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Abstract: The round-trip time (RTT), defined as the time elapsed for transmission of a data packet to travel from one
endpoint to the other and back again, is an important parameter for Internet quality. This paper proposes an extended
version of the well-known SYN/ACK (SA) methodology for passively measuring the RTTs over Transmission Control
Protocol (TCP) connections. Differently from the original version of the SA methodology and the rest of studies in the
related literature, the proposed passive methodology measures not only the total RTT of an end-to-end connection but
also the proportion of the existing connection sections on this entire RT'T in a passive way if the connection between
client and server is established via intermediate stations. A distributed measurement architecture has been designed that
implements the extended SA methodology. Through tests in a controlled laboratory environment, various verification
and performance evaluation experiments were conducted to determine the accuracy level of the measurement technique
and how the distributed architecture behaves regarding resource requirements as the amount of incoming network traffic
increases. Accuracy verification experiments show that on average about 92.66% of the passive measurements are within
10% or 5 ms, whichever is larger, of the RTT that ping would actively measure. Furthermore, the results reveal that using
today’s commodity hardware, the designed distributed architecture exhibits acceptable satisfactory scaling performance

and can practically be used to passively measure RTTs of each hop within medium-sized communication networks.

Key words: Round-trip time, passive measurement, transmission control protocol, three-way handshake, quality of

service

1. Introduction
In addition to parameters such as throughput and availability for Internet quality, the response time, i.e. the
round-trip time (RTT), is a crucial factor. The RTT indicates the time required to send a packet of data from a
source to the receiver over a network and to transport the receiver’s response back to the transmitter. Measuring
and monitoring RT'Ts in communication networks is important for multiple reasons, such as (a) to investigate
and verify service level agreements by measuring the responsiveness of various services, (b) to allow network
operators and end users to understand network behavior and performance, (c) to assist in making accurate
routing and queuing decisions, and (d) to improve the achievable throughput of transport protocols, to name
just a few.

The methods for measuring RTT can mainly be divided into active and passive measurement methods.

The active RTT measurement methods are based on injecting additional test packets into the measurement
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path. A well-known representative of this class is the ping command, which is based on the Internet Control
Message Protocol (ICMP). It sends an echo request packet to a destination address that responds with an
echo reply packet. The transit time can be estimated from the difference between the arrival time of the echo
reply packet and the sending time of the echo request packet [1, 2]. However, there exist several significant
disadvantages of active RTT measurements. ICMP is often disabled for security reasons and the additional
ICMP packets lead to unwanted additional load of the network, which can falsify the measurements [3]. Active
measurement techniques in general suffer from deployment flexibility limitations as all active tools need to be
deployed and run on at least one of the end-hosts of each path to be measured, if not on both ends. In the
case of only a couple of existing measurement paths, manual deployments and executions of such active tools
could lead to temporary solutions without causing a major configuration overhead. However, in the case of
reasonably large communication networks that consist of a significantly higher number of paths and hops, their
probing via such manual configurations would be practically infeasible. Moreover, active tools report their
final estimates in a decentralized way, either on sender or receiver hosts, which makes centralized and uniform
network measurement and monitoring a more challenging task. For such a purpose, a distributed measurement
architecture is needed that ideally provides the network administrators and operators with a single central host
in which the measurements of any path, subpath, or hop within the overall managed network can be flexibly
collected without causing any manual configuration overhead.

Passive tools, on the other hand, eliminate the disadvantages of active tools as they do not generate
additional traffic, but only capture and analyze the passing real traffic at an appropriate observation point
without perturbing the network traffic. They offer the important advantage of flexible placement of the
monitoring software anywhere on the way between the end hosts. For these reasons, passive RT'T measurement
methods are more often preferred in practice [4]. For the passive measurement of RTTs, the well-known
Transmission Control Protocol (TCP) is particularly suitable since a transmission of a data segment from
the transmitter to the receiver requires the transport of the associated acknowledgment (ACK) segment.

