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Abstract: Most of the existing work in the area of task graph scheduling considers resources with fixed processing
capacity. The algorithms in these works rely on an estimation of the execution times of tasks on different resources.
However, in practice, due to fluctuations in performance of cloud resources, these algorithms have challenges in these
environments. In this paper, we focus on the problem of fault-tolerant scheduling of task graphs in the presence of
performance fluctuations of computational resources. With the aim of reducing the adverse impacts of both soft errors
and resource performance degradations, we propose an opportunistic task replication scheme that uses idle durations
of resources for replicating tasks. Unlike the previous works, the proposed algorithm does not rely on estimation of
task execution times for finding idle resources. We introduce the notion of concurrency graphs and propose a graph
theory-based algorithm for finding the number of idle resources during the execution of a set of tasks. The appropriate
redundancy for each task is chosen with respect to the number of idle resources and the characteristics of the set of tasks
that are being processed concurrently. Simulation experiments show that, in most situations, the proposed algorithm
outperforms the previous algorithms in terms of average execution time and cost.

Key words: Task graph scheduling, resource performance fluctuations, concurrency graph, Markov-modulated Poisson
process, performance-varying resource.

1. Introduction
Precedence-constrained parallel applications, also known as task graphs (workflows), constitute a common
model for describing a wide range of scientific applications in distributed systems. A task graph is an abstract
representation of an application in the form of a directed acyclic graph (DAG), whose vertices represent tasks
and edges represent the possible precedence constraints and data dependencies among them [1]. Task graph
scheduling is the problem of mapping tasks to appropriate resources and of ordering tasks on each resource such
that the user’s requirements are met. The characteristics of cloud infrastructures make them a suitable platform
for execution of task graphs [2]. In this paper, we investigate the problem of fault-tolerant scheduling of task
graphs in a cloud environment where computational resources are both failure-prone and performance-varying.

A large body of work has examined the problem of task graph scheduling in distributed environments
such as clouds [1–4]. The algorithms in almost all of these works rely on estimation of execution times of tasks
on different resources, which are obtained through analysis of historical data. These algorithms make overly
optimistic assumptions about the performance exhibited by the underlying cloud infrastructure [2]. Due to
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technological and strategic factors, cloud environments do not have fixed execution time and performance. As
reported in [5], fluctuations in performance of cloud resources can cause a variation of up to 30% for execution
times and 65% for data transfer times. Fluctuations in performance of cloud resources delay task execution and
delay in the execution of a task may lead to delay in the execution of its successors.

Besides the uncertainty rooted in resource performance fluctuations, we deal with another more important
form of uncertainty, which is caused by possible failures in execution of tasks. In order to deal with such
failures, two fundamental techniques are widely used: resubmission and replication [1, 6]. Resubmission (time
redundancy) helps to mitigate failures by retrying the same task either on the same or another resource. In the
replication technique (space redundancy), on the other hand, additional resources are provided to execute the
same task to provide resilience. Since each of these techniques have their own benefits and drawbacks, some
works [1] use a hybrid of the two techniques with the aim of achieving the benefits of both.

1.1. Motivation and contribution
In this paper, we focus on the problem of scheduling of task graphs in situations where computational resource are
both failure-prone and performance-varying. Delay in execution of tasks, caused by either of these uncertainties,
leads to tardiness in termination of the application. One possible way of dealing with this issue is task replication.
For example, in order to mitigate the effects of performance degradation of resources and increase the probability
of meeting deadlines, the algorithm in [2] tries to use idle durations of resources for replicating tasks. However,
the algorithm has some drawbacks. First, idle durations of the resources are computed based on inaccurate
estimates of task execution times, which are prone to significant variations. Second, the algorithm assumes a
failure-free environment where performance degradation is the only cause of uncertainty in task execution times.
However, in the presence of task failures, the uncertainty in task execution times is much larger and it is quite
impractical to find idle durations of resources.

In this paper, we investigate the problem of task graph scheduling in a failure-prone environment in
the presence of performance fluctuations of computational resources. In order to mitigate the impact of task
failures and execution delays, we propose an opportunistic task replication scheme that uses idle durations of
already provisioned resources to replicate tasks. In order to find resources with idle durations we propose a
graph theory-based algorithm that, unlike the approach in [2], does not rely on estimation of task execution
times. The proposed algorithm tries to minimize the fault-tolerance overhead by finding a compromising balance
between the resubmission and replication techniques. The redundancies of tasks are chosen with respect to the
number of idle resources and the characteristics of the set of tasks that are being processed.

