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Abstract: In this paper, a fast form of nonsingular, terminal, decoupled, sliding-mode control, which utilizes time-
varying sliding surfaces, is proposed for a class of fourth-order, single-input, multioutput, nonlinear systems. The novel
control law features a fast term, in the manner of fast terminal sliding-mode control, which markedly improves the
finite-time sliding-mode convergence speed near zero. Numerical simulation results, which are illustrated with a cart-
pole inverted pendulum system and a ball-beam system, demonstrate that the proposed control law achieves, in general,
favorable transient response and lower steady-state errors compared to state-of-the-art decoupled terminal sliding-mode
control methods.
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1. Introduction
Much attention has been devoted to the development of control methods for nonlinear systems, such as me-
chanical systems [1–4], robot manipulators [5, 6], aerospace systems [7], and power systems [8–10]. A significant
portion of the literature has focused on the sliding-mode control (SMC) method due to its many advantages, in-
cluding strong robustness, high control accuracy, computational simplicity, and ease of implementation [11, 12].
SMC is a type of variable-structure control method that uses a decision rule, more commonly known as a sliding
surface (or switching manifold), and a discontinuous feedback control law with differing control structures [11].
The sliding surface dictates the particular type of continuous function that should be used for the current
state-space location. The two main modes of operation constituting the SMC process are reaching mode and
sliding mode. In the former, the system state is attracted and driven toward the sliding surface; then, in the
latter, the state is constrained to traverse the surface towards the origin, which it reaches asymptotically using
linear surfaces [11]. The sliding surface is chosen so as to minimize tracking errors and guarantee stability [13].

Generally, traditional SMC methods use linear sliding surfaces, the convergence time of which is infinite.
Commonly known as terminal SMC (TSMC) [14, 15], an established approach for overcoming this problem has
been to use a fractional-exponent term in the sliding-surface function. This gives finite-time convergence of the
system states [16]. However, conventional TSMC controllers suffer from two potential problems: first, a negative
(fractional) power in the nonlinear term results in an unbounded control magnitude as the state approaches
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equilibrium, namely the singularity problem [17, 18], and second, good convergence behavior cannot be assured
when the system trajectory is at increased distances from the origin [19].

In [19], the authors proposed fast TSMC (FTSMC), which is based on the usage of an additional
linear term in the sliding-surface function. This approach guarantees fast convergence but does not tackle the
singularity problem [6]. Recent research has focused more on developing FTSMC while solving the singularity
problem [1, 2, 5–7, 9, 10, 20].

Time-varying sliding surfaces (TVSSs) have been used to shorten the duration of the reaching mode [21–
24], where SMC sliding surfaces are shifted and/or rotated. For example, the authors of [23] reformulate the
sliding-surface slope in terms of fuzzy rules, called fuzzy SMC (FSMC). Also, FSMC-based methods have been
introduced that minimize the set of required fuzzy rules with the aim of improving computational efficiency
and reducing complexity, e.g., [24]. There, a simple but powerful FSMC method is proposed, which uses
linear functions, which are derived from a one-dimensional (1-D) fuzzy rule base, to determine the slope of
time-varying, sliding surfaces.

Applied to systems with coupling between two or more subsystems, or to higher-order systems, it would
not be possible to achieve the same levels of performance using the aforementioned methods. For example, in a
cart-pole system, there is coupling between the cart position and pole angular position, for which a centralized
controller would be complex and may not produce acceptable performance. A popular approach to solving
this problem is to decouple the system into second-order subsystems using a two-level decoupling strategy [25],
called decoupled SMC (DSMC). By using two sliding surfaces—one per subsystem—these methods produce
more effective and simpler controllers [26–28]. One of the subsystems is chosen as the primary system, for
which the controller is designed using state information about the other (secondary) subsystem. Selection of
the primary subsystem is problem dependent; e.g., in our cart-pole example, the pole is chosen as the primary
subsystem since maintaining the pole in an upright position is of primary importance.

