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Abstract: Researchers have developed different metaheuristic algorithms to solve various optimization problems. The
efficiency of a metaheuristic algorithm depends on the balance between exploration and exploitation. This paper presents
the hybrid parliamentary optimization and big bang-big crunch (HPO-BBBC) algorithm, which is a combination of
the parliamentary optimization algorithm (POA) and the big bang-big crunch (BB-BC) optimization algorithm. The
intragroup competition phase of the POA is a process that searches for potential points in the search space, thereby
providing an exploration mechanism. By contrast, the BB-BC algorithm has an effective exploitation mechanism. In
the proposed method, steps of the BB-BC algorithm are added to the intragroup competition phase of the POA in
order to improve the exploitation capabilities of the POA. Thus, the proposed method achieves a good balance between
exploration and exploitation. The performance of the HPO-BBBC algorithm was tested using well-known mathematical
test functions and compared with that of the POA, the BB-BC algorithm, and some other metaheuristics, namely
the genetic algorithm, multiverse optimizer, crow search algorithm, dragonfly algorithm, and moth-flame optimization
algorithm. The HPO-BBBC algorithm was found to achieve better optimization performance and a higher convergence
speed than the above-mentioned algorithms on most benchmark problems.
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1. Introduction
Optimization refers to the selection of the best solution from among multiple solutions to a problem. Traditional
optimization techniques (such as Newton’s method, steepest descent, and linear programming) usually fail to
solve global optimization problems that have many local optima and nonlinear objective functions. By contrast,
metaheuristic algorithms are more efficient in overcoming these challenges. Many metaheuristic algorithms are
inspired by biological phenomena as well as by physical, social, and chemical processes [1]. For example, the
genetic algorithm (GA) [2] and artificial immune systems (AISs) [3] are based on biology, the gravitational
search algorithm (GSA) [4] is based on physics, the imperialist competitive algorithm (ICA) [5] is based on
social concepts, and the artificial chemical reaction optimization algorithm (ACROA) [6] is based on chemistry.
Although various metaheuristic algorithms can successfully solve some specific problems, they do not show
similar performances in solving all problems. Therefore, new algorithms have been proposed to improve the
existing algorithms. Hybridization, which aims to combine the properties of two or more algorithms into a single
hybrid algorithm, is one such technique. The unique benefit of hybridization is that the new algorithm provides
∗Correspondence: sonerkiziloluk@munzur.edu.tr
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better performance compared to its individual components [7]. Recently, many hybrid versions of well-known
optimization methods have been developed by researchers, such as hybrid GA-particle swarm optimization
(PSO)-symbiotic organisms search (SOS) by Farnad et al. [8], hybrid genetic deflated Newton (HGDN)
method by Noack and Funke [9], hybrid firefly algorithm (FA)-PSO by Aydilek [10], hybrid biogeography-
based optimization (BBO)-gray wolf optimizer (GWO) by Zhang et al. [11], hybrid hierarchical backtracking
search optimization (HHBSA) based on backtracking search optimization (BSA), differential evolution (DE),
and teaching-learning-based optimization (TLBO) by Zou et al. [12], hybrid harmony search (HS)-simulated
annealing (SA) by Assad and Deep [13], hybrid artificial bee colony (ABC)-DE by Jadon et al. [14], memory-
based hybrid dragonfly algorithm (MHDA) by Ranjini and Murugan [15], and hybrid flower pollination algorithm
(FPA)-clonal selection algorithm (CSA) by Nabil [16].

The parliamentary optimization algorithm (POA) was proposed by Borji [17] for global optimization. It is
inspired by the competitive and cooperative behaviors of parliamentary parties. The POA consists of two phases:
intragroup competition and intergroup cooperation. In the first phase, the regular members are biased toward
the candidate members in the ratio of their fitness values, which allows the algorithm to search for potential
points in the search space. There are two different scenarios in the second phase. In the first scenario, the most
powerful groups can be merged into a single group in order to increase their power. In the second scenario, the
weakest groups can be removed in order to preserve the computation power and decrease function evaluations.
Only a few studies have investigated the POA. In these studies, the POA was used for different problems, such as
global optimization [18], permutation constraint satisfaction problems [19], overlapping community detection in
social networks [20], finding numerical classification rules [1], and classification of Web pages [21]. Furthermore,
a hybrid version of the POA, i.e. a combination of the POA and artificial neural networks, was proposed for
passenger flow prediction [22].

