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Abstract: Iris recognition has widely been used in personal authentication problems. Recent advances in iris recognition
through visible wavelength images have paved the way for the use of this technology in smartphones. Smartphone-based
iris recognition can be of significant use in financial transactions and secure storage of sensitive information. This paper
presents a hybrid representation scheme for iris recognition in mobile devices. The scheme is called hybrid because it
firstly makes use of Gabor wavelets to reveal the texture present in the normalized iris images, and then extracts statistical
features from different partitions of Gabor-processed images. The standard mobile-iris database, called MICHE, is used
for investigating the performance of the proposed approach. The comparison of the proposed approach with other
widespread iris recognition approaches proves its efficacy.
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1. Introduction
Iris has been the most popular biometric trait because of its uniqueness, permanence, and noninvasiveness [1]. It
has found wide applications in border control [2], national ID schemes (e.g., Unique Identification Authority of
India, available at https://uidai.gov.in/) and surveillance-based security services [3]. Additionally, performance
of iris recognition systems is on par with that of another similar contenders like fingerprint, palmprint, and face
[4].

Iris is the annular region of human eye which is delimited by two boundaries from either side: iris-pupil
boundary and iris-sclera boundary. These boundaries are also called inner and outer boundaries, respectively, of
the iris. Every human iris is characterized by a unique and discriminative texture that can be used to recognize
people [5]. Moreover, iris of identical twins, and left and right irises of the same person, are also unique [6, 7].

The idea of iris recognition was first suggested by Flom and Safir [8]. They provided the conceptual
design of an automated iris recognition system, which consisted of a highly constrained image acquisition
framework. Later, first practical implementation of iris recognition was given by Daugman [1], who used the
phase information of iris’ texture to generate IrisCode. Daugman’s IrisCode has been successfully used in many
commercial iris recognition systems.

Since then, many researchers have tried in their own ways, to represent human iris in more distinctive
manner. Masek [9] used the phase information of 1D log-Gabor filters to encode the iris patterns. Ganeshan et
al. [10] used Laplacian of Gaussian (LOG) filter masks to construct Laplacian pyramids representation of the
∗Correspondence: ritesh.vyas@nitdelhi.ac.in
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iris image. Monro et al. [11] used DCT coefficients of half-overlapped patches of normalized iris images to form
the feature vector. Miyazawa et al. [12] employed phase components of 2D discrete Fourier transform (DFT)
of iris images to match iris images through band-limited phase only correlation (BLPOC).

Many contemporary approaches which aim at representing iris in several different ways have been
reported. Rai and Yadav [13] proposed iris recognition through two-level Haar decomposition and 1D log-
Gabor wavelet using SVM and Hamming distance as the classifiers. Tan and Kumar [14] utilized geometric
key-based encoding of iris images. In another work by the same authors [15], iris was encoded with the help
of phase information of Zernike moments and an exclusive phase-distance function was used for the matching
purpose.

Bhateja et al. [16] used sparse representation to match iris images in k-nearest subspace. Umer et al.
[17] proposed multiscale morphological features to extract features from iris images. Vyas et al. [18] used 2D
Gabor filters with varying orientations to form a feature plane by performing Exclusive OR and summation
operation on the Gabor-filtered images. Bansal et al. [19] represented the texture of iris using local principal
independent components.

Subban et al. [20] employed Haralick features and optimized feature selection to efficiently represent the
iris. Bansal et al. [21] utilized statistical features along radial and angular directions to get improved iris recog-
nition. Poornima and Subramanian [22] employed log-Gabor filters for extracting iris features. Hamouchene
and Aouat [23] proposed a neighborhood-based binary pattern to represent iris’ texture efficiently. Vyas et al.
[24] used GLCM features with varying offset distance value and classified them using artificial neural networks.

The mobile iris biometrics has found its way with MICHE I contest [25]. This contest was held for
encouraging users to test iris segmentation techniques for images acquired from mobile devices. Iris segmentation
is the process of localizing the boundaries of iris so that iris can be separated from rest of the eye image. After
the successful completion of this contest, MICHE II contest was also organized, which targeted at the assessment
of iris recognition techniques for mobile devices [26]. Many researchers from all over the globe participated in
MICHE II and described various iris representation techniques [27–29].