One major problem with some existing (hybrid) redundancy selection algorithms [6–9] is the issue of
excessive usage of replication redundancy, which causes the disadvantages of the resubmission technique, i.e.
existing algorithms may use the computational power of a resource for processing backup copies of tasks while
it would be better used for executing the primary copy of a task with higher criticality. While determining the
appropriate redundancies of tasks, if the number of replicas of other concurrently executing tasks is not taken
into consideration, we may encounter situations where task replicas are being processed serially rather than in
parallel. This problem is especially more serious in situations where few resources are provisioned with the aim
of reducing the cost.

The main idea of the CGOR algorithm is as follows: first, for each task, the set of possibly concurrent
tasks is computed. Then, while a set of tasks is being processed, we determine the set of idle resources and try
to apportion them among the set of active tasks according to their criticality, assigning more resources to more
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critical tasks. The proposed concurrency graph-based opportunistic replication (CGOR) algorithm brings the
following novelties:

• We propose a graph theory-based algorithm that finds, for each task, the set of possibly concurrent tasks,
according to which we can determine the number of idle resources for executing additional replicas of
tasks. For this, we introduce the notion of concurrency graphs. Unlike the method proposed in [2], in the
proposed method, idle resources are identified according to the structure of the task graph and not based
on our estimations of task execution times. Therefore, no matter how significant the uncertainties in task
execution times are, the number of idle resources can be determined.

• We propose a new redundancy selection algorithm, which determines a near-optimal combination of the
two redundancy techniques according to the number of resources with idle durations and the criticalities
of active tasks. In order to avoid excessive replication of tasks, the proposed algorithm is designed to use
idle resources for task replication.

• We use a Markov-modulated Poisson process-based performance fluctuation model for modeling the
changes in performance of computational resources. We also propose a resource selection criterion for
selecting resources with respect to their instantaneous processing capacities.

The performance of the CGOR approach is assessed using a simulation study and is compared against
the prior state-of-the-art algorithms. We develop a random task graphs generation procedure for generating
a synthetic workload. The simulation results, on randomly generated task graphs, show that the proposed
approach has a promising performance with a significant improvement over the prior algorithms.

1.2. Structure of the paper

In Section 2, we present our model of the application and computational environment and the resource fluctu-
ation model. In Section 3, we review some related work. Section 4 presents the proposed CGOR algorithm for
scheduling task graphs for failure-prone and performance-varying resources. In Section 5, a comparison of the
CGOR algorithm with some existing algorithms is given. Finally, Section 6 provides concluding remarks and
future work.

2. Application and resource model

In this section, first we describe our model of the application and then we explain the computational environment
and the resource performance fluctuation model.

2.1. Task graph model

A task graph is defined as follows:

Definition 1 (Task graph). A precedence-constrained application is modeled as a task graph (DAG) W =

(T ,D) , where T = {t1, . . . , tn} is a set of tasks and D ⊂ T × T is the set of dependencies among them.

An edge d = (ti, tj) represents a precedence constraint which indicates that task ti should finish executing
before task tj can start. To such an edge is assigned the size of the data that is transferred between ti and
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tj . Also, to each node is assigned the size of the corresponding task. The set of predecessors (pred(ti)) and
successors (succ(ti)) of a task ti is defined as follows:

pred(ti) =
{
tj ∈ T

(tj , ti) ∈ D
}
, succ(ti) =

{
tj ∈ T

(ti, tj) ∈ D
}
. (1)

A task ti with pred(ti) = ∅ (succ(ti) = ∅) is called an entry (exit) task. In this paper, we always add
dummy entry and exist tasks with zero execution time to the beginning and the end of the graph, respectively,
to ensure that the given DAG has a single entry and a single exit task. These dummy tasks are connected with
zero-weight arcs to the real entry and exit tasks.

2.2. Environment model
The computational environment is assumed to be a cloud service provider that offers different virtualized
resources to its clients. In particular, we assume that the service provider offers several computational services
S = {s1, . . . , sm} with different QoS parameters such as the type of the processor and memory size, and different
prices as in [4]. The characteristics of the environment are specified using four parameters: 1) m , the number of
resources; 2) Pavg , the average processing capacity; 3) Cavg , the average cost per billing period (30 min); and 4)
λavg , the average failure rate. The processing capacity of each resource is uniformly chosen from [0.5Pavg, 2Pavg]

MIPS, i.e. the fastest resource is about four times faster than the slowest one and is approximately four times
more expensive. We also have Cavg = 0.5$ . As in some previous works (e.g., [10]), the time to failure of
resources is assumed to follow an exponential distribution and the rate of this distribution is chosen from a
normal distribution with mean λavg = 0.75× 10−3 and standard deviation σ = 0.05× 10−3 .