The big bang-big crunch (BB-BC) algorithm, inspired by one of the evolutionary theories of the universe,
was initially proposed by Erol and Eksin [23]. The algorithm consists of two phases. In the big bang phase, the
particles are randomly created in a search space. In the big crunch phase, the randomly distributed particles
are drawn into an order. Various applications of the BB-BC algorithm have been reported in the literature,
such as data clustering [24], optimal placement and sizing of voltage-controlled distributed generators [25], and
optimal design of structures [26]. Furthermore, some hybrid variations of the BB-BC have been proposed [27],
including hybrid PSO-BB-BC for optimal reactive power dispatch [28]; hybrid BB-BC-PSO for optimal sizing of
a stand-alone hybrid power system including a photovoltaic panel, wind turbine, and battery bank [29]; hybrid
BB-BC-conjugate gradient (CG) algorithm for operational reliability modeling of hydrogenerator groups [30];
and hybrid BB-BC-PSO for parameter identification of a proton-exchange membrane fuel cell [31].

In this study, the hybrid parliamentary optimization and big bang-big crunch (HPO-BBBC) algorithm,
which is a combination of the POA and the BB-BC algorithm, is proposed to solve global numerical opti-
mization problems. The proposed method achieves a balance between exploration and exploitation by using
the exploration ability of the POA and the exploitation ability of the BB-BC algorithm. The performance of
the HPO-BBBC algorithm is tested using nine standard mathematical test functions and eight composition,
rotated, shifted, and expanded functions selected from CEC 2005. It is compared with that of the POA, the
BB-BC algorithm, and five other metaheuristics, namely the GA [2], multiverse optimizer (MVO) [32], crow
search algorithm (CSA) [33], dragonfly algorithm (DA) [34], and moth-flame optimization algorithm (MFO)
[35]. The results show that the HPO-BBBC algorithm can effectively solve most benchmark problems and has
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a higher convergence speed than the above-mentioned algorithms. The remainder of this paper is organized as
follows. The POA and the BB-BC algorithm are described in Sections 2 and 3, respectively. Section 4 provides
a detailed explanation of the HPO-BBBC algorithm. The experimental results are discussed and compared in
Section 5. Finally, our conclusions are stated in Section 6.

2. Parliamentary optimization algorithm

The POA is inspired by the competitive and cooperative behaviors of parliamentary parties. The flowchart of
the POA is shown in Figure 1.

Figure 1. Flowchart of the POA.

The POA begins with an initialization process. The individuals are created with random positions
throughout the search space. Then the initialized individuals are evenly partitioned into M groups, where
each group contains N individuals. A few individuals with the highest fitness in each group are considered as
candidate members. The remaining individuals are referred to as regular members [17, 18].
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Next, the intragroup competition phase begins. In this phase, the regular members are biased toward
the candidate members in the ratio of their fitness values. The new position of a regular member is calculated
as

p
′
= p0 + π

(∑θ
i=1(pi − p0).f(pi)∑θ

i=1 f(pi)

)
, (1)

where π is a random value between 0.5 and 2, p
′ is the new position and p0 is the current position of the

regular member, pi is the position of a candidate member, and f is the fitness function. The biasing operation
is shown in Figure 2. After biasing, the regular members might have higher fitness values than the candidate
members. In this case, the candidate members are reassigned. After the reassignment, the power of the groups
is calculated as

poweri =
m.avg(Qi) + n.avg(Ri)

m+ n
;m > n, (2)

where Qi and Ri are the fitness values of candidate members and regular members of group i, respectively, while
m and n represent weight constants.

In intergroup cooperation, a random number is generated, and if it is smaller than Pm, the λ most
powerful groups can be merged into one group in order to increase their power. Like merging, a random
number is generated, and if it is smaller than Pd, the γ weakest groups can be removed in order to preserve
the computation power and decrease function evaluations. When the stopping conditions are satisfied, the
algorithm terminates and the best member of the best group is considered as the solution [17, 18].

candidate members

regular member

new position of the R

C1

C2

R’

R

Figure 2. Biasing operation.

3. Big bang-big crunch algorithm
The BB-BC algorithm has two main phases: big bang and big crunch. In the first big bang phase, an initial
population is created with random particles within the search space boundaries. Then the fitness values of all
the particles are computed. Next, a contraction procedure is applied during the big crunch phase. In this phase,
the center of mass (xc ) is calculated by accounting for the position and fitness value of each particle as follows:

xc =

∑N
i=1

xi

fi∑N
i=1

1
fi

, (3)
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where xi and f i denote the position and fitness values of particle i, respectively, and N denotes the population
size. Alternatively, the particle with the best fitness value can also be chosen as xc . After the big crunch phase,
the second big bang phase begins. In this phase, new particles are created around xc by adding or subtracting
random values, which decrease with each iteration, as follows [23]:

xnew = xc +
l.r

k
, (4)

where l denotes the upper limit of the search space, r is a random value between 0 and 1, k is the iteration
step, and xnew is the location of the newly formed particle. The flowchart of the BB-BC algorithm is shown in
Figure 3 [23].

Start

Create N particles in a random manner

Calculate the fitness values of all the particles 

Terminate?