The present work reports a hybrid feature extraction technique for mobile iris biometrics. The technique
first exploits 2D Gabor wavelets at varying scales and orientations, to reveal the texture of iris images.
Consequently, each Gabor-processed image is partitioned into subblocks to take the local features of iris into
account. The subblocks at the first level of partitioning are kept to have same resolution. While, for second level
of partitioning, the dimension of subblocks are chosen to have increased horizontal and vertical resolutions. This
increased resolution of subblocks aid in countering the effects of eyelid and eyelash occlusions, present in the
normalized iris image. After partitioning, the standard deviation is calculated for every subblock and feature
vector is formed by storing the remainder after subtraction of standard deviations of lower- and higher-level
subblocks. These feature vectors are further matched to find the degree of similarity between query and gallery
images.

Rest of the paper is organized as follows. Section 2 explains the iris segmentation process employed in
this paper while Section 3 provides a comprehensive explanation of the proposed feature extraction approach.
Performance evaluation of the proposed approach is explicated in Section 4. Finally, the paper is concluded in
Section 5.
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2. Iris segmentation
As the mobile iris images are captured under uncontrolled frameworks, the image also contains other regions
surrounding the iris region. For instance, the image may contain skin, cheek, portion of forehead, and hair.
Therefore, it becomes necessary to first detect the eye region. In the present work, the eye region is detected
using the Viola–Jones framework [30, 31]. This framework is based on extraction of rectangular features from
the integral images of input eye image. As the iris images in MICHE database [25] are captured by the
subject himself/herself, there are huge variations in the sizes of detected rectangular regions containing the iris.
Therefore, the detected eye region is resized to a fixed dimension before proceeding further. Detection of eye
region is depicted in Figure 1, where Figure 1a shows the original eye image and Figure 1b shows the detected
eye (within red-colored box).

(a) (b) (c) (d)

(e)

(f)

Figure 1. ROI extraction process: (a) Original image, (b) Detection of eye region using the Viola–Jones framework;
marked within red box, (c) Iris segmentation with iris boundaries marked as green, (d) Corresponding iris mask, (e)
Normalized iris, (f) Enhanced iris. (image source: 001_IP5_OU_F_RI_01_4.jpg).

Subsequently, the iris boundaries are localized following the method given by Zhao and Kumar [32].
Firstly, the eye images are processed through single-scale retinex technique to improve the color consistency.
The color consistency can be defined as “the maintenance of color appearance despite variation in the color of
nearby objects and despite variation in the spectral power distribution of the ambient light [33]”. Therefore, color
consistency plays a significant role while dealing with colored objects. In case of eye images, color consistency
can directly affect the contrast between the iris/pupil and iris/sclera boundaries. Thereafter, relative total
variation is defined for the whole image, which is minimized further using an L1 norm minimization problem
to divulge the structure of iris. The inner and outer boundaries of iris are then detected using circular Hough
transform (CHT) approach [34] (refer to Figure 1c). The corresponding iris mask is then shown in Figure 1d.
Lastly, the segmented iris region is transformed from rectangular to polar coordinates using Daugman’s rubber
sheet model [35] and the normalized iris is enhanced using common postprocessing steps [18]. The normalized
and enhanced irises are shown in Figures 1e and 1f, respectively.

3. Proposed approach
As introduced in Section 1, the proposed scheme utilizes hybrid features of iris templates, which are constructed
by using Gabor wavelet bank and simple statistical formulae. The features are referred to as hybrid due to
the use of textural (Gabor) and statistical representations. The localized nature of iris features is taken into
account by performing partitioning at two different levels. By doing so, effect of any global noise present in
the iris image can be fended off. Additionally, the increased vertical and horizontal resolutions of second-level
subblocks lead to cancellation of texture variations caused by eyelid and eyelash occlusions.
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Algorithm 1 Hybrid features
Require: I : Normalized iris image
Ensure: FV : Feature vector containing hybrid features

1: Select red channel from I into I1 .
2: Design 2D Gabor wavelet bank using following equations:

Γ (α, n) = G (x, y, σα, fα, θn)

G(x, y, σα, fα, θn) =
1√
2πσ2

α

exp
{
−x2+y2

σ2
α

}
× exp (2πifα (x cos θn + y sin θn))

fα =
0.2592√

2α
, θn =

nπ

4
, α = 0, 1, . . . , 4, n = 0, . . . 3

▷ θ represents the

orientation of Gabor filter; 1 ≤ θ ≤ N .
3: for α = 0 to 4 do
4: for n = 0 to 3 do
5: Process I1 with 2D Gabor wavelet through convolution operation: Fα,n = I1 ∗ Γ(α, n)
6: Partition the filtered image Fα,n at two levels ▷ Let Sα,n

i and Sα,n
i,j represent the subblocks at

first and second level, respectively. The subscripts i and j are the indices for specifying the subblocks at
first and second level, respectively, such that i ∈ [1, 4] and j ∈