Within the course of the past years, several studies have been carried out to measure RTTs in the
literature. Shah et al. [5] investigated the possible relationship between the RTT and the software download
time for FTP servers. Giinther and Hoene [6] measured RTTs with the intention of determining the distance
between WLAN nodes. Jiang and Dovrolis [7] proposed and evaluated a passive measurement methodology that
estimates the distribution of RTTs for the TCP connections. The work of Strowes [2] is based on the observation
of packets using the TCP header timestamp option, which is used by TCP to generate RT'T measures. Aikat
et al. [8] measured and analyzed the variability in RTTs within TCP connections using passive measurement
techniques. Yan et al. [9] presented a novel passive measurement method that exploits the TCP timestamp
option to measure path RTT at an intermediate measurement point between two end-points. Prieto et al. [4]
presented a simple passive algorithm to estimate the RTT of a TCP connection in high bandwidth-delay network
scenarios. Veal et al. [10] proposed two methods to passively measure and monitor changes in RT'Ts throughout
the lifetime of a TCP connection. Jaiswall et al. [11] proposed a passive measurement methodology to infer and
keep track of RTTs with a TCP connection based on the estimated value of the congestion window. Despite the
plethora of studies on measuring RTT, the mutual motivation of all these studies was only focusing on measuring
or analyzing the total end-to-end RTTs, disregarding the separate calculation of delays over individual hops
along that path.

Differently from the rest of the studies in the literature, the aim of this study is to design, implement,

and evaluate a distributed measurement architecture that not only measures the total end-to-end RTT. The
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delay times of the individual hops should also be measured if the connection between the client and server is
established via several intermediate stations, the so-called gateway routers. The idea is to determine the cause
of the delay of a packet more precisely. Particularly, the delay of a packet can have different causes, e.g., it
can be caused by a congested component within the network of the respective ISP. Another scenario arises if
the connection is established via two or more ISPs. In this case, it can be determined which provider along
the end-to-end path has delayed the communication. Through tests in a controlled laboratory environment,
the accuracy of the proposed passive RTT measurement technique has been validated with the help of active
measurements. Also, the performance of the distributed architecture was experimentally evaluated to determine
to what extent it is scaling, i.e. how it behaves with respect to capturing arriving frames, connections, and

CPU usage as the volume of incoming network traffic is increasing.

2. Theoretical foundations of passive RTT measurement

2.1. End-to-end RTT measurement using SYN/ACK (SA) methodology

There are several well-known methods that can be used to measure the end-to-end RTTs over TCP connections.
For example, the slow-start method measures the RTT during the slow-start phase of a TCP connection, while
continuous measurement methods measure it over the entire duration of a connection [7]. In this study, the
so-called SA methodology is used for passive RTT measurement, which measures the RTT when setting up
a TCP connection. Compared to the other two measurement methods, it is easier to implement while also
accurately measuring RTTs that are within limits of acceptable accuracy.

Setting up a TCP connection consists of a sequence of three segments, i.e. SYN, SYN/ACK, and ACK
segments, and is thus called a three-way handshake (TWH). A monitoring software implementing the SA
methodology, placed anywhere on the path between the client and server, measures the RTT by observing the
three consecutive TWH segments. Both the arrival times of the initial SYN segment (i.e. active open) and the
ACK segment following the SYN/ACK segment (i.e. passive open) are recorded. Subsequently, the end-to-end
RTT of the connection can be determined by subtracting the recorded time values. The requirement for a
correct measurement is that none of the three segments are lost and the segments are immediately sent by the
client or the server [7] (see Figure 1).

The main difficulty in implementing the SA methodology is the filtering of the TWH segments of a TCP
connection out of network traffic. The detection of the first two segments of the TWH can be undertaken
without problems because the SYN or SYN/ACK flags only set in such types of segments. However, the ACK
segment is unidentifiable by its ACK flag as there are segments in the network traffic where the ACK flag is
set but they are not part of the TWH phase, e.g., the acknowledgments of data segments, or acknowledgments
sent as responses to connection termination requests triggered by one of the end hosts. This problem and its

solution will be discussed in Section 3.3 in more detail.
Although the SA methodology can be used to measure the total RTT for the end-to-end connection, its

individual usage is not sufficient to calculate the delay times of the individual hops of a connection.