End

Yes

No

Find the center of mass by Eq. (3). The best fit 

particle can be chosen as the center of mass instead 

of using Eq. (3)

Calculate position of new particles around the center 

of mass by adding or subtracting a normal random 

number using Eq. (4)

Figure 3. Flowchart of the BB-BC algorithm.

4. Hybrid parliamentary optimization and big bang-big crunch algorithm
In the intragroup competition phase of the POA, the regular members are biased toward the candidate members
in the ratio of their fitness values, which allows the algorithm to explore the search space, thereby providing
an exploration mechanism [17, 18]. By contrast, the BB-BC algorithm has an effective exploitation mechanism
[31]. In the proposed method, steps of the BB-BC algorithm are added to the intragroup competition phase of
the POA in order to improve the exploitation performance of the POA. Thus, the proposed method achieves a
balance between exploration and exploitation.

After biasing and reassigning new candidates, the proposed method selects each regular member as xc .
Then the big-bang approach is adopted to search for better individuals around the regular members. P new
individuals are created around xc by using Eq. (4). After that, the fitness values of the individuals are calculated
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After Biasing

candidate members

regular member

new position of the R

C1

C2

R’

R

candidate members

regular member

new individuals

C1

C2

R’(xc)

Better than R’

Figure 4. Search mechanism for finding better individuals around the regular members.

Start

Initializing population

Partition population into M groups each with N

individuals. Pick best θ individuals as candidates 

of each group

Intra-group competition

 -Bias regular members toward candidates of   each group

 -Reassign new candidates

 -Choose each regular member as the center of mass

 -Create new individuals around the center of mass 

   using Eq. (4)

 -If there is a better individual than the regular member,

  replace the regular member with that individual. Otherwise

  maintain the position of the regular member

 -Compute power of each group

Inter-group cooperation

 -Pick λ most powerful groups and merge them with Pm%

   probability

 -Remove ϒ weakest groups with Pd% probability

Terminate?

End

Yes

No

Figure 5. Flowchart of the HPO-BBBC algorithm.

and compared with the regular member. If there is a better individual than the regular member, the regular
member is replaced with that individual; otherwise, the regular member maintains its position. This search
mechanism provides an exploitation ability to the POA. This search mechanism is shown in Figure 4. The
flowchart of the HPO-BBBC algorithm is shown in Figure 5.
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5. Experiments and results

Mathematical test functions can be used to evaluate the performance of an optimization algorithm. Most of
these functions have the same complexity as engineering problems. The difficulty ratings of the functions can be
adjusted by changing the parameters [36]. Nine standard mathematical test functions and eight composition,
rotated, shifted, and expanded functions selected from CEC 2005 were used to test the efficiency of the HPO-
BBBC algorithm. The details of the standard test functions are summarized in Table 1 [37, 38]. Among these
functions, the Sphere and Rosenbrock functions are unimodal functions (containing only one optimum), whereas
the remaining functions are multimodal functions (containing many local optima but only one global optimum).
Eight functions selected from CEC 2005 are summarized in Table 2 and more information about these test
problems can be found in [39].

Table 1. Details of the standard mathematical test functions.

Name Formulation Property Range Optimum
Rastrigin F1(x) = 10d+

∑d
i=1(x

2
i − 10cos(2πxi)) Multimodal ±5.12 0

Rosenbrock F2(x) =
∑d−1

i=1 (100(x
2
i − xi+1)

2 + (1− xi)
2) Unimodal ±2.048 0

Sphere F3(x) =
∑d

i=1 x
2
i Unimodal ±5.12 0

Griewank F4(x) = 1 + 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos(

xi√
i
) Multimodal ±10 0

Ackley F5(x) = −20exp(−0.2
√

1
d

∑d
i=1 x

2
i )−

exp( 1d
∑d

i=1 cos(2πxi)) + 20 + e
Multimodal ±32 0

Levy
F6(x) = sin2(πy1) +

∑d−1
i=1 (yi − 1)2[1 +

10sin2(πyi+1)]+
(yd − 1)2, yi = 1 + (xi−1/4)
for all i=1,...,d

Multimodal ±10 0

Alpine F7(x) =
∑d

i=1 |xisin(xi) + 0.1xi| Multimodal ±10 0
Quintic F8(x) =

∑d
i=1 |x5

i −3x4
i +4x3

i +2x2
i −10xi−4| Multimodal ±10 0

Trigonometric F9(x) = 1 +
∑d

i=1 8sin
2[7(xi − 0.9)2]

+6sin2[14(xi − 0.9)2] + (xi − 0.9)2
Multimodal ±500 1

The initial population was set as 30, and the maximum number of iterations was set as 1000 for all the
algorithms for fair comparison. The performances of the algorithms for each test function were evaluated on
the basis of the results obtained in 30 independent runs. The initial parameters used in the tests for algorithms
are listed in Table 3. The comparative test results obtained from standard test functions (F1–F9) and the CEC
2005 functions (F10–F17) are summarized in Tables 4, 5, 6, and 7, respectively. They list the mean, best, worst,
and standard deviation values for the 30 independent runs. The mean, best, and worst values represent the
global convergence of the algorithms, and the standard deviation represents the stability of the algorithms [40].