{
[1, 8] , i = 1, 2
[1, 6] , i = 3, 4

7: for each ith subblock at the first-level of partitioning do
8: for each jth subblock at the second-level of partitioning do
9: Calculate mean and standard deviations as per following equations [36]:

µα,n
i =

∑
x,y |S

α,n
i (x, y)|

mi × ni
, µα,n

ij =

∑
x,y

∣∣Sα,n
ij (x, y)

∣∣
mij × nij

σα,n
i =

√∑
x,y ||S

α,n
i (x, y)| − µα,n

i |
mi × ni

, σα,n
ij =

√∑
x,y

∣∣∣∣Sα,n
ij (x, y)

∣∣− µα,n
ij

∣∣
mij × nij

▷ where

(x, y) represents the pixel coordinates i.e. xth row and yth column. ▷ (mi, ni) are the
dimensions of ith first-level subblock and (mij , nij) are the dimensions of jth second-level subblock in ith

first-level subblock.
10: end for
11: end for
12: Store the remainders after subtraction operation between standard deviations

Dα,n = [dα,n11 | dα,n12 | · · · | dα,n46 ]
where, dα,nij =

∣∣σα,n
i − σα,n

ij

∣∣ ∀(i, j) as explained in step 6
13: end for
14: end for
15: Concatenate all hybrid features to form the complete feature vector FV :

FV = [D0,0 | D0,1 | · · · | D4,3]
16: return FV

In the proposed approach, red channel of the input iris image is first extracted because red spectrum is
closest to the NIR spectrum and hence represents the iris texture more clearly [32, 37]. This red channel image
is then processed through Gabor wavelets of different frequencies, scales and orientations. This multi-scale and
multi-resolution analysis of the iris image enables the proposed approach to extract wide-ranging features of iris.
Thereafter, each wavelet-processed image is divided into subblocks using constant- and variable-size partitioning
at first level and second level, respectively.

Means and standard deviations of all subblocks are then calculated. Standard deviation of the partitioned
subblock is a clear measure of the intensity variations local to that subblock. In addition, when subtraction is
performed between standard deviations of first- and corresponding second-level subblocks, the global variations
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in the image intensities are nullified. This imparts illumination invariance to the proposed scheme. Additionally,
subtraction of standard deviations of lower and higher-level subblocks is employed here for storing the relevant
additional texture information which lower (or higher)-level subblocks possess with respect to the higher (or
lower)-level subblocks. This additional relative texture information may be attributed to the presence of dense
iris texture in some regions and absence of texture in the other regions, whereas absence of texture may be linked
to the occlusion of iris texture through reflections, eyelids, and eyelashes. Therefore, mere standard deviations
may lead to vague characterization of iris texture. This is the reason that the proposed feature extraction
scheme employs subtraction of standard deviations to form the feature vector.

Moreover, since the subtraction of standard deviation is performed at varying scale and orientation of
Gabor wavelets, the thin edges of iris texture dwelling in multiple directions contribute significantly to the
overall feature vector. Therefore, the complete feature vector is constituted by concatenating the remainders of
all subtraction operations, performed for the complete wavelet bank. This blend of textural and statistical char-
acteristics provides discriminative property to the proposed hybrid features. Complete process of constructing
the feature vectors is illustrated in Algorithm 1.

Original iris

Red channel

Enhanced template

1st-level subblocks

2nd-level subblocks

(b) Iris templates after

processing with bank

of Gabor wavelets

α
 =

4
α

 =
3

α
 =

2
α

 =
1

α
 =

0

θ = 0°

θ = 45°

θ = 90°
θ = 135°

θ = 0°

θ = 45°

θ = 90°
θ = 135°

θ = 0°

θ = 45°

θ = 90°
θ = 135°

θ = 0°

θ = 45°

θ = 90°
θ = 135°

θ = 0°

θ = 45°

θ = 90°
θ = 135°

(a) Preprocessing
(c) Two-level partitioning

Figure 2. Schematic diagram of the proposed approach.