2.2. Proposed method of distributed RTT measurement: extended SA methodology

The placement of the probes on each gateway router allows the computation of the partial RTTs of a connection
within a network path. Figure 2 illustrates the principle of distributed measurement through the use of probes
on two gateway routers. In Figure 2, the first and second probes are referred to as alpha and beta, respectively.

Using two gateway routers on an end-to-end path results in a total of three sections to be measured, namely
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the first hop between the client and the probe alpha, the second hop between the probes alpha and beta, and
finally the third hop between the probe beta and server.

Client Monitor Server

A SYN

SYN/ACK__:

v RTT
: (measured)

y

v v v
Time Time Time
Figure 1. Principle of the SA methodology.

For the RTT calculation of the first hop, probe alpha measures the arrival times of both SYN/ACK
and ACK segments. Subsequently, the RTT for this hop can be determined by means of a simple difference

calculation of these two time values. In Figure 2, this difference value is referred to as At__alpha-2. In contrast,
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Figure 2. Principle of distributed RTT measurement using extended SA methodology.
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RTT calculation of the third hop requires the arrival times of SYN and SYN/ACK segments. Again, the RTT
is determined by subtracting the two time values, which is represented by At_ beta-1.

The calculation of the RTT of the second hop can be done in two different ways. On the one hand,
the difference t_alpha-1 - t_beta-1 can be used. In that case, the arrival times of the SYN and SYN/ACK
segments are included in the calculation. Alternatively, the difference t_beta-2 - t__alpha-2 can also be utilized.
In that case the arrival times of the SYN/ACK and ACK segments are considered.

The entire route, i.e. the distance between client and server, can, in turn, be calculated by adding
At__alpha-1 and At_alpha-2 or At_beta-1 and At_ beta-2.

It is obvious that for the RTT calculation no time synchronization is necessary. To determine RTTs on
any hop along the path, the only assumption is the knowledge about when a segment has been sent and at what

time the corresponding reply arrives at the transmitter again.

3. Design of the distributed measurement architecture

3.1. Architectural overview

As seen in Figure 3, the concept of distributed measurement architecture, designed to determine the RTTs for
each individual hop of an end-to-end TCP connection, is divided into four parts. The first part deals with the
acquisition of the TWH segments from the network traffic, which are necessary to calculate the RTTs. For
recording these segments, the capture software is responsible, which is also referred to as a probe. For each
network component on which this probe runs, a separate database referred to as ProbeDB was also created. If
probes within the network record such a segment, they send the segment to their respective ProbeDBs on the

local machines for further processing.

Switch

NDW

|
|
|
|
|
|
|
M W

H©

SSH tunnel

Capturing the TWH-S egments Transferring the TWH Transport of the recognized connection records to the NDW Calculating the RTTs for each
segments along with their individual hop along the
arrival time stamps into a single measurement path
connection record

Figure 3. Architectural overview of the distributed measurement architecture.

The structure of the ProbeDB is simple. It contains a single table called tbl segments. Recorded data
from the capture software are stored in this table. In addition, there is a trigger associated with this table that
invokes the check__count__segments() function after each insert operation to this table. This trigger function has
the task of increasing the counter it manages by one with each call and then checking whether it has reached the
selected value 500. This number was determined from the empirical measurements and proved to be a favorable
value. If the value 500 is reached, this function calls the getConnections() procedure.

The getConnections() procedure forms the second part of the designed distributed architecture. Particu-

larly, it transfers the TWH segments stored in the table tbl segments along with their arrival timestamps into
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a single connection record. For this purpose, it selects the matching SYN/ACK and ACK segments for each
SYN segment found in tbl segments. After successfully mapping and transitioning the three TYH segments
into a connection, this procedure generates an “INSERT” statement that transports this connection record to
the sa__input table of the Network Data Warehouse (NDW). The NDW is the central database in which all
the data necessary to calculate the delay times of the hops are collected. The NDW is filled by all available
ProbeDBs in the monitored network system.