To the best of our knowledge, a fast TSMC has not been applied while utilizing TVSS for decoupled sys-
tems. Therefore, in this paper, we propose a type of fast, nonsingular, terminal, decoupled, SMC (FNTDSMC)
that uses TVSS for the control of a class of fourth-order, nonlinear systems. The proposed sliding surfaces
utilize time-varying coefficients, continuously computed via linear functions. The linear functions are derived
from the input-output mapping of a 1-D fuzzy rule base, as in [24]. This enables fast convergence of the system
states to the sliding surface. Decoupling of the subsystems is realized by embedding the target of the sec-
ondary subsystem into the primary subsystem via an intermediate signal in the manner of [25]. The proposed
FNTDSMC system exhibits a considerable improvement in terms of faster transient response and lower error
values as compared with the existing decoupled control methods.

2. Problem formulation

Many classical control algorithms are formulated as nonlinear, second-order systems, which can be expressed
by [11, 12]:

ẋ1 = x2,

ẋ2 = f(x) + b(x) u+ d(t),

y = x1 ,

(1)
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where x = [x1, x2]
T is the state vector, f(x) and b(x) are nonlinear functions representing system dynamics,

d(t) is an external disturbance bounded as |d(t)| ≤ D , u is the scalar control input, and y is the scalar output.
Such systems are called single-input, single-output systems.

Special forms of Eq. (1) are commonly used to model and control more complex systems, such as those
with multiple inputs and/or outputs. In this paper, we consider single-input, multioutput, underactuated,
fourth-order systems that can be modeled as [25–28]:

ẋ1 = x2,

ẋ2 = f1(x) + b1(x) u+ d1(t),

ẋ3 = x4,

ẋ4 = f2(x) + b2(x) u+ d2(t),

y = [x1, x3]
T ,

(2)

where x1 , x3 , and u denote the two outputs and a single input, respectively; x = [x1, x2, x3, x4]
T is the state

vector; and d1(t) and d2(t) represent external disturbances bounded as |di(t)| ≤ D , i = 1, 2 . Here, fi(x)
and bi(x) , i = 1, 2 , represent the nonlinear dynamics of the system. The system described by Eq. (2) could
represent, in particular, a cart-pole inverted pendulum system [25]. For a cart-pole system, for example, x1 ,
x3 , and u represent the pole angular position, cart position, and force exerted on the cart, respectively.

The aim here is to devise a control strategy that can control the type of system represented by Eq. (2)
to improve on the convergence and robustness performances achieved by the prior cart. However, there are two
inherent difficulties with this: (i) having fewer actuators than degrees of freedom increases the difficulty of the
control algorithm; and (ii) the simultaneous control of each individual subsystem is difficult, so in the above
cart-pole example, the controller will be designed to control either the cart or the pole. A well-known and
effective approach to tackling this problem is to apply a two-level decoupling strategy (as in [25]) that would
decouple the coupled system of Eq. (2) into Eq. (1); see Section 3.3.

3. Review of existing control methods
3.1. Terminal sliding-mode control

For second-order systems, as in Eq. (1), conventional TSMC uses nonlinear sliding surfaces [14, 15], e.g.,

s = λ x1
(p/q) + x2 , (3)

where p, q ∈ Z are positive and odd, satisfying p < q , and the sliding surface parameter λ > 0 becomes a
parameter replacing the slope of the classical linear sliding-surface function [11]. For the TSMC sliding surface,
it has been shown that the time to reach the equilibrium is [16]:

tr =
1

λ (1− p/q)

∣∣x1(0)
∣∣1−(p/q)

. (4)

It is evident from Eq. (4) that the system enters the terminal sliding mode in finite time. This is in contrast
to SMC where finite-time convergence is not guaranteed. It is known that the classical TSMC suffers from the
singularity problem, occurring for the case x1 = 0 and x2 ̸= 0 [17, 20], which needs to be addressed.
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3.2. Fast nonsingular terminal sliding-mode control

Although faster convergence is achieved when the system state is near equilibrium, TSMC may exhibit much
slower convergence for the case where the state trajectory is far from equilibrium [19]. To address this issue fast
nonsingular TSMC (FNTSMC) has been proposed, which also avoids the singularity problem. For second-order
systems, the FNTSMC sliding-surface function is [6]:

s = λ |x1|(p/q) sgn(x1) + α x1 + x2 , (5)

where the proportional term α > 0 is used to achieve faster convergence when the state is away from the origin.
It is well known that the convergence time for FNTSMC is [6]:

tr =
1

α (1− p/q)
ln

α
∣∣x1(0)