Our results revealed that the HPO-BBBC outperformed the its component algorithms in all the test
functions. In most benchmark problems, HPO-BBBC finds better values than GA, MVO, DA, CSA, and MFO,
except the benchmarks shown in Table 4 (F1, F3, F5, F7, F8), Table 5 (F1, F3, F7, F8), Table 6 (F1, F3, F6,
F8), and Table 7 (F12, F13). Moreover, the standard deviation values, which reflect the stability of the proposed
method, were smaller for most test functions than those of the above-mentioned algorithms. To illustrate the
convergence speeds of the algorithms, the convergence plots for the F1, F2, F4, F6, F8, F9, F10, F15, and
F17 functions are shown in Figure 6, and it indicates that the HPO-BBBC algorithm converges faster than the
mentioned algorithms in most of the benchmark functions.
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Table 2. Details of the functions selected from CEC 2005.

Function name Property Range Dim Optimum
F10 CEC-05-F1: Shifted Sphere Function Unimodal ±100 10 –450
F11 CEC-05-F2: Shifted Schwefel’s Prob-

lem 1.2
Unimodal ±100 10 –450

F12 CEC-05-F6: Shifted Rosenbrock’s
Function

Multimodal-basic ±100 10 390

F13 CEC-05-F9: Shifted Rastrigin’s Func-
tion

Multimodal-basic ±5 10 –330

F14 CEC-05-F12: Schwefel’s Problem 2.13 Multimodal-basic ±π 10 –460
F15 CEC-05-F13: Expanded Extended

Griewank’s plus Rosenbrock’s Function
(F8F2)

Multimodal-expanded ±5 10 –130

F16 CEC-05-F15: Hybrid Composition
Function

Composition ±5 10 120

F17 CEC-05-F16: Rotated Hybrid Compo-
sition Function

Composition ±5 10 120

Table 3. Parameter settings of algorithms.

Algorithm Parameter
POA M=6, N=5, Pd=0.001, Pm=0.007
BB-BC xc= Best particle
HPO-BBBC M=6, N=5, Pd=0.001, Pm=0.007, xc=regular members, p=5
GA Crossover probability=0.7, mutation probability=0.01
MVO min=0.2, max=1, p=6
CSA AP=0.1, fl=2
DA β = 3/2

The Wilcoxon signed-rank test has been applied to statistically analyze the results between HPO-BBBC
vs. POA and HPO-BBBC vs. BBBC. This test allows assessing result differences among two related methods
[41, 42]. As shown in Table 8, P-values are less than 0.05 for all test functions (except F8). This make obvious
the significant differences between the proposed algorithm and its components.

Table 9 shows the average running times (s) of the HPO-BBBC, its components, and other tested
algorithms for 30 independent runs with 1000 iteration. In this study, to improve the exploitation capabilities
of the POA, steps of the BB-BC algorithm have been added to the intragroup competition phase of the POA for
searching for better individuals around the regular members. These steps have been created as extra components
for the HPO-BBBC so the running time of the HPO-BBBC has increased. Although it shows that the HPO-
BBBC consumes more running time than its components and other algorithms, the experimental results show
that the proposed algorithm can effectively solve numerical global optimization problems and has a higher
convergence speed in most benchmark problems. In other words, the HPO-BBBC can find better results in a
smaller number of iterations than its components and other tested algorithms. Thus, the running time problems
can be reduced by less than the number of iterations.
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Table 4. Results of standard test functions with 10 dimensions (best results in bold font).

POA BBBC HPO-
BBBC GA MVO DA CSA MFO

F1

Mean 19.845 24.157 6.4820 0.5794 9.4536 18.592 59.607 22.692
Best 8.9546 5.9709 2.9861 0.0806 1.9923 2.9854 42.750 5.9697
Worst 35.884 45.770 10.788 1.4810 21.890 45.703 75.252 50.813
Std.D. 7.7137 10.430 2.1764 0.3351 4.8588 12.387 9.6995 10.343

F2

Mean 14.482 2.4359 1.1205 7.5421 4.5860 10.707 6.2089 5.0068
Best 4.5968 0.5003 0.3813 0.4254 2.3807 1.2469 3.7216 0.6505
Worst 56.768 7.3541 2.7945 68.107 5.7579 99.228 8.6481 9.4622
Std.D. 13.241 1.6528 0.5602 14.547 0.8669 16.519 1.2715 1.7900

F3

Mean 0.0240 1.70E-5 4.82E-7 0.0029 1.07E-5 6.4E-10 7.3E-11 3.9E-33
Best 2.03E-6 9.89E-6 8.8E-11 0.0005 4.96E-6 0 6.1E-12 2.9E-35
Worst 0.2340 2.20E-5 3.31E-6 0.0077 1.98E-5 7.66E-9 3.4E-10 4.2E-32
Std.D. 0.0559 3.01E-6 8.00E-7 0.0017 5.22E-6 1.74E-9 7.8E-11 8.2E-33