The third part of the designed distributed architecture deals with the transport of the recognized
connection records to the NDW. For establishing the connection to NDW, transporting the data, and finally
terminating the connection, ProbeDB uses the PostgreSQL Database Links extension (dblinks). Database links
are modular and provide a variety of functions that allow to execute cross-database SQL statements. The
transport of the data between the available ProbeDBs and NDW is encrypted via the configured SSH tunnel.
Each ProbeDB authenticates itself to the NDW using private/public key procedures.

Finally, the calcRTTs() procedure forms the fourth and last part, which implements the distributed RTT
measurement method presented in Section 2.2. Particularly, to calculate the RT'Ts of each hop of a measurement
path, this procedure first reads the connection records from tbl_inputs, applies the extended SA methodology
on these data, and finally stores the calculated hop RTTs in tbl_rtts.

3.2. Capture software

Before the capture software can be used, an installation and preconfiguration of the database software is
necessary. The database software used in this study is PostgreSQL. To connect to PostgreSQL, the probe
uses the libpq library. For each recorded frame, it generates an SQL “INSERT” that writes the corresponding
header fields to this preconfigured database.

The TWH segments have special flags and contain no payload. To exactly record these segments, the
capture software starts with a source-compiled filter expression. This filter expression causes the recording of
only those segments having the SYN, SYN/ACK, or ACK flags. However, the distinction of whether or not
such a segment contains payload data cannot be uniquely determined with a filter expression. Therefore, this
investigation is performed within the capture software itself and can be summarized in three steps; (a) determine
the size of the IP packet header, (b) determine the size of the TCP segment header, and finally (c) determine
the size of the actual payload by subtracting the total size of the IP packet and TCP segment headers from the
IP “Total Length” field. If the difference equals zero, the segment contains no payload data and is therefore
assumed to be used for control purposes in TCP connections. In the other case, it represents the size of a data
segment and is not transported to the database. Figure 4 illustrates the implementation of this procedure in
six steps.

The last ACK segment of the TWH segments cannot be filtered out clearly based on its flag from other
ACK segments with payload. Therefore, these unneeded ACK segments are also transported to the preconfigured

ProbeDB. The recognition and the exclusion of these segments take place in this database.

3.3. Database processing

For connection discovery, the procedure matches the appropriate SYN/ACK and ACK segments for each SYN
segment stored in tbl_segments. The main question is how individual connection records can be identified within
the variety of data stored in the table. Source and destination IPs combined with source and destination ports

can be used to identify TCP connections. However, since multiple ACK segments are stored per connection,
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size_tcp = tcp -> data offset * 4
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packet: Start address of the captured
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Figure 4. Distinguishing between TCP’s control and data segment. The variables size_ip and size tcp present the size
of the IP and TCP header, respectively. Finally, the variable ip.tot_len contains the size of the IP packet, including
payload.

the sequence and acknowledgment numbers must also be included to determine the ACK segment of the TWH
process. In addition, the same TWH segments for a TCP connection are recorded by each probe in the
distributed environment. For this reason, the corresponding identification of the probe that recorded these
segments must also be considered when assigning these three segments to a connection. For this purpose, the
variable probe desc was introduced, which contains the unique name of a probe.

In order for the corresponding SYN/ACK segment to be assigned to the SYN segment, (a) the source
IP address and source port of the SYN/ACK segment must correspond to the destination IP address and
destination port of the SYN segment, respectively; (b) the destination IP address and destination port of the
SYN/ACK segment must correspond to the source IP address and source port of the SYN segment, respectively;
(c) the data record must correspond to a SYN/ACK segment (i.e. fsyn = TRUE and fack = FALSE); (d) the
acknowledgment number of the SYN/ACK segment must correspond to the sequence number of the SYN
segment + 1; and, finally, (e) the SYN/ACK segment must be recorded by the same probe as the SYN segment.

Conditions (a) and (b) identify the TCP connection between client and server. Conditions (¢) and (d)
determine the SYN/ACK segment belonging to the SYN segment being processed. Finally, condition (e) ensures
that the SYN/ACK segment was recorded by the same probe that also recorded the SYN segment.