∣∣1−(p/q)
+ λ

λ
. (6)

Motivated by the work in [28], the effect of the additional proportional term on the performance of the
controller can be analyzed by simulating both Eqs. (4) and (6). To this end, a plot of λ versus convergence
time tr is shown in Figure 1 for α = 3 . We see that by increasing the value of the sliding-mode parameter
λ , the convergence speed of both techniques improves. Moreover, it is clear that the fast term in FNTSMC
unlocks performance regions, in terms of reduction in convergence time, that are unreachable to TSMC.
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Figure 1. Convergence time tr for different λ values.

3.3. Decoupled control

An effective way of controlling two subsystems, e.g., Eq. (2), simultaneously is through the use of a two-level
decoupling strategy, or DSMC, [25]. This can be realized by first identifying the primary subsystem: the
system for which the controller is designed with the main objective in mind. Then state information regarding
the secondary subsystem is embedded into the primary subsystem via an intermediate signal, z . The sliding
surface s1 related to the primary subsystem is given by [25]:

s1 = λ1 (x1 − z) + x2 , (7)
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and z is defined as

z = sat
(
s2
ϕz

)
zu , 0 < zu < 1 , (8)

where ϕz > 1 ,

sat(φ) =
{

sgn(φ), if |φ| ≥ 1

φ, if |φ| < 1,
(9)

is the saturation function. Here, sgn(φ) is the sign function [29] and s2 is the sliding-surface function for the
secondary subsystem, given by

s2 = λ2 x3 + x4 , (10)

where λ1, λ2 > 0 . Intuitively, ϕz scales down s2 into an appropriate range for s1 , and zu imposes an upper
bound on z , which makes for an effective way of transferring state information between the subsystems.

Note that since the sliding function s1 in Eq. (7) is defined in terms of the intermediate signal, the
objective of the controller is x1 = z and x2 = 0 , instead of x1 = 0 and x2 = 0 .

3.4. Time-varying sliding surfaces
Previous works have focused on the adaptive selection of the sliding surface parameter λ for the purpose of
shortening the reaching-mode duration and thus achieving faster convergence to the sliding mode [8, 21–24]. In
particular, application of fuzzy-logic schemes have shown success in calculating the sliding-surface slope [23, 24].
An efficient 1-D fuzzy rule base was proposed that effectively adjusts the slope of the linear sliding surface of
second- and fourth-order systems in [24, 27]. In [8], Komurcugil used the 1-D fuzzy rule base to reduce the
reaching mode duration in the control of single-phase UPS inverters.

This rule base is reproduced in Table 1, and the linguistic fuzzy rule is:

Table 1. One-dimensional rule base used to adjust λ .

Xd NB NM NS ZR PS PM PB
Λ VVB VB B M S VS VVS

IF xd is Xd THEN λ is Λ, (11)

where
Xd = |X1| − |X2| , (12)

where X1 , X2 , and Λ are “fuzzified” forms of the crisp variables x1 , x2 , and λ , respectively.
During the control process, the corresponding fuzzy values for x1 and x2 are used with the fuzzy inference

system for successful operation. The output membership functions, Λ , are confined to the set {Λ | 0 ≤ Λ ≤ 2} ,
which produces a positive sliding-surface slope and maintains system stability. By restricting the midpoint of
output membership functions to unity we ensure that, after the transient period, the time-varying λ will be
equal to the equivalent fixed parameter used by the traditional SMC/TSMC. The fuzzy input membership
functions are labeled as negative-big (NB), negative-medium (NM), negative-small (NS), zero (ZR), positive-
small (PS), positive-medium (PM), and positive-big (PB), whereas the fuzzy output membership functions are
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denoted by very-very-small (VVS), very-small (VS), small (S), medium (M), big (B), very-big (VB), and very-
very-big (VVB). Each membership function is an isosceles triangle. These membership functions are uniformly
distributed with a 50% overlap. For more detail, the reader is referred to [24].