F4

Mean 0.0736 0.1312 0.0029 0.0594 0.0949 0.1887 0.0056 0.2032
Best 0.0123 0.0196 1.93E-8 0.0109 0.0344 0.0320 1.3E-10 0.0295
Worst 0.5458 0.3374 0.0167 0.1362 0.2356 0.5933 0.0246 0.6199
Std D. 0.0919 0.0811 0.0047 0.0244 0.0537 0.1244 0.0070 0.1411

F5

Mean 5.0859 1.5043 0.0045 0.7779 0.0293 0.8586 1.5003 5.E-15
Best 2.3223 0.0265 0.0002 0.2694 0.0168 4.4E-15 2.26E-5 4.4E-15
Worst 9.7322 19.951 0.0180 1.5249 0.0440 3.0551 3.4041 8.0E-15
Std.D. 1.7589 4.9495 0.0052 0.3028 0.0076 1.0035 1.1161 1.3E-15

F6

Mean 0.5112 2.9754 7.25E-7 0.0049 0.0089 0.508 0.0927 1.7989
Best 0.0003 2.27E-5 1.42E-9 0.0015 9.87E-6 1.73E-8 1.52E-9 1.5E-32
Worst 2.2773 9.2174 5.19E-6 0.0196 0.0896 4.0265 0.5438 10.125
Std.D. 0.5705 2.5087 1.15E-6 0.0034 0.0268 0.8935 0.1105 2.8253

F7

Mean 0.5544 0.0546 0.0027 0.0138 0.2487 0.4053 0.0251 7.2E-15
Best 0.0006 0.0014 0.0004 0.0048 0.0271 0.0023 1.54E-5 1.7E-18
Worst 4.1337 0.2380 0.0112 0.0407 0.9082 2.0570 0.5028 4.4E-14
Std.D. 1.0687 0.0636 0.0025 0.0092 0.2384 0.5072 0.0901 7.9E-15

F8

Mean 8.8271 0.2895 0.1259 1.0558 0.8444 5.8475 4.8827 3.5E-15
Best 0.0911 0.2044 0.0135 0.4267 0.1735 0.0184 0.2973 0
Worst 35.957 0.5130 0.2147 1.7485 1.7788 30.216 18.525 2.8E-14
Std.D. 9.1292 0.0664 0.0530 0.3844 0.6086 7.8390 4.2949 6.6E-15

F9

Mean 565.81 22.090 4.3082 69.948 39.812 43.663 14.817 10.293
Best 20.669 8.1708 1.0001 19.521 17.790 9.8978 4.1578 1.4486
Worst 4026.9 36.773 16.169 108.37 51.135 115.07 34.186 27.824
Std.D. 928.21 7.5627 3.8056 19.614 10.073 26.910 6.8172 6.8711
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Table 5. Results of standard test functions with 20 dimensions (best results in bold font).

POA BBBC HPO-
BBBC GA MVO DA CSA MFO

F1

Mean 73.511 54.304 22.625 3.5574 61.917 59.126 153.96 87.413
Best 19.843 25.883 11.956 1.1947 34.845 21.217 87.357 42.783
Worst 163.63 161.82 28.732 7.1123 88.603 116.84 257.34 141.42
Std.D. 31.484 29.046 3.6199 1.2275 14.658 21.906 27.831 27.431

F2

Mean 98.978 14.399 12.739 38.367 17.609 18.600 18.556 13.4401
Best 17.581 12.745 11.314 6.5879 15.850 15.915 17.610 5.8397
Worst 247.99 17.497 13.817 73.769 19.155 23.137 19.498 20.587
Std.D. 47.819 0.9822 0.6665 26.686 1.0094 1.6232 0.5272 4.4058

F3

Mean 1.4828 8.50E-5 1.57E-5 0.0173 0.0001 0.0223 2.39E-6 1.5E-13
Best 0.0891 5.38E-5 9.28E-7 0.0064 0.0001 0.0001 3.59E-7 1.6E-15
Worst 9.4540 0.0001 5.16E-5 0.0455 0.0002 0.1052 6.54E-6 8.8E-13
Std.D. 1.8683 1.34E-5 1.48E-5 0.0090 5.50E-5 0.0270 1.81E-6 2.2E-13

F4

Mean 0.2504 0.0146 4.82E-6 0.0258 0.0324 0.0745 0.0024 0.1197
Best 0.0538 1.89E-5 2.53E-7 0.0025 5.74E-5 0.0006 4.96E-6 0.0014
Worst 0.7296 0.0973 1.82E-5 0.1173 0.1194 0.5032 0.0222 0.4678
Std.D. 0.1742 0.0236 3.90E-6 0.0215 0.0312 0.1274 0.0058 0.1268