Similarly, the corresponding ACK segment can be assigned to the SYN/ACK segment if (a) the source IP
address and source port of the ACK segment correspond to the destination IP address and destination port of
the SYN/ACK segment, respectively; (b) the destination IP address and destination port of the ACK segment
correspond to the source IP address and source port of the SYN/ACK segment, respectively; (c) the data
record corresponds to an ACK segment (i.e. fsyn = FALSE and fack = TRUE); (d) the sequence number of the
ACK segment corresponds to the acknowledgment number of the SYN/ACK segment; (e) the acknowledgment
number of the ACK segment corresponds to the sequence number of the SA segment + 1; and, finally, (f) the
ACK segment was recorded by the same probe as the SYN/ACK segment.
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Again, conditions (a) and (b) identify the TCP connection. Conditions (c¢) through (e) assign the
appropriate ACK segment to the SYN/ACK segment. Finally, condition (f) ensures that the ACK segment was
recorded by the same probe that also recorded the SYN/ACK segment.

The sequence numbers of the SYN and SYN/ACK segments allow the connection records that are
transported per probe and per TCP connection to be assigned to each other in the NDW.

After transporting a discovered connection record to the NDW, the TWH segments of that connection
are removed from tbl_segments. This process repeats until all SYN segments in this table have been processed.
After executing the removal procedure, there are three types of segments left over in the dataset: (i) segments of
unfinished connections, (ii) unnecessary ACK segments (e.g., data acknowledgments), and (iii) faulty segments
or segments of canceled connections. Both the unnecessary ACK segments and the faulty segments or segments
of canceled connections can be safely deleted. In contrast, segments of the unfinished connections are still
relevant for the RTT measurement. Therefore, it must be ensured that such segments are not deleted. This
is achieved by removing only the segments whose timestamps have exceeded at least the timeout of a TCP

connection. In the procedure, the timeout of a TCP connection was chosen as 2 min.

4. Testbed and evaluation methodology
4.1. Testbed

As shown in Figure 5, for evaluating the extended SA methodology the traffic between client and web server
is monitored. These are interconnected by two switches, resulting in a total of three segments for distributed
RTT measurement. The switches each have monitoring capability and are configured to forward or mirror the
communication traffic between client and web server to the respective probes alpha and beta.

The client, router, web server, and NDW, each of which runs the Ubuntu OS, are all equipped with an

Management network

)

Mini Switch
Probe|Alpha Probe| Beta

Mirror Port Mirror Port

Productive network

Port 24

\ Segment 1 Segment 2 Segment 2 Segment 3

Client Switch 1 LSO Switch 2 Web server

Figure 5. Realization of a distributed environment for passive RTT measurement.
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Intel Pentium 4, 2.8 GHz CPU and with 1 GB of RAM. The D-LINK DGS-3224TGR Layer 2 switch providing
24 10/100/1000BASE-T ports for cost-effective copper Gigabit connection was used to connect the participants
within the productive and management network. Finally, probes alpha and beta, also running Ubuntu OS, are
equipped with Intel Core 2 1.83 GHz CPU and 2 GB of RAM.

Both on the probes, alpha and beta, run the capture software that records the TWH segments from this
mirrored traffic. The capture software sends each recorded segment to its local ProbeDB.

In each created ProbeDB, the recorded TWH segments are then transferred with their arrival timestamps
into a single connection record and then transported via the mini switch to the NDW.

The concept of the implemented environment envisages the separation of the productive and the man-
agement networks. The client and the web server along with switch 1 and switch 2 form the productive data
network, while the management network consists of the two probes, the mini switch, and the NDW. The cal-
culation of the RTTs to be measured in the productive network is carried out in this separate management
network, so that the transmission and processing capacities of the productive network remain unaffected. An-
other advantage of this separation is that such an installation of the measurement architecture does not interfere

with the original network topology.