This set of fuzzy rules has been shown to provide a very efficient fuzzy inference system as compared to
systems employing 2-D fuzzy rule bases [12, 23]. The control surface generated by this 1-D fuzzy system can
be approximated by the following linear equation [24]:

λc = G3

(
− 0.9

(
|G1 x1| − |G2 x2|

)
+ 1

)
, (13)

where G1 , G2 , and G3 are, respectively, the input and output scaling gains of the fuzzy system, and λc is
referred to as the “crisp” lambda value. The implicit linearization eliminates the need for the fuzzy rules,
significantly reducing the computational complexity and memory requirements.

4. Proposed control method
4.1. Fast nonsingular terminal decoupled SMC

In this subsection, a controller for the coupled, fourth-order, nonlinear system defined in Eq. (2) is described.
Our control method is based on a synergistic combination of the following: (i) the decoupling method in [25];
(ii) the reaching law method in [30]; (iii) fast, nonsingular TSMC in [6]; and (iv) time-varying sliding surfaces
in [24].

We now define a new decoupled TSMC law that incorporates a fast term for expediting state-trajectory
movement to the equilibrium point, namely the fast, nonsingular, terminal, decoupled, sliding-mode controller
(FNTDSMC). The corresponding nonlinear sliding surface functions are given by:

s1 = λ1 |x1 − z|(p1/q1) sgn(x1 − z) + α1 (x1 − z) + x2 (14)

and
s2 = λ2 |x3|(p2/q2) sgn(x3) + α2 x3 + x4 , (15)

where λ1 and λ2 are the sliding-surface parameters and α1, α2 > 0 are the FNTSMC parameters, akin to that
in Eq. (5). Here, the intermediate signal z is defined as in Eq. (8).

Upon reaching the terminal sliding mode, system dynamics are restricted to the sliding surface s1 = 0

according to Eq. (14). Hence, we obtain the first-order nonlinear differential equation given by

ẋ1 = −λ1 |x1 − z|(p1/q1) sgn(x1 − z)− α1 (x1 − z) . (16)

Extending Eq. (6), the primary subsystem converges to the equilibrium point in the following time:

ts1 =
1

α1 (1− p1/q1)
ln

α1

∣∣x1(0)− z(0)
∣∣1−(p1/q1)

+ λ1

λ1
. (17)

Note that the secondary subsystem also converges at the same due to the utilized decoupling method.
Hence, the proposed control law is given by

u = −b−1
1 (x)

(
λ1

p1
q1

|x1 − z|(p1/q1)−1
(ẋ1 − ż) + α1 (ẋ1 − ż) + f1(x) + k1 s1 + k2 |s1|ρ sgn(s1)

)
, (18)
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where k1, k2 > 0 and 0 < ρ < 1 are the parameters of the switching function of the reaching-law method [30].
Moreover, parameters λ1 and λ2 are continually updated by utilizing the time-varying sliding-surface method
described in Section 3.4. The essential control-flow of the proposed method can be gathered from the block
diagram in Figure 2.

x3

x4

TVSS
in (13)

s2

in (15)

z

in (8)

TVSS
in (13)

��

��

�

�
s1

in (14)

u

in (18)

x1-z

Nonlinear

system

x2

x1

x4

x3

x2

x1

in (2)

Figure 2. Block diagram of the proposed control method.

4.2. Stability analysis
A stability analysis of the proposed controller is provided in the following.

Theorem 1 Consider the nonlinear fourth-order system in Eq. (2). If the control input is designed as in
Eq. (18) and the sliding-surface functions in Eqs. (14) and (15) are used, then the state trajectory will converge
to the equilibrium point in finite time.

Proof Consider the following Lyapunov function [29]:

V =
1

2
s1

2 . (19)

Using Eq. (18) in the time-derivative of Eq. (19), we get

V̇ = s1 ṡ1

= s1
(
− k1 s1 − k2 |s1|ρ sgn(s1) + d1(t)

)
< 0 .

(20)

Provided k1 > 0 , k2 > D , Eq. (20) is a sufficient condition for the system state to reach the sliding surface,
s1 , and converge to equilibrium in finite time according to the Lyapunov stability criterion [29].