F5

Mean 11.289 1.4465 0.0604 1.7657 0.4517 3.8391 2.9594 6.3947
Best 6.8554 0.0393 0.0096 1.2299 0.0760 1.4413 1.1584 1.1E-6
Worst 15.872 19.898 1.1565 2.4623 1.8744 5.9212 4.3620 19.924
Std.D. 2.4129 4.9261 0.2037 0.3202 0.7053 1.0810 1.0451 8.2449

F6

Mean 6.6845 9.3292 0.0119 0.0312 8.0285 3.1385 1.0612 14.865
Best 1.3690 0.5440 3.0E-6 0.0112 0.4547 0.2648 0.0904 6.0901
Worst 19.348 16.544 0.0896 0.0703 17.351 9.9220 3.3646 25.793
Std.D. 3.6340 4.3173 0.0304 0.0122 5.6916 2.6534 0.8726 6.6497

F7

Mean 5.2226 0.8966 0.0780 0.0597 1.6431 6.9029 0.1881 1.1840
Best 0.2377 0.0701 0.0021 0.0250 0.5381 0.5132 0.0174 4.3E-9
Worst 18.591 10.105 0.3094 0.1230 5.3546 17.308 0.5959 8.8804
Std.D. 4.1637 1.8212 0.0803 0.0259 1.4232 5.0331 0.1775 2.5464

F8

Mean 176.23 3.3407 1.6119 4.3535 5.5233 27.159 16.955 1.6E-6
Best 27.436 0.7706 0.4141 2.3754 1.0909 9.2072 3.8331 4.8E-7
Worst 3119.9 13.636 9.2314 6.0788 14.247 45.694 28.302 6.93E-6
Std.D. 549.05 3.8124 1.5536 0.8266 3.5896 11.446 6.9066 1.57E-6

F9

Mean 16660 83.712 27.881 347.04 144.45 2479 81.534 53.793
Best 2634 45.259 1.8416 189.21 105.43 33.700 37.870 16.155
Worst 59308 112.66 65.803 706.23 221.89 9390 109.38 119.97
Std.D. 15180 15.422 18.868 122.47 34.434 2341 21.088 27.834

6. Conclusion
Hybridization is a well-known technique for enhancing the performance of an algorithm. The main idea of
hybridization is to combine the properties of two or more algorithms into a single algorithm. In this study, the
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Table 6. Results of standard test functions with 30 dimensions (best results in bold font).

POA BBBC HPO-
BBBC GA MVO DA CSA MFO

F1

Mean 139.38 76.724 36.315 11.258 125.11 96.731 246.45 173.34
Best 42.851 38.836 27.846 6.2049 71.764 48.432 196.06 108.45
Worst 240.37 146.05 47.608 16.770 197.16 131.69 292.72 243.19
Std.D. 43.879 27.891 5.2941 2.3331 34.870 24.678 27.154 36.246

F2

Mean 215.02 25.444 23.519 84.587 27.975 38.405 28.454 91.209
Best 104.67 21.393 21.574 23.883 25.318 30.097 27.020 5.9869
Worst 392.52 28.256 25.210 140.70 29.347 60.744 29.153 438.41
Std.D. 69.048 1.1609 0.9046 31.565 1.1471 8.5616 0.5419 112.26

F3

Mean 7.1565 0.0002 5.99E-5 0.1059 0.0007 0.5842 0.0002 6.8E-7
Best 1.9739 0.0001 1.25E-5 0.0507 0.0005 0.0039 7.08E-5 3.72E-8
Worst 23.898 0.0002 0.0001 0.1960 0.0011 1.4400 0.0004 4.59E-6
Std.D. 5.2014 3.32E-5 3.28E-5 0.0364 0.0001 0.4392 0.0001 1.15E-6

F4

Mean 0.6679 0.0063 1.75E-5 0.0371 0.0106 0.1929 0.0031 0.2172
Best 0.2867 3.41E-5 4.71E-6 0.0103 0.0003 0.0542 0.0001 3.8E-9
Worst 1.0185 0.0271 4.03E-5 0.0889 0.0251 0.4591 0.0111 0.7500
Std.D. 0.2051 0.0083 8.47E-6 0.0141 0.0086 0.1233 0.0039 0.2745

F5

Mean 15.111 1.3702 0.0453 3.0500 1.2810 6.0044 3.8421 16.770
Best 10.910 0.0646 0.0189 2.3346 0.1570 4.0958 2.5867 2.1189
Worst 17.508 20.127 0.0737 3.6406 2.9421 8.1291 5.9284 19.963
Std.D. 1.7652 3.5862 0.0135 0.2942 0.7530 1.1756 0.9395 5.7066