2.3. Performance fluctuation model
In our performance fluctuation model, the processing capacity of computational resources through time is
adjusted according the rate assigned to the current state of a Markov-modulated Poisson process model. A
Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson process whose rate is controlled by
an irreducible continuous-time Markov chain (CTMC) [11]. A MMPP, which can be considered as a Poisson
process with varying rate, is parameterized by a k -state CTMC with infinitesimal generator Q and k Poisson
arrival rates Λ = diag(C0, . . . , Ck−1) . We assume a performance fluctuation model with k performance modes
(states) whose corresponding CTMC is shown in Figure 1. In this model, Ci , the processing rate of the resource
in state ci, i = 0, . . . , k − 1 is computed as follows:

Ci = C0 − i× θ, i = 0, . . . , k − 1. (2)

1 ,2

2,1

0,1

0

1 ,0

1 2

− 2, − 1

− 1, − 2

− 2… −1

Figure 1. Markov chain corresponding to the MMPP-based performance fluctuation model.

As justified by the results in [3], we assume a performance fluctuation model with relatively continuous
changes in processing capacity. Besides the continuous changes in the performance of resources, we also add
some sudden changes in the performance. We assume that the performance level of the resource after a sudden
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change is uniformly chosen from {c0, . . . , ck−1} , and after an exponentially distributed period of time, Xf ,
the performance level is returned back to the same level as before. Xf is assumed to follow an exponential
distribution with rate parameter δf . Also, the rate of the sudden changes is denoted by δs .

3. Related work
This section briefly summarizes some existing work on scheduling task graphs in distributed environments. Most
of the research in this area is done with the assumption of a failure-free environment. However, some works
address the problem in failure-prone environments [7, 8, 12, 13]. In [7], the authors proposed a fault-tolerant
extension of the classic HEFT algorithm [14], which is based on replication redundancy. The works in [15, 16]
proposed scheduling algorithms for service-oriented environments. In [4], the authors proposed an algorithm for
scheduling deadline-constrained applications for an IaaS cloud environment. In order to meet the deadline, the
overall deadline is distributed on the task graph nodes. The work in [2] also addressed the problem of scheduling
of deadline-constrained applications. The authors considered the possibility of delays in task executions due to
performance degradations. In order to reduce the impact of resource performance fluctuations on the deadline,
the authors proposed to use the replication technique. In [17] the processing times of tasks were assumed to
follow independent random variables. The authors proposed an energy-aware stochastic algorithm with the
objective of optimizing execution time and energy consumption.

In order to provide fault-tolerance for long running tasks, some works used checkpointing redundancy. In
[10, 18], the problem of determining the optimal checkpointing period was examined. In [19], in order to obtain
the optimal solution for linear task graphs, a two-level checkpointing scheme was proposed, which combines the
disk checkpointing technique with in-memory checkpoints. Since each of the redundancies have their benefits
and drawbacks, some works [1, 6, 9, 20] used a hybrid of these complementary redundancies. The resubmission
impact heuristic [6, 9] uses a combination of replication and resubmission. The number of replications of each
task in this heuristic is determined based on the so-called resubmission impact metric. Finally, in [20], a hybrid
of resubmission and checkpointing was proposed.

MMPP [11] models are widely used for traffic description and prediction and performance analysis of web
and cloud [3, 21, 22]. In order to find model parameters, in [23] an EM algorithm was proposed, or computing
the MLE estimates of the parameters of an m -state MMPP. The work in [24] investigated the issue of resource
provisioning based on MMPP arrivals.

4. Concurrency graph-based opportunistic replication

In this section, we explain the proposed CGOR algorithm for selecting the appropriate redundancies for tasks.
The main idea of the CGOR algorithm is that while a set Tactive of tasks is being processed, we find the
number of resources that remain idle during the execution of these tasks and use these resources for executing
additional replicas of the most critical tasks in Tactive . In order for this, first, for a given task graph we compute
its concurrency graph, which determines which set of tasks is likely to be executed concurrently. Once a set of
tasks is being processed, we may use the concurrency graph to obtain the set of all possibly concurrent tasks,
according to which the number of idle resources can be found. Finally, we determine the most critical tasks and
schedule extra replicas of those tasks on idle resources.