The schematic diagram of the proposed approach is shown in Figure 2. The original iris template is
first enhanced to highlight its texture. This preprocessing is shown in Figure 2a while Figure 2b shows various
instances of processing the input iris template through Gabor wavelets Γ (α, n) . It can be visualized from Figure
2b how different scales of Gabor wavelets result in emergence of different texture patterns. This processing
of iris template through the bank of Gabor wavelets provides multidimensionality and distinctiveness to the
final feature vector. Finally, Figure 2c illustrates the division of Gabor-processed templates into two-level of
subblocks: Sα,n

i and Sα,n
i,j . It is also apparent from Figure 2c that the second-level subblocks have varying

resolutions due to non-uniformity in their dimensions.
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3.1. Feature vector size
As the proposed approach includes simple statistical formulae to constitute the feature vector, size of feature
vector in this approach is also limited. Upon carefully observing the schematic diagram of the proposed approach
(Figure 2), it can be inferred that that there are twenty different Gabor functions in total in the employed wavelet
bank. Furthermore, each wavelet-processed image is divided into four and twenty-eight subblocks at the first-
and second-level, respectively. Thereafter, standard deviation of each subblock is calculated and corresponding
standard deviation values from first- and second-level subblocks are subtracted. Residues of these subtraction
operations are stored in the form of a vector leading to twenty-eight values for one wavelet-processed image.
In order to make these subtraction operations more apparent, the zoomed versions of one first-level subblock
and eight second-level subblocks extracted from the selected first-level subblock are shown in Figure 3. The
standard deviations of all these subblocks are also marked with appropriate subscripts. Now, in order to form
the feature vector, the standard deviations of first- and second-level subblocks are subtracted as follows:

FV = [|σ1 − σ11| | |σ1 − σ12| | · · · | |σ1 − σ18| · · · ] (1)

σ1

σ11 σ12
σ13 σ14
σ15 σ16
σ17 σ18

1st-level subblocks

2nd-level subblocks

Figure 3. Standard deviations of different subblocks.

Therefore, it can be stated that features are formed by subtracting standard deviations of the second-level
subblocks from the standard deviation of that first-level subblock, from which the second-level subblocks are
extracted. Similarly, standard deviations of other second-level subblocks are subtracted from standard deviation
of their respective first-level subblocks. Subsequently, completing all the wavelet-processed images leads to 560
(28 × 20) features, which is a very compact representation of the whole texture of iris when compared with
other approaches (refer to Section 4.4 for discussion on comparison).

4. Performance evaluation
4.1. Experimental setup
The experiments in this research are carried out with a benchmark mobile iris database, called Mobile Iris
CHallenge Evaluation (MICHE) (available at http://biplab.unisa.it/MICHE/index_miche.htm). This database
was launched in order to evaluate iris segmentation and recognition techniques for smartphone-based systems
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in MICHE I and MICHE II challenges, respectively. The database contains iris images captured from three
different smartphone devices: iPhone5, Galaxy S4, and Galaxy Tab2 (written hereafter as IP5, GS4 and GT2,
respectively). The whole database comprises 3190 iris images from 75 subjects, including at least 4 images per
subject. Further, the images using IP5 and GS4 are acquired in four different frameworks using both rear and
front cameras of the devices in indoor as well as outdoor illuminations. While for GT2 device, only front camera
is used for acquisition.

The whole dataset is first segmented as per the method explained in Section 2. Thereafter, only those
subjects that have at least four images with correctly localized iris boundaries are carefully selected for further
processing. Moreover, only front camera images are considered here for the recognition purpose as it is quite
impractical for a user to take his/her own eye image with rear camera of the device. Some sample images from
the three devices are shown in Figure 4.

(a) IP5/outdoor (c) GS4/outdoor (e) GT2/outdoor(b) IP5/indoor (d) GS4/indoor (f) GT2/indoor

Figure 4. Sample images of the database acquired with the front cameras.

The performance of the proposed approach is assessed in terms of performance metrics like area under
receiver operator characteristics curve (AUC), genuine acceptance rate (GAR), and equal error rate (EER).
The GAR is observed at the specified EER for each experiment. Furthermore, experimentation is accomplished
in two separate phases. The first phase helps in deciding the appropriate distance metric for the proposed
approach while the second phase is responsible for corroborating the effective performance of the proposed
approach through its comparison with other widespread approaches of iris recognition.