4.2. Evaluation methodology

The client and web server in the production network were each configured with a class A address, while the
management network used class C addresses. The client uses load generators to generate TCP traffic, which
is sent to the web server via the two D-Link switches. In this case, the incoming or outgoing TCP traffic at a
particular port is mirrored by each of two D-Link switches via other preconfigured ports to the probes alpha or

beta.
To generate the required TCP traffic, two different load generators were used. The first load generator

is called the Distributed Internet Traffic Generator (D-ITG) [12] and allows the generation of individual TCP
segments. D-ITG is controlled by command lines and can generate segments with a maximum data rate of
600 Mb/s, which is sufficient for carrying out the measurements. As the second load generator, the Apache
Benchmark tool (ABT) coming with the Apache web server was chosen. Unlike D-ITG, ABT enables the
establishment of TCP connections with any number of preconfigurable repetitions. The parameterization of
this benchmark software is also done via the command line.

The measurements to be performed were divided into two parts. In the first part, the accuracy of the
proposed distributed RTT measurement technique is to be evaluated. To this end, a similar experimental
methodology used in [7] was applied in this study. Particularly, as the SA methodology examines the TWH
phase of a TCP connection, the active ping measurements, the results of which are used for reference purposes,
are collected just before the connection establishment.

The Apache web server illustrated in Figure 5 forms the measurement target. An available HTTP file,
larger than 10 KB, is provided by the web server. First, to actively measure the RTTs of the three hops (i.e.
source, transit, and destination subnetworks) individually, which will represent the reference values for the SA
estimations, a shell script was written that automatizes logging in to the client and routing machines via SSH
using the public key principle to trigger the active hop measurements in parallel. Immediately after the RTTs for
the three hops have actively been measured, the shell script causes the client to transfer the HTTP file from the
target using the GNU Wget utility over the same path. After the transfer is over, the RTTs of the HTTP-TCP

transfer for the three hops are passively estimated by the measurement architecture using the distributed SA
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estimation method described in Section 2.2. Finally, the RTTs for the three hops passively estimated by the
proposed technique are compared to the average of the ten active ping measurements.

The experiments have been repeated with 200 different randomly set queuing times. Particularly, in the
client, router, and web server machines, the delay of packet forwarding has been controlled using the Netem
tool, which was configured to cause queuing delay variations between 10 ms and 500 ms to simulate real network
conditions. For each of the randomly set queuing times, the average of the 10 ping measurements was used as
a basis for comparison with the SA estimates.

The second part of the measurements concerned aspects related to how the system scales in terms of
arriving frames, TCP connections, and processor usage. The scaling experiments, in turn, were performed in
two groups. The first group of the scaling experiments aims to determine how many individual TCP segments
per second the capture software can record maximally. To carry out this measurement, the load generator D-ITG
was used. During these measurements, the processor utilization generated by the capture software and postgres
processes was also observed. The Unix tool top was used to measure the processor load. The measurements in
the first part were carried out as follows: the D-ITG load generator was parameterized to send a certain number
of TCP segments per second to the D-ITG receiver. After the experiment, tbl_segments in the database was
checked to see how many of these sent segments could be saved by the capture software.

In contrast to the first group, the second group of experiments was related to the generation of TCP
connections instead of TCP segments, to make a benchmark of to what extent the proposed measurement
architecture is scaling. More specifically, it should be determined how many of these generated TCP connections
could completely be captured by the capture software to infer the RTTs from the TWH segments for each hop.
To this end, the well-known ABT from the Apache Foundation was used to perform these measurements. It
generates load in the form of HTTP requests to a web server. The program also supports simulating concurrent
access to a web server. The measurements were carried out similarly as in the first part. ABT was instructed

to establish a certain number of TCP connections to the web server. The number of detected connections was
then determined using the getConnections() procedure in the ProbeDB, and finally compared with the number

of connections generated by the ABT.

5. Results and discussion
This section includes two subsections. In the first one, the accuracy of the extended SA methodology is verified
by directly comparing the passive RT'T measurements with active ones using the ping command. In the second

one, the results of scaling experiments for the implemented measurement architecture are presented.

5.1. Verification of measurement accuracy

Figures 6a—6c¢ illustrate the distributed SA estimates in comparison with the corresponding ping measurements
for the source, transit, and destination subnetworks, respectively. Analogously to the methodology used in [7],
an SA estimate for a hop is categorized as accurate if it is within 5 ms or 10% of the corresponding average
active ping measurement. The dashed lines in Figure 6 illustrate this accuracy region. With this error tolerance
it is observed that the fraction of inaccurate measurements of the proposed extended SA methodology is 6%,
9%, and 7% for the source, transit, and destination subnetworks, respectively.