Once a replica of a task is ready for submission, another important problem is the issue of resource
selection. Existing algorithms, such as those based on the HEFT algorithm [14], select the resource that is
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likely to finish the task faster. However, these works do not consider the fluctuations in processing capacities of
resources. In our work, the appropriate resource is chosen according to the instantaneous processing capacities
of resources. In the following, in Section 4.1 we explain the notions of concurrency graph and concurrency
cliques. Then, in Section 4.2, the redundancy selection algorithm is explained. Finally, in Section 4.3, we
describe the proposed resource selection method.

4.1. Concurrency graph
While a set Tactive of tasks is being executed, in order to determine the number of resources that remain idle
during the execution of the tasks in Tactive , we need to know which set of tasks is likely to be executed in
concurrency with the tasks in Tactive . With this aim, we introduce the notion of the concurrency graph as
follows:

Definition 2 (Concurrency graph). Considering a task graph W = (T ,D) with the set T = {t1, . . . , tn} of

tasks and the set D of dependencies, the concurrency graph of W is a graph P = (T , C = D∗ ∪ D∗T ) where D∗

is the transitive closure of D and RT and R are respectively transpose and complement of relation R .

Given two tasks ti and tj , we have (ti, tj) ∈ C if and only if ti and tj are likely to be executed
concurrently. In fact, we have (ti, tj) ∈ C if and only if neither ti is a prerequisite (not necessarily direct) of tj

nor tj is a prerequisite of ti . In Figure 2a, an example of a task graph with 10 tasks is shown. The concurrency
graph of this task graph is shown in Figure 2b.
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Figure 2. (a) An example of a task graph and (b) its correspoding concurrency graph.

In order to avoid excessive usage of the replication technique, we try to apportion the set of resources
among concurrently executing tasks. Therefore, we need to compute the set of cliques in the concurrency graph.
A clique q = {ti,1, . . . , ti,s} represents a set of tasks that are likely to be executed concurrently. The set of
maximal cliques in a graph can be computed using the Bron–Kerbosch algorithm [25]. For example, the set of
maximal cliques in the concurrency graph in Figure 2b is given below the figure.

4.2. Replication vector-finding algorithm

Consider the problem of scheduling of a task graph W = (T ,D) with the set T = {t1, . . . , tn} of tasks on
m computational resources. The problem of determining the appropriate redundancies for a task graph is the
problem of finding the redundancy vector R whose ith element, R(ti), i = 1, . . . , n , denotes the number of
replicas of the task ti . We use the resubmission technique for ti in the case where we have R(ti) = 1 and use
the replication technique in the case of R(ti) > 1 . The number of replicas of tasks is determined such that a
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certain criterion is optimized. In this paper, we focus on minimizing the execution time of the task graph while
taking into consideration the execution cost.

In the following, we explain the proposed algorithm for determining the appropriate redundancies. First,
the concurrency graph P of W is decomposed into its connected components. Assume that by CC = {c1, . . . , cr}
we denote the set of connected components of P and we have ck = (Tk, Ck), k = 1, . . . , r . Consider two connected
components c1 and c2 of the concurrency graph. Since no task in T1 may be executed in concurrency with any
task in T2 , there will be no contention between tasks in these two connected components. Therefore, decisions
on choosing the appropriate redundancies for tasks in these connected components can be made independently.
Generally, the problem of finding the appropriate redundancy vector for a task graph can be reduced to the
same problem for each of the connected components of its concurrency graph.

Now consider a connected component ck ∈ CC including the set Tk = {tk,1, . . . , tk,nk
} of nk tasks and the

set Qk of maximal cliques. In the following, we explain the proposed algorithm for computing the redundancy
vector R for ck . In this algorithm, first, we consider one replica for each task ti ∈ Tk , i.e. we set R(ti) = 1 .
Then we compute the set Tpossible of tasks in Tk whose number of replicas can be increased. For a task tv ∈ Tk
we have tv ∈ Tpossible if and only if

∀q ∈ Qk •
(
tv ∈ q ⇒

∑
tj∈q

R(tj) ≤ m
)
, (3)

which means that if for each maximal clique q in ck containing tv , the summation of the number of
replicas of tasks is less than or equal to the number of resources, m , then tv is added to Tpossible . After the
set Tpossible is computed we increase the number of replicas of the most critical task in Tpossible . Then the set
Tpossible is recomputed and the same process is repeated until Tpossible becomes empty.