Hence, we have s1 = 0 and ṡ1 = 0 during the terminal sliding mode. To get s1 → 0 , we need x1 → z

and x2 → 0 . Therefore, we require that z converges to zero in finite time so that both subsystems converge to
the equilibrium point. To show z → 0 we use Eq. (14) and the fact ṡ1 = 0 ; that is,

0 = λ1
p1
q1

|x1 − z|(p1/q1)−1
(ẋ1 − ż) + α1 (ẋ1 − ż) + ẋ2, (21)
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which can be rewritten as

ẋ2 = −λ1
p1
q1

|x1 − z|(p1/q1)−1
x2 − α1 x2 + λ1

p1
q1

|x1 − z|(p1/q1)−1
ż + α1 ż . (22)

The differential equation above can be solved for x2 as

x2(t) = x2(0) e
−

∫
α1+λ1 γ1 |x1−z|γ1−1 dξ + α1

∫ t

0

e−
∫
α1+λ1 γ1 |x1−z|γ1−1 dξ ż dτ

+ λ1 γ1

∫ t

0

e−
∫
α1+λ1 γ1 |x1−z|γ1−1 dξ ż |x1 − z|γ1−1

dτ ,

(23)

where γ1 = (p1/q1) .
From Eq. (23), we see that x2 → 0 is guaranteed if and only if x1 → z and ż → 0 . The two conditions

are satisfied due to the following reasoning:

1. The sliding function s1 is bound to go to zero since our control law is based on this function. This implies
that x1 → z .

2. From Eq. (8), we see that z is a bounded oscillatory signal that decays to zero [25].

Furthermore, since z → 0 , s2 → 0 ; therefore, x3 → 0 and x4 → 0 , as has been attested similarly in [25–28].
2

5. Numerical simulations
In this section, we verify the performance and effectiveness of the proposed fast terminal DSMC approach on
two classic problems: a cart-pole system and ball-beam system [25]. For the cart-pole problem, we compare
the performance of our system with that of nonsingular terminal DSMC (NTDSMC) in [28], TVSS in [27],
and DSMC in [25], whereas in the case of the ball-beam problem the performance of the proposed method is
compared to that of DSMC only, for the sake of brevity. Numerical simulations are carried out in the MATLAB-
Simulink environment, with a fixed step size of 5 ms, which has been set up so as to facilitate a fair comparison
with the results from simulations conducted in [25, 27, 28].

5.1. Measures
In this subsection, we define two metrics that are used to assess the error in the time evolution of our control
system. These are the integral absolute error (IAE),

IAE =

∫ ∞

0

|e(t)| dt , (24)

and the integral time-weighted absolute error (ITAE),

ITAE =

∫ ∞

0

t |e(t)| dt , (25)

where
ei(t) = ri(t)− yi(t) , i = 1, 2 , (26)

ri(t) = 0 , y1(t) = x1 , and y2(t) = x3 .
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5.2. Results
5.2.1. Inverted pendulum

Consider the cart-pole inverted pendulum system, as illustrated in Figure 3. The equations of motion describing
this system are [25]:

u
mc

mp
L

L

x

0

Figure 3. The cart-pole inverted pendulum system.

ẋ1 = x2,

ẋ2 = f1(x) + b1(x) u+ d1(t),

ẋ3 = x4,

ẋ4 = f2(x) + b2(x) u+ d2(t) ,

(27)

where

f1(x) =
mt g sin(x1)−mp L sin(x1) cos(x1) x2

2

L
(
4
3 mt −mp cos2(x1)

) ,

b1(x) =
cos(x1)

L
(
4
3 mt −mp cos2(x1)

) ,
f2(x) =

− 4
3 mp L x2

2 sin(x1) +mp g sin(x1) cos(x1)
4
3 mt −mp cos2(x1)

,

b2(x) =
4

3
(
4
3 mt −mp cos2(x1)

) .

(28)

Here, x1 is the pole angular position from the vertical axis, x2 is the pole angular velocity with respect to the
vertical axis, x3 is the cart position from the reference point, x4 is the cart velocity, L is the pole half-length,
and mt is the total mass of the system, which comprises the pole mass mp and the cart mass mc . The primary
subsystem is formed by the state variables x1 and x2 , whereas the secondary subsystem is formed by the state
variables x3 and x4 , thus enabling the applicability of the proposed control method. The aim is to maintain
the pole in an upright position.
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Parameters related to the system under study are presented in Table 2. The parameters used for the
control methods assessed in this paper are given in Table 3. Note that parameters used here were chosen in
order to conduct a fair comparison with previous works, particularly [25, 27, 28].