F6

Mean 21.042 14.694 0.2059 0.1939 12.902 6.9293 2.1502 30.948
Best 10.771 3.2707 4.68E-5 0.0821 0.9997 0.7056 0.3013 18.088
Worst 56.300 24.852 0.7162 0.3201 50.234 20.024 6.5336 51.613
Std.D. 8.4023 5.4543 0.1893 0.0628 13.861 5.4272 1.4687 9.1261

F7

Mean 14.542 2.9715 0.2344 0.2861 4.8346 8.7549 0.8523 4.7069
Best 3.8052 0.1639 0.0114 0.1321 2.2619 1.5562 0.1343 2.14E-5
Worst 38.282 23.393 0.6631 0.4355 7.5051 23.657 3.2352 13.320
Std.D. 8.7992 4.6124 0.1737 0.0821 1.5118 6.1361 0.8137 4.6077

F8

Mean 918.58 8.2363 9.5809 12.626 19.764 61.308 50.008 0.0165
Best 72.935 1.4663 2.7813 9.2785 11.593 29.339 15.424 0.0024
Worst 6358.3 25.660 20.741 17.795 42.780 85.297 77.537 0.0658
Std.D. 1473.5 6.7426 4.1867 2.1352 8.9336 15.046 17.949 0.0176

F9

Mean 72518 176.52 90.487 1428.2 238.99 7266.19 189.35 96.539
Best 11158 141.50 22.522 844.54 195.22 1694 121.94 53.064
Worst 253017 259.10 233.68 2474.9 296.45 38836 303.43 164.73
Std.D. 51795 24.446 42.406 369.887 31.598 9336.17 51.363 33.600

HPO-BBBC algorithm was proposed for solving global numerical optimization problems using a combination
of the POA and the BB-BC algorithm. The intragroup competition phase of the POA provides an exploration
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Table 7. Results of CEC 2005 functions (best results in bold font).

POA BBBC HPO-
BBBC GA MVO DA CSA MFO

F10

Mean -362.741 -449.989 -450 -444.828 -449.996 -373.628 -450 -450
Best -449.996 -449.995 -450 -448.407 -449.998 -450 -450 -450
Worst -19.4705 -449.968 -450 -435.924 -449.993 -331.573 -450 -450
Std.D. 154.292 0.00704 0 3.49304 0.00141 49.8798 0 0

F11

Mean 1773.873 -443.822 -450 1104.858 -449.972 -274.663 -449.945 -267.496
Best 35.68258 -448.189 -450 31.1204 -449.985 -441.217 -449.994 -450
Worst 4068.804 -429.607 -450 3197.778 -449.949 -105.779 -449.791 -19.47
Std.D. 1368.145 5.321796 0 1077.415 0.010405 87.28489 0.054372 114.3102

F12

Mean 36185.39 412.4278 397.7567 1868.764 462.6775 8373.619 397.6995 597.8785
Best 457.6932 399.6124 394.0019 617.6063 395.242 397.5998 394.2551 395.2381
Worst 114197.1 549.3627 399.5399 4080.398 593.1746 24075.39 400.8513 1044.006
Std.D. 40388.16 41.28796 1.568115 1060.257 70.73772 8245.912 1.944389 195.1874

F13

Mean -313.739 -291.219 -320.211 -328.055 -313.262 -284.334 -301.743 -304.341
Best -326.02 -312.088 -324.053 -329.24 -323.034 -311.953 -312.091 -323.035
Worst -301.145 -239.706 -316.625 -326.997 -302.919 -257.361 -287.217 -285.216
Std.D. 7.16026 19.46133 2.242528 0.613318 6.600104 18.47242 7.644954 11.87931

F14

Mean 3475.521 4565.467 -451.012 1656.562 1703.497 8127.568 -412.664 3916.584
Best 12.02199 -448.529 -459.76 48.06925 -458.932 -426.998 -453.927 -455.066
Worst 8389.517 18892.8 -444.362 5553.795 12904.89 20042.8 -203.248 12358.52
Std.D. 3045.651 6295.205 4.572402 1805.15 4433.449 7376.842 71.8757 5202.762

F15

Mean -117.222 -128.455 -129.368 -128.424 -128.649 -128.438 -128.783 -128.479
Best -128.211 -129.259 -129.56 -128.929 -129.374 -129.594 -129.393 -129.387
Worst -67.4785 -126.853 -129.17 -127.372 -127.298 -127.168 -127.97 -127.188
Std.D. 16.98593 0.755526 0.104705 0.437258 0.686201 0.742833 0.471149 0.654516

F16

Mean 414.9083 630.7858 250.4758 376.7742 406.5959 653.5628 523.1934 544.1959
Best 251.9286 447.0495 168.7983 124.5589 225.7706 430.1585 300.6117 255.3404
Worst 745.2497 920.0004 327.8062 571.041 598.886 815.428 730.3999 837.6443
Std.D. 157.6085 123.9433 47.00732 187.0318 131.5393 105.6845 138.9255 163.2489