By using the well-known Wilcoxon signed-rank test [13], it has also been investigated whether the
difference between active and passive estimates is statistically significant or not. More specifically, the test

has been applied on three different pair sets including the (ping, SA)source; (ping, SA)iransit, and (ping,
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Figure 6. Comparison of the distributed SA estimates with the average of the ping measurements just before the TCP
connection establishment for the source, transit, and destination subnetworks.

SA) gest pairs, which represent the corresponding active and passive estimates of RT'Ts for the source, transit,
and destination subnetworks, respectively. The sample size in each test case equals 200, and the two-sided
level of significance, i.e. «, is set to 0.05. The W values for (ping, SA)source, (Ping, SA)transit, and (ping,
SA) gest are 9442.0, 9030.5, and 8034.5, respectively. Since the sample size is greater than 20, the table of critical
values for W cannot be utilized [14]. Alternatively, the statistical analysis can be conducted using the normal
distribution approximation. In this case, the required calculations for (ping, SA) source, (Ping, SA) transit, and
(ping, SA)gest yield z scores of —0.0198, —0.6647, and —1.1357, respectively, which in turn yield P-values of
0.98, 0.51, and 0.25 for o = 0.05. All P-values are bigger than «; therefore, the null hypothesis is accepted.
In conclusion, the test shows that there is a statistically insignificant difference between actively and passively
estimated values of RTTs for all three subnetworks of the measurement path.

5.2. Scaling experiments

Figure 7a illustrates the results for the first part of the scaling measurements, i.e. how many frames per second
the capture software can write to the database. It is to be noted that the capture software does not write the

entire frame content into the database, but only the special fields from IP and TCP headers that are needed for
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Figure 7. Results of scaling experiments.

RTT calculation. The measurements took place over a period of 1 s. A comparison measurement over a longer
period showed no change in these results.

The results show that the capture software can, to a certain arrival rate, capture the frames sent by
D-ITG with no losses. However, at that particular frame arrival rate (i.e. starting from approx. 22 Mbit/s),
the number of recorded frames stops increasing and remains at a stable level. This shows that with a payload of
1448 bytes, the capture software can record a maximum of approximately 1600 frames per second. At this point,
the question arises of why not all transmitted frames can be captured. The first cause for this performance
degradation has been revealed to be the libpcap library, which was utilized in the capture software. More
specifically, the libpcap library at one time can either record the incoming frames or can send a recorded frame
into the database. More specifically, while writing a recorded frame to the database, it cannot capture the
newly arriving frames during this writing process.

The second cause of frame losses is that each captured frame is directly written to the database by the
capture software. Inserting each recorded frame into the database creates a heavier system load and can also
cause frame losses. To verify this, the capture software was manipulated to write each recorded frame to a local
file instead of the database. The measurements, illustrated in Figure 7b, show that up to approximately 22,000

frames can be captured per second, while that number when writing to the database is only approximately 1600
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frames per second, as shown in Figure 7a. Thus, it can be concluded that writing the recorded frames to the
database is the second major cause of frame losses.

During the measurements it was observed how the processor load of the two processes, namely the capture
and postgres processes, was related to the data rate. Figure 7c shows the average processor utilization of these
two processes. It is seen that the percentage processor utilization of the two processes increases in total up
to approximately 60%, but thereafter this value is no longer exceeded. Most of the processor utilization is
generated by the postgres process. It alone causes processor load up to about 42%, while this value in the
capture process is about 18% in maximum.

In contrast to the first part, the second part of the scaling experiments concerned the generation of TCP
connections instead of TCP segments, investigating how many of these established connections could be captured
by the capture software for a successful calculation of per-link RTTs. First, a single HTTP GET request was
sent to the web server, which consequently established a single TCP connection. Payload data of 1448 bytes
(exactly one data segment) were transported per connection. Afterwards, the recorded and supplied data of the
probes in the ProbeDB were checked for plausibility. Through this single TCP connection, the capture software
recorded a total of six segments. The first three of these six segments were the TWH segments of the TCP
connection setup required for RTT measurement. The remaining three segments are acknowledgments, which
are indistinguishable from the recorded TWH segments by their ACK flag (i.e. data or connection termination
acknowledgments). More specifically, for each individual TCP connection consisting of a connection setup,

phase, and termination, the capture software collects a total of six segments.