The proposed redundancy selection algorithm is shown in Figure 3. In the first line of the algorithm, the
concurrency graph is computed according to Section 4.1. In line 2, the obtained concurrency graph is decomposed
into its connected components. In each iteration of the “for” loop in lines 3 through 13, a connected component
ck = (Tk, Ck) of the concurrency graph is processed independently. First, in lines 4 through 6, one replica is
considered for each task in ck . Then in line 7, the set Tpossible ⊆ Tk of tasks whose number of replicas can
be increased is computed according to the condition in Eq. (3). Finally, in the “while” loop in lines 8 through
12, while the number of replicas of some task(s) can be increased we find the most critical task ti among these
tasks (line 9) according to Section 4.3. After increasing R(ti) in line 10, we recompute Tpossible in line 11. The
process is repeated until Tpossible becomes empty.

4.3. Task criticality metric

As mentioned before, we need to use an appropriate gain metric to indicate how much each task benefits from
an extra replica. First, we need to introduce the notion of extended upward rank.

Definition 3 (Extended upward rank). Assume ki replicas of a task ti are being executed concurrently on ki

identical resources. EU(ti, ki) , the expected upward rank of ti , is defined as EU(ti, ki) = u(ti)− Ti + E(ti, ki)
where u(ti) and Ti are respectively the upward rank [14] and processing time of ti and E(ti, ki) is the average
executing time of ti in the presence of failures.
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Algorithm. Redundancy Selection Algorithm

Input: Task graph = , , Number of resources 

Output: Redundancy Vector, ℛ

= , = ∗ ∪ ∗

= Compute the connected components of 

3. for each connected component = , ∈ do

4. for each task in 

5. ℛ( ) = 1

6. end

7. = ∈ ∀ ∈ ∈ ⇒  ∈ ℛ <

8. while ( ≠ ∅)

9. Choose the most critical task from according to Section 4.3

10. ℛ = ℛ + 1

11. = ∈ ∀ ∈ ∈ ⇒  ∈ ℛ <

12. end

13. end

14. return ℛ

Figure 3. The proposed redundancy selection algorithm.

For computing E(ti, ki) , first we need to compute the average execution time of ti on a resource with
failure rate λ . The probability of successful termination in each execution trial is e−λTi . If ki replicas of
the task are being executed concurrently, the probability of successful termination of at least one replica is
1 − (1 − e−λTi)ki . Therefore, since the number of trials until success follows a geometric distribution, if ki

replicas of ti are being executed concurrently the average execution time of ti is estimated as follows:

E(ti, ki) =
Ti

1− (1− e−λTi)ki
. (4)

Now, for a task ti with ki replicas, G(ti, ki) , the amount of decrease in extended upward rank of ti

resulted from an increase in the number of replicas of ti , is computed as G(ti, ki) = EU(ti, ki)−EU(ti, ki +1) .
Also, G∗(ti, ki) , the amount of decrease in maximum extended upward rank of all tasks in Tpossible , is computed
as follows:

G∗(ti, ki) = max
tj∈Tpossible

EU(tj , kj)−max
(
EU(ti, ki + 1), max

tj∈(Tpossible\{ti})
EU(tj , kj)

)
. (5)

Now, the gain value of ti , denoted as gain(ti, ki) , is defined as the average of G(ti, ki) and G∗(ti, ki) ,
i.e. we have gain(ti, ki) = 0.5(G(ti, ki) + G∗(ti, ki)) . The gain value of ti indicates how much ti benefits from
an extra replica.
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4.4. Example
For illustration of the proposed redundancy selection algorithm, we apply the proposed algorithm on the
task graph in Figure 2a, whose corresponding concurrency graph is shown in Figure 2b. Assume m = 4

computational resources are provisioned for scheduling this task graph. For the sake of brevity, we apply
the algorithm on connected component c2 with the set T2 = {t1, . . . , t5} of tasks. The set Q2 of maximal
concurrency cliques in this component is as follows:

Q2 =
{
q1 = {t1, t2}, q2 = {t1, t5}, q3 = {t2, t3, t4}, q4 = {t3, t4, t5}

}
. (6)