Table 2. Parameters of the cart-pole system.

mp mc L g d1 & d2

0.05 kg 1 kg 0.5 m 9.8 m/s2 ≤ 0.0873

Table 3. Controller specifications used in the cart-pole simulations.

DSMC TVSS NTDSMC Proposed
method

λ1/λ2 5/0.5 - - -
K 10 - - -
Φ1/Φz 5/15 -/15 -/15 -/15
zU 0.9425 0.9425 0.9425 0.9425
G1/G2 - 1/40 - -
G3/G4/G5 - 0.05/0.05/5 0.05/0.05/5 0.05/0.05/5
G6/G7/G8 - 0.05/0.05/0.5 0.05/0.05/0.5 0.05/0.05/0.5
p1/q1 - - 19/21 19/21
p2/q2 - - 17/21 17/21
ρ - - 0.8 0.8
k1/k2 - - 10/10 10/10
α1/α2 - - - 2.9/0.1

Figures 4 and 5 depict system transient performances in terms of the pole angle and cart position,
respectively. This is for an initial pole angle of x1(0) = −60o . Also included are the transient behaviors of the
aforementioned prior cart. It can be seen that the proposed controller compares favorably to the other methods
since it converges to the desired (steady-state) angular/cart position faster. Lower steady-state errors are also
achieved by our method. For the angular position, accuracy was determined by considering the point at which
angular positions fall and remain within 1o from the upright position; specifically, the proposed system achieves
this 24% sooner compared to NTDSMC.

Notice also the marked improvement over the DSMC method. The fast response can be attributed to
the fast terms in Eqs. (14) and (15), which are applied to the system during the controller’s reaction to the
displaced pole. Another striking result is that, despite this extremely short rise time, maximum overshoots
exhibited by our method are similar to those of the state-of-the-art.

In Figure 6, we show the control input to the different control systems. It can be seen that our fast
NTDSMC generates control inputs in a shorter period of time compared to the state-of-the-art. However, it is
clear that a larger force is generated by our method; this is required in order to stabilize the pole in an upright
position, meanwhile keeping the cart at the origin. There is a clear trade-off between the required control action
and speed of convergence.

The evolution of coefficients λ1 and λ2 is shown in Figure 7, from which we see the time-varying
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Figure 4. System-response comparison in terms of the
angular position of the pole.

Figure 5. System-response comparison in terms of the
position of the cart.

behavior of these parameters associated with our method, TVSS, and NTDSMC. Notice also that, in contrast,
the coefficients of the DSMC method are constant. On further inspection, it is clear that λ1 and λ2 , for the
proposed method, settle to steady-state values of 5 and 0.5 , respectively, slightly faster than the coefficients
related to NTDSMC and TVSS; this is again a testament to the effectiveness of the new fast term of our
controller. Interestingly, the slopes for λ1 and λ2 seem to change in accordance with the forces required in
stabilizing the pole and cart.
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Figure 6. System-response comparison in terms of the
required control input, as defined in Eq. (18), for the cart-
pole system.

Figure 7. Time evolution of the sliding surface coeffi-
cients, (a) λ1 and (b) λ2 , for the various controllers re-
lated to the cart-pole system.

In order to back up the qualitative results presented thus far, we provide quantitative analysis utilizing the
metrics defined in Eqs. (24) and (25). The IAE and ITAE performances of the different methods are tabulated
in Table 4. It is evident that the proposed method compares favorably with the state-of-the-art methods.

Finally, pole angular position and cart position are shown in Figure 8a and Figure 8b, respectively, for the
abrupt disturbances in Figure 9. The amplitudes of d1 and d2 are 0.15 and 0.3 with 1% and 2% duty-cycles
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Table 4. IAE and ITAE values obtained in the cart-pole simulations.