4.2. Phase I: Evaluation of distance metrics
This phase is aimed at selecting appropriate distance function for the addressed problem of mobile iris biometrics.
The nearest neighbor classifier is employed in the proposed approach with three different distance functions
namely city-block, Euclidean, and chi-square distance functions. Mathematical expressions of these distance
functions are given in Eq. (2), where FV represents the feature vector extracted using the proposed approach,
letters Q and G correspond to query and gallery images, respectively and L denotes the length of feature
vector.

City − block distance :
L∑

i=1

|FVQi
− FVGi

|

Euclidean distance :

√
L∑

i=1

(FVQi
− FVGi

)
2

Chi − square distance :
1

2

L∑
i=1

(FVQi − FVGi)
2

FVQi
+ FVGi

(2)

Choice of the distance function can significantly affect the overall accuracy of the recognition system.
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This can also be verified by the values of performance metrics listed in Table 1 and graphs shown in Figures
5a and 5b (for indoor and outdoor environments, respectively). It can be ascertained from Table 1 and Figure
5 that the chi-square distance function outperforms the other two distance functions for indoor illuminated
images. For IP5 database, the EER of chi-square distance metric turns out to be 0.0891 which is far below
the EER achieved with city-block and Euclidean distances. Similarly, for GS4 and GT2 databases in indoor
lighting conditions, EERs achieved with the proposed descriptor using chi-square distance metrics are 0.1496
and 0.1169, respectively. These values of EER are superior to those achieved with other two distance functions.
Therefore, chi-square distance function is found suitable for the proposed descriptor in the indoor illumination
framework.

Table 1. Comparison of different distance metrics.

Illumi. Distance IP5 GS4 GT2
AUC GAR EER AUC GAR EER AUC GAR EER

Indoor
City-block 0.9670 0.8958 0.1036 0.9032 0.8333 0.1678 0.9297 0.8708 0.1288
Euclidean 0.9560 0.8917 0.1084 0.9015 0.8333 0.1687 0.9271 0.8625 0.1369
Chi-square 0.9751 0.9083 0.0891 0.9143 0.8529 0.1496 0.9419 0.8833 0.1169

Outdoor
City-block 0.9146 0.8433 0.1589 0.9383 0.8625 0.1367 0.9209 0.8630 0.1370
Euclidean 0.8931 0.8100 0.1886 0.9181 0.8375 0.1639 0.9100 0.8370 0.1617
Chi-square 0.9223 0.8467 0.1526 0.9424 0.8583 0.1423 0.9342 0.8630 0.1375

0.0 0.1 0.1 0.2 0.2

GT2

GS4

IP5

City-block Euclidean Chi-square

(a)

0.0 0.1 0.1 0.2 0.2

GT2

GS4

IP5

City-block Euclidean Chi-square

(b)

Figure 5. Comparison of EER values of different distance metric for (a) indoor environment; (b) outdoor environment.

For outdoor illuminated images, city-block and chi-square distance metrics perform comparably for
different smartphone devices. On the one hand, for IP5 device, chi-square distance function provides minimum
EER (0.1526) among all three distance functions. On the other hand, for GS4 and GT2 devices, EERs obtained
with city-block distance metric (0.1367 and 0.1370, respectively) remain the minimum. This varying performance
of distance metrics may be attributed to the various challenges posed by the outdoor illumination framework.
Due to this, the results of the proposed descriptor with outdoor illuminated images are specified with both the
distance functions, city-block and chi-square.

4.3. Phase II: Comparison with other approaches
This phase of experimentation proves the efficacy of the proposed approach in smartphone-based iris matching
framework. In this phase, images acquired from any one mobile device are matched against those acquired
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Table 2. Comparative analysis of the proposed approach in indoor environment (using chi-square distance metric).

