram: 6GB; OS: Ubuntu Linux 14.04
LTS 64 bit. Figure 11 illustrates the main block diagram of the drone and the ground station. Every part of the
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-b

Figure 9. Control loop of automatic landing of UAV with two modes of using the vision or IMU sensors.

Figure 10. AR.Drone 2.0 quadrotor during autolanding on the marker.

program in the ground station is implemented in a different thread in order to achieve a better performance.
Size of the markers is assumed to be 13×13 cm in all of the upcoming experiments.

5.1. Moving toward the marker

In Figure 12 the drone flies from position (−1, 0, 1) to position (0, 0, 1) , where the marker is placed. A PID
controller with IMU and vision feedback is used for this purpose. However, as Figure 12 shows the drone
oscillates around the marker due to the drone’s delay in executing the commands. For example, the PID
controller has figured out that the position is zero at 6.5 th s, and it resets the drone’s movement command to
zero. However, the drone continues moving until the 8 th s and then, it executes this command in the 9 th s
which is too late and the drone has some distance from the desired point. This happens again and again so
the drone oscillates. However, as it is shown in Figure 13 when the movement slicing method is employed to
solve the problem, the drone stops as soon as the marker is seen and performs the rest of the mission with the
machine vision part.
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Figure 11. Main block diagram of the drone and the ground station.
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Figure 12. The velocity and the position of the drone in direction XG during an unsuccessful flight without using
“movement slicing method”.

5.2. Precise positioning above the marker and landing

In this section, we address the complete landing procedure with the moving and halting time slots as shown in
Figure 14. In this figure, the drone starts to fly in the 6th s and rises up to the height of 1.3 m, and in the 10th s,
the autolanding procedure starts. First, the drone could not see the marker with the camera, so it moves toward
the defined position using the IMU sensors to reach around the marker. After the 17th s, it sees the marker and
the feedback changes to the vision state. The drone waits until the speed is declined to almost zero; after that
it moves in the XG and YG directions to align the marker with the center of the drone. Next, as it can be seen
in yaw angel the drone turns to be aligned with the marker using the PID controller. It moves again along the
XG and YG axes for 7 s in order to set the marker in the center of the drone precisely. After that, the drone
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Figure 13. The velocities and the positions of the drone in directions XG and YG during a successful flight using
”movement slicing method”.

slowly decreases the height to land on the ground precisely while keeping the marker in the center. The whole
landing time, from where the autolanding procedure was started (1 m horizontal distance and 1.3 m vertical
distance from the marker), took 15.7 s. Furthermore, the distance between the camera’s center and the marker’s
center after landing is 2.3 cm. This experiment is carried out 20 times and the results are reported in Table
1. To the best of our knowledge, there is no similar report about the experimental parameters of automatic
landing in the literature to compare our results with. However, some of the experimental results from other
closer researches are reported as a comparison in Table 2. It is worth noting that in another recent study [39]
regarding the vision-based landing of UAVs, an H-shaped marker was used as the landing pad, and similar to
our work, the position estimation and control were implemented using PID controller and Kalman filter. As it
is also mentioned in [39], one of the problems in that research is that the drone sometimes experiences sudden
movements and instabilities while in our research, these kind of problems have been solved using the ”movement
slicing method”. Furthermore, our proposed algorithm with the frame rate of 24 fps and the root mean square
error (RMSE) of 2.5cm in position estimation has a more acceptable performance compared to 20fps frame rate
and 1.37cm RMSE reported in [39].

Table 1. Experimental results

Number Test topic Result
1 The number of autolanding tests 20 times
2 The number of successful landings 17 times
3 The percentage of successful landings 85%
4 The average time of successful landings 14.3 s
5 The average distance from the center of the drone

to center of the marker after successful landing
2.9 cm

6 The average frequency of processing of images 24 Hz

*Landings were done with a distance of 1 m and an angle of 90◦ from the marker.

6. Conclusions
We proposed a new method for automatic landing of a low-cost commercial quadrotor called AR.Drone 2.0.
One of the challenging problems in vision-based position control of UAVs is the oscillation around the target
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Figure 14. Complete autolanding experimental result showing the position and yaw angel (extracted from both IMU
and Vision), real velocity and applied velocity in all three directions of XG, YG , and ZG .

Table 2. Automatic landing tests: a comparison

Ref Test topic Marker size
Position
estimation
max error

Height
�estimation
max error

Landing
time

This
work

IMU and vision-based
automatic navigation and
landing on an ARUCO marker

13 × 13 cm 1.8 cm in
30 cm (7%)

11.2 cm in
160 cm (6%)

14.3 s*

[16]
Vision-based pose estimation
algorithm using one marker
(simulation results)

6 × 6 cm 1.4cm in
25cm (5.6%)

5.5 cm (3.92%) 60 s**

[26] Vision-based state estimation Not reported 5 cm (5%) Not reported Not reported

[11] Stationary target landing in
IPS*** (simulation results)

30 × 30
AprilTag

Not reported Not reported 17 s****

[24] Vision-based pose estimation 45 cm (3.9%) 2 cm in
200 cm (1%)

Not reported

*Landings were done with a distance of 1 m and an angle of 90 ◦ from the marker
**Landings were done with a height of 1.6 m
***Indoor positioning system
****Landings were done from (x, y) = (0.2 m, 0.3 m) and height of 2.5 m

upon landing, which is due to UAV’s inertia and position estimation and communication delays. Our movement
slicing method solves this problem by dividing the moving time around the target into smaller time slots called
moving and halting. The moving time is proportional to the UAV’s position error and in halting time slot
UAV waits until it becomes stable and unwanted slips disappear completely. Experimental results show that
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this method not only stabilizes the whole system, but also achieves accurate landings (with position error of
only 3cm) in a short time. The results of this study are useful for developing fully autonomous, accurate, and
stable landing systems for package delivery drones. In addition, the proposed algorithm can be implemented
on a drone equipped with a powerful on-board computer in order to carry out all the computations on board,
thereby improving the accuracy and the efficiency of the system.
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