DSMC TVSS NTDSMC Proposed
method

Angle IAE 125.69 57.48 28.90 22.62
ITAE 370.46 75.79 46.06 39.12

Position IAE 42.29 9.84 7.16 3.98
ITAE 156.24 20.41 24.41 12.06

applied at 20, 30, and 40 s, respectively. As can be seen, the proposed control method manages to successfully
recover to a low-error steady-state condition after the occurrence of abrupt disturbances. The zoomed inset
plots in these figures reveal the small-amplitude ripples present in the responses immediately after a step change
in disturbance. Although not a demonstration of disturbance rejection, these results indicate that our method
has the ability to suppress the effects of external disturbances to a good degree.
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Figure 8. Position response for the (a) pole angle and (b) cart when disturbances are applied to the proposed controller.

5.2.2. Ball-beam system

The structure of the ball-beam system is shown in Figure 10. The systems dynamics are expressed by [25]:

ẋ1 = x2,

ẋ2 = u,

ẋ3 = x4,

ẋ4 = B
(
x3 x2

2 − g sin(x1)
)

,

(29)

where x1 is the angular position of the beam with respect to the horizontal axis, x2 is the angular velocity of

the beam, x3 is the position of the ball, and x4 is the velocity of the ball. B is defined as B = M R2

Jb M R2 , where
Jb is the moment of inertia of the ball.
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Figure 9. External disturbances (a) d1 and (b) d2 used
in our studies of the cart-pole system.

Figure 10. The ball-beam system.

The aim is twofold: to maintain (i) a horizontal beam position and (ii) a centered ball. This is sought
after with the following assumptions: (i) the beam and ball are continually in contact; (ii) rolling occurs without
slipping; (iii) there are no obstructions in the ball path; and (iv) the center of rotation is frictionless.

Parameters related to the ball-beam system are given in Table 5. The parameters used for the control
methods assessed in this paper are given in Table 6. Again, parameters were chosen with a view to conducting
a fair comparison with previous works, particularly [25].

Table 5. Parameters of the ball-beam system.

M R Jb g

0.05 kg 0.01 m 2× 10−6 9.8 m/s2

With an initial beam-angle of x1(0) = 60o and ball position of x3(0) = 10 m, the evolution of the beam
angular position is shown for both the proposed and DSMC methods in Figure 11. The error metrics for the
two methods are provided in Table 7. A striking result is that the significant performance gains obtained by
the proposed method for the cart-pole problem cannot be observed in the case of the ball-beam system. The
lackluster performance is essentially due to the fact that the input features in only one of the states of the ball-
beam system dynamics. Therefore, the input feeds through to only one of the decoupled subsystems. On the
other hand, the input to the cart-pole is able to influence both the decoupled subsystems, which is exploited by
our method, and in fact all DSMC-type approaches in general. This analysis has revealed that control methods
based on the decoupled SMC approach can be sensitive to the dynamics of the problem, and in particular the
availability of input-related information in both subsystems.

6. Conclusions
In this paper, a novel form of fast SMC is proposed for application to a class of fourth-order, nonlinear systems.
Our controller combines the benefits of decoupled control and terminal SMC, together with efficient fuzzy-
based, time-varying sliding surfaces, while avoiding the problem of singularity. Compared to the state-of-
the-art, the proposed method establishes faster convergence of state trajectories to the equilibrium point.
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Table 6. Controller specifications used in the ball-beam simulations.

DSMC Proposed
method

λ1/λ2 10/0.5 -
K 10 -
Φ1/Φz 5/5 -/5
zU 0.9425 0.9425
G1/G2 - -
G3/G4/G5 - 0.01/0.01/10
G6/G7/G8 - 0.01/0.01/0.5
p1/q1 - 19/21
p2/q2 - 19/21
ρ - 0.8
k1/k2 - 10/10
α1/α2 - 0.2/0.2

Table 7. IAE and ITAE values obtained in the ball-beam simulations.

DSMC Proposed
method

Angle IAE 95.84 86.64
ITAE 178.25 156.84

Position IAE 19.77 22.52
ITAE 27.44 33.96
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Figure 11. System-response comparison in terms of the angular position of the beam.

Using the Lyapunov stability theorem, we have derived sufficient conditions that guarantee the asymptotic
boundedness of system states while taking into account external disturbances. In the case of the cart-pole system,
superior convergence performance has been demonstrated through computer simulations, whereas comparable
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performances were observed for the ball-beam system. Future work will consist of adapting and applying our
controller to more general problems in control and optimization.
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