F17

Mean 316.0176 336.7429 253.7221 303.6232 261.2031 398.4749 296.6478 290.9328
Best 293.9723 242.4552 217.811 267.7282 224.7097 260.0353 258.4047 244.2714
Worst 350.6052 416.4739 273.3766 363.9921 304.8998 621.7829 349.6444 392.1373
Std.D. 19.92804 59.70134 16.07612 25.24678 26.35556 95.93782 28.99286 44.52406

mechanism. By contrast, the BB-BC algorithm has an effective exploitation mechanism. In the proposed
method, steps of the BB-BC algorithm are added to the intragroup competition phase of the POA; thus, the
proposed method achieves a balance between exploration and exploitation.

The performance of the HPO-BBBC algorithm was tested using nine standard mathematical test functions
and eight composition, rotated, shifted, and expanded functions selected from CEC 2005. The experimental
results were compared with those of the POA, the BB-BC algorithm, and five other metaheuristics, namely GA,
MVO, DA, CSA, and MFO. It shows that the HPO-BBBC algorithm has higher convergence speed and produced
better results than the above-mentioned algorithms in most benchmark problems. In the future, we plan to
test the performance of the HPO-BBBC algorithm in data-mining techniques such as association rules and
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Table 8. P-values of the HPO-BBBC vs. POA and HPO-BBBC vs. BBBC.

Function POA BBBC Function POA BBBC Function POA BBBC
F1 (10-d) 0.0000 0.0000 F4 (10-d) 0.0000 0.0000 F7 (10-d) 0.0000 0.0000
F2 (10-d) 0.0000 0.0018 F5 (10-d) 0.0000 0.0000 F8 (10-d) 0.0000 0.0000
F3 (10-d) 0.0000 0.0000 F6 (10-d) 0.0000 0.0000 F9 (10-d) 0.0000 0.0000
Function POA BBBC Function POA BBBC Function POA BBBC
F1 (20-d) 0.0000 0.0000 F4 (20-d) 0.0000 0.0000 F7 (20-d) 0.0000 0.0000
F2 (20-d) 0.0000 0.0000 F5 (20-d) 0.0000 0.0000 F8 (20-d) 0.0000 0.0818
F3 (20-d) 0.0000 0.0000 F6 (20-d) 0.0000 0.0000 F9 (20-d) 0.0000 0.0000
Function POA BBBC Function POA BBBC Function POA BBBC
F1 (30-d) 0.0000 0.0000 F4 (30-d) 0.0000 0.0000 F7 (30-d) 0.0000 0.0000
F2 (30-d) 0.0000 0.0000 F5 (30-d) 0.0000 0.0000 F8 (30-d) 0.0000 0.2801
F3 (30-d) 0.0000 0.0000 F6 (30-d) 0.0000 0.0000 F9 (30-d) 0.0000 0.0000
Function POA BBBC Function POA BBBC Function POA BBBC
F10 0.0000 0.0000 F13 0.0168 0.0000 F16 0.0006 0.0000
F11 0.0000 0.0000 F14 0.0000 0.0000 F17 0.0000 0.0000
F12 0.0000 0.0000 F15 0.0000 0.0000

Table 9. Average times (s) of the algorithms.

POA BBBC HPO-
BBBC GA MVO DA CSA MFO

F1 2.95 0.46 5.80 1.02 0.81 19.47 0.33 0.43
F2 2.65 0.39 5.01 0.82 0.79 19.45 0.34 0.46
F3 2.49 0.38 5.03 0.75 0.74 19.03 0.34 0.41
F4 2.53 0.37 5.26 0.90 0.87 25.18 0.49 0.47
F5 2.61 0.33 5.16 0.81 0.83 19.22 0.43 0.42
F6 2.97 0.54 5.96 1.59 0.98 20.24 0.37 0.55
F7 2.56 0.32 5.01 0.78 0.75 20.91 0.35 0.32
F8 2.81 0.49 6.01 1.21 0.89 19.13 0.49 0.48
F9 2.63 0.37 4.79 1.01 0.74 18.39 0.36 0.34
F10 128 69 319 134 72 122 68 68
F11 135 70 331 135 73 126 69 70
F12 137 70 333 134 73 121 68 68
F13 138 71 332 135 74 114 68 68
F14 146 75 354 147 80 128 72 74
F15 138 70 340 136 72 116 68 69
F16 402 207 974 401 215 301 205 202
F17 416 219 1022 427 226 318 216 215

classification. The efficiency of the HPO-BBBC algorithm can be improved through some modifications, e.g.,
chaotic maps could be embedded to create the initial population instead of using random numbers. Moreover,
generalization of the HPO-BBBC for multiobjective optimization problems may also be one of the further works.
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Figure 6. Convergence plots of F1, F3, F4, F6, F8, F9, F10, F15, and F17.
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