Illumi. Approach IP5 GS4 GT2
AUC GAR EER AUC GAR EER AUC GAR EER

Indoor

BLPOC 0.7981 0.7375 0.2667 0.6800 0.6119 0.3887 0.7666 0.7000 0.2990
DCT 0.8481 0.7792 0.2213 0.7942 0.7108 0.2886 0.7745 0.6958 0.3018
IrisCode 0.9874 0.9458 0.0527 0.9322 0.8480 0.1505 0.9167 0.8417 0.1593
Haralick 0.8647 0.7625 0.2312 0.8704 0.8088 0.1769 0.8451 0.7708 0.2185
XorSum 0.9729 0.9292 0.0720 0.9004 0.8382 0.1574 0.9453 0.8917 0.1104
Statistical 0.9756 0.9292 0.0714 0.9382 0.8676 0.1313 0.9520 0.8833 0.1171
Log-Gabor 0.9808 0.9333 0.0662 0.9286 0.8627 0.1370 0.9313 0.8625 0.1368
RINBP 0.9372 0.8792 0.1203 0.9276 0.8578 0.1421 0.9463 0.8792 0.1193
Proposed 0.9751 0.9083 0.0891 0.9143 0.8529 0.1496 0.9419 0.8833 0.1169

from the same device. Tables 2 and 3 show the values of performance metrics, AUC, GAR and EER, for
the proposed as well as other standard approaches in indoor and outdoor environments, respectively. The
best values of performance metrics, along with the metrics of the proposed approach, are highlighted by bold
characters in Tables 2 and 3. Here the proposed approach is compared with various benchmark approaches like
BLPOC [12], DCT [11], IrisCode [1], Haralick [20], XorSum [18], statistical [19], log-Gabor [22], and rotation
invariant neighborhood-based binary pattern (RINBP) [23]. The feature extraction approaches in [20] and [23]
(i.e. Haralick and RINBP) are implemented along with chi-square and Euclidean distance metrics, respectively.
Figures 6 and 7 depict this comparison using bar-charts, for indoor and outdoor illumination environments,
respectively.

While analyzing the functioning of the proposed approach in indoor environments (Table 2), it is found
that the proposed approach is performing poor or comparable to the other existing approaches. For IP5
device, EER achieved in the proposed approach (0.0891) is worse than IrisCode (0.0527), XorSum (0.0720),
statistical (0.0714), and log-Gabor (0.0662) approaches. This may be attributed to the high resolution of
database images. However, it may sound interesting to the reader that the proposed approach is yielding such
comparable performance with a small feature vector size (kindly refer to Section 4.4 for more detailed discussion
on feature vector size). On the other hand, the proposed approach outperforms IrisCode and XorSum approaches
for GS4 database, in terms of EER. However, it still performs comparable to statistical, log-Gabor, and RINBP
approaches while, for GT2 database, performance of the proposed approach (in terms of EER) is at par with
respect to all other listed approaches except XorSum. To be precise, EER of the proposed approach is 0.1169,
which is the second best after that of XorSum (0.1104). However, the proposed approach has supremacy over
XorSum in terms of feature extraction speed i.e. speed of the proposed approach is almost double of that yielded
by XorSum (refer to Section 4.5 for details). Pictorial comparisons of the performance metrics for matchings in
indoor environment for IP5, GS4, and GT2 devices are also shown in Figures 6a–6c), respectively.

Furthermore, it is important to note here that despite poor or comparable performance of the proposed
approach in indoor illumination, it solves the major challenge of feature vector size. Since smartphones have
limited storage capacity and computation power, feature descriptors yielding huge-sized feature vectors are
not suitable for them. Therefore, approaches like IrisCode and Log-Gabor, which otherwise produce good
performance, are not suitable to be implemented on smartphones because of their huge feature vector size. On
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Figure 6. AUC, GAR, and EER comparisons of the proposed approach in indoor environments for (a) IP5, (b) GS4,
and (c) GT2 device.

the contrary, the proposed approach involves limited feature vector size and simple computations, which makes
it suitable for the said application of smartphone-based iris recognition.

Table 3. Comparative analysis of the proposed approach in outdoor environment.

Illumi. Approach IP5 GS4 GT2
AUC GAR EER AUC GAR EER AUC GAR EER

Outdoor

BLPOC 0.8301 0.7567 0.2397 0.5815 0.5395 0.4613 0.6475 0.6000 0.3982
DCT 0.7753 0.7000 0.2958 0.5196 0.4792 0.5135 0.5302 0.5167 0.4807
IrisCode 0.8952 0.8067 0.1926 0.6456 0.5833 0.4112 0.6200 0.5762 0.4245
Haralick 0.8391 0.7567 0.2385 0.8594 0.7750 0.2210 0.8807 0.8074 0.1957
XorSum 0.8830 0.8100 0.1907 0.6164 0.5750 0.4298 0.6576 0.6097 0.3880
Statistical 0.9249 0.8467 0.1525 0.9090 0.8375 0.1609 0.9281 0.8519 0.1468
Log-Gabor 0.8890 0.8067 0.1926 0.8392 0.7458 0.2529 0.8992 0.8222 0.1753
RINBP 0.8951 0.8200 0.1810 0.9312 0.8542 0.1445 0.9155 0.8407 0.1595
Proposed (with City-block) 0.9146 0.8433 0.1589 0.9383 0.8625 0.1367 0.9209 0.8630 0.1370
Proposed (with chi-square) 0.9223 0.8467 0.1526 0.9424 0.8583 0.1423 0.9342 0.8630 0.1375