The measurement results illustrated in Figure 8 show that the capture software was able to capture up
to 100 back-to-back established TCP connections without any losses. After that amount, the first frame losses
appear. The same tests were also repeated with a concurrency of 5, 10, and 15 clients, i.e. several back-to-back
connections from 5, 10, and 15 clients were established simultaneously. In this case, the capture software could
process up to approx. 75, 50, and 25 connections concurrently established by 5, 10, and 15 clients, respectively,
without any losses. However, it is clearly seen that the simultaneous establishments of connections to the web
server has significantly decreased the number of captured connections compared to the case of establishing the
connections sequentially. If, e.g.; via the capture software 100 TCP connections are established sequentially, all
of them could be captured by the capture software. If, on the other hand, the 100 TCP connections are started

with a concurrency of 15 clients, the capture software could only record 52 connections.

[38}
w
(=]

[\o3
(=3
(=}

—_
w
(=]

—_
(=3
(=}

w
(=}

(=)

(=]

50 100 150 200 250
Number of captured connections

Number of established connections

-=-Reference line (i.e. the ideal case where all connections are captured with no losses)
Number of captured connections sequentially established by a single client
Number of captured connections concurrently established by 5 clients
Number of captured connections concurrently established by 10 clients

+ Number of captured connections concurrently established by 15 clients

Figure 8. Number of successfully captured connections sequentially established by a single client as well as with a
concurrency of 5 and 10 clients.
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The scaling experiments have been carried out with the primary intention of determining to which
extent the implemented distributed measurement architecture is scaling with respect to processing the arriving
connection requests. The difficulty in making this decision is determining when the system begins to scale.
Considering a network where the capture software maximally receives 100 sequentially (i.e. back-to-back)
established connections, or 50 connections simultaneously established by 10 clients, it can be concluded that the
system will scale. On the other hand, if, e.g., over 100 sequential or 50 simultaneous connections are established,
the system will not fully scale. The question here is therefore to find a general statement about typical TCP

traffic in the network that is to be monitored using the distributed measurement architecture.

6. Conclusion and future work
This paper proposed an extended version of the well-known SA methodology for passively measuring RTTs
over TCP connections. In contrast to the original version of the SA methodology, which can only measure the
end-to-end RTT of a TCP connection, the proposed extended version of the SA methodology can determine the
RTTs for each individual hop of an end-to-end TCP connection. A distributed measurement architecture has
been designed that implements the extended SA methodology. Through tests on a real testbed with different
levels of loads and queuing delays, various verification and performance evaluation experiments were conducted
to determine the accuracy level of the measurement methodology and how the distributed architecture behaves
regarding resource requirements as the amount of incoming network traffic increases. The results show that
in terms of accuracy, about 92.66% of the passive measurements are within 10% or 5 ms, whichever is larger,
of the RTT value that ping would actively measure. Also, the experimental results reveal that using today’s
commodity hardware, the measurement architecture exhibits acceptable satisfactory scaling performance and
can practically be used to passively measure RTTs of each hop within medium-sized IP-based networks.
However, during experimental evaluations, two issues were identified that inhibit the architecture from
processing a larger amount of TCP connections, and these should be addressed in future work. The first issue
is caused by the usage of the libpcap library, which can either record the arriving frames or write a recorded
frame to the database at a time. One possible solution to this problem is to decouple the two operations of
monitoring the incoming frames and writing them to the database. The second issue is that writing a recorded
frame to the database causes about twice the processor utilization compared to the actual capture software due
to the constant transport process of the captured data. Particularly, the capture software generates its own
SQL “INSERT” command for each recorded frame and passes it to the database. Instead, one could first locally
inject the SQL “INSERT” commands, e.g., in a RAM disk, and then transfer all cached data to the database
at once.
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