When it comes to the performance evaluation of various feature extraction approaches in outdoor en-
vironments, the proposed approach clearly outperforms all the listed state-of-the-art approaches, as is evident
from Table 3. This table indicates the performance of the proposed approach with two distance metrics, namely
city-block and chi-square, as both these metrics are yielding comparable results. Although the outdoor images
have huge texture variations, the proposed approach is able to represent them distinctively, unlike other ap-
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proaches. On observing the performance of the proposed approach for IP5 device in outdoor environment, it
can be clearly noticed that all three performance metrics are significantly superior (comparable to Statistical
approach though) as compared to those of other benchmark approaches. Same argument applies to other two
devices, GS4 and GT2, for outdoor illumination experiments. In addition, preponderance of the proposed ap-
proach in outdoor illumination framework is illustrated by Figure 7. It can be clearly observed from Figures
7a–7c) that the proposed approach performs efficiently for all three devices.
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Figure 7. AUC, GAR and EER comparisons of the proposed approach in outdoor environments for (a) IP5; (b) GS4;
and (c) GT2 device.

4.4. Comparison of feature vector size
In view of this comparison, Table 4 furnishes the details of size that each feature vector occupies in the MATLAB
workspace (since BLPOC is a phase-based matcher, no feature vector size is indicated for it). These sizes are
obtained by using whos function of MATLAB. It can be observed from Table 4 that feature vector size of the
proposed approach, is far less than most of the listed approaches, except Haralick and RINBP. Out of these
two approaches, Haralick approach produces equal feature vector size as that of the proposed approach while
RINBP is yielding slightly lesser feature vector size as compared to that of the proposed approach. Therefore,
the superiority of the proposed approach in terms of feature vector size can be established from Table 4.

4.5. Comparison of feature extraction speed
This subsection deals with the comparison of time elapsed in feature extraction process of the proposed descriptor
and other state-of-the-art descriptors. All the descriptors were implemented on a Windows-based system having
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Table 4. Comparison of feature vector size.

Approach BLPOC DCT IrisCode Haralick XorSum Statistical Log-Gabor RINBP Proposed
Feature vector
size (KB/image)

– 32 512 4.375 48 26.9063 128 4 4.375

i7@3.40 GHz processor and 8 GB RAM. The platform used for coding is MATLAB R2016a. Table 5 lists the
feature extraction speed in sec/image for all the employed descriptors. Since BLPOC is a phase-based matcher,
no feature extraction time is indicated for it. Furthermore, speed of the proposed feature descriptor is the
second fastest after that of log-Gabor–based descriptor, which takes 126 ms for one image with respect to the
143 ms per image taken by the proposed descriptor while all other descriptors have higher feature-extraction
time or lower feature-extraction speed when compared with those of the proposed descriptor. Therefore, the
proposed descriptor can prove to be a suitable candidate for real-time iris recognition systems.

Table 5. Comparison of feature extraction speed.

Approach BLPOC DCT IrisCode Haralick XorSum Statistical Log-Gabor RINBP Proposed
Time elapsed
(sec/image)

— 0.211 0.259 2.246 0.270 0.189 0.126 0.299 0.143

5. Conclusions
This paper presents a hybrid feature extraction approach to be used in mobile iris biometrics. The proposed
approach uses 2D Gabor wavelets and standard deviation formulae to achieve the feature extraction. Multiscale
and multiresolution analysis of iris templates through Gabor wavelets ensure the highlighting of wide-ranging
texture present in the iris. Then, breakdown of iris templates into subblocks at two separate levels aids in
capturing the local textural features. The intensive experimentation performed on the challenging MICHE
mobile iris database proves the usefulness of the proposed approach. It can be observed that the proposed
approach outperforms the state-of-the-art approaches in terms of all reported performance metrics, especially
in the outdoor illumination environment, which is the more challenging among both types of illumination.
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