Initially, for each task ti, i = 1, . . . , 5 we let R(ti) = 1 ; thus, we have Tpossible = T2 . Then, in each
round of the algorithm, among the tasks in Tpossible , the number of replicas of the task with highest gain is
increased. Assuming that t3 is the task with the maximum gain, it is the first task whose number of replicas
is increased. Thus, we let R(t3) = 2 and the gain value of t3 is reduced to gain(t3, 2) . Now, assume t2 is
the most critical task. After increasing R(t2) the summation of the number of replicas of tasks in q3 reaches
m = 4 and tasks t2 , t3 , and t4 are removed from Tpossible . Thus, we have Tpossible = {t1, t5} . Assume
that t1 is the more critical one of these two tasks, and after increasing R(t1) it still has more criticality
than t5 . After increasing R(t1) once again, as the summation of number of replicas of tasks in q1 reaches
m , t1 is removed from Tpossible . Now t5 is the only task in Tpossible , R(t1) is increased twice, and we have
R(t1) = 3 . Finally, t1 is removed from Tpossible and the algorithm is stopped since Tpossible is empty. We have
R(t1) = 3,R(t2) = 2,R(t3) = 3,R(t4) = 2,R(t5) = 3 .

4.5. Resource selection method
Once a replica of a task is ready for submission, another concern is selecting the appropriate resource for
processing the replica. In many of the existing works, such as those that are based on [14], a ready task
is assigned to the resource that is likely to finish it faster. In finding this resource, we have to take into
consideration the size of the task, the available processing capacity of resources, and the amount of work that
needs to be processed before the execution of the task can be started. Uncertainty in each of these three items can
cause challenges in recourse selection. Existing works assume an environment with fixed processing capacity, i.e.
they do not consider the fluctuations in processing capacities of cloud resources. In the following, we propose
a method for selecting the resource that is likely to finish the task faster with respect to its instantaneous
processing capacity.

In order to obtain an estimation of the instantaneous processing capacities of resources, once an instance of
a task ti is finished at a resource ri , ET (ti, rj) , the time required for execution of ti on ri is used for estimating
the current processing capacity of ri , which is denoted by Pnew(ri) . We have Pnew(ri) = Size(ti)/ET (ti, rj) ,
where Size(ti) is the size of ti . In order to add some momentum, to reduce the adverse impact of sudden
changes in processing capacity of the resource, PC(ri) , current processing capacity of ri is computed as follows:

PC(si) = β × Pnew(si) + (1− β)×PCold(si), (7)

where the momentum parameter, β , takes a value in [0,1] and PCold(ri) is our previous estimation of
PC(ri) . This means that each time a new value is obtained for Pnew(ri) , the new value of PC(ri) is computed as
a weighted average of the previous value and Pnew(ri) . For the first usage, when there is no value for PCold(ri)

and Pnew(ri) , the value of PC(ri) is determined according to the default processing capacity of ri , which is
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obtained through analysis of historical data. Once a response for an instance of a task is received we update
our estimation of PC(ri) using Eq. (7). In the case of β = 0 , the default processing capacity of ri is always
considered as its available processing capacity.

In addition to the instantaneous available processing capacity of resources, in order to determine the
appropriate resource we have to keep track of the amount of work that is waiting to be processed before the
task can be started. Therefore, when a replica of a task is submitted to a resource ri , we update the amount
of work in ri that is waiting to be processed. In determining the resource that is likely to finish a task faster,
both the amount of waiting work and the task size are considered.

5. Evaluation and comparison
In this section, we assess the performance of the CGOR algorithm through a simulation study. We implement
a simulated environment coded in Java, which simulates task submissions, file transfers and failure, and cost
models and considers contention for computational and network resources. The performance fluctuation of
computational resources in the simulated environment is adjusted according to the MMPP model. For the
purpose of generating random workload, we also implement a synthetic task graph generation procedure similar
to the one in [1]. The performance of the CGOR algorithm is compared with some relevant works. The work
most relevant to our work is the one proposed in [2]. However, comparing the results against the mentioned
work is not fair since it is not designed to consider the possibility of task failures.

The CGOR algorithm is compared against different configurations of the replication method with 2 and
3 replicas for all tasks, respectively denoted by Rep(2) and Rep(3) , as well as the resubmission impact (RI)
heuristic [6], as it also uses a hybrid of replication and resubmission redundancies. The number of replicas of ti in
the RI heuristic is computed by the formula ⌊ c

√
RI(ti)×repmax⌋ �. We denote by RI(repmax, c) the resubmission

impact heuristic with parameters repmax and c . For each scenario, we apply different configurations of the RI
heuristic with different parameter values: RI(2, 1) , RI(2, 2) , RI(3, 1) , and RI(3, 2) . We denote by RI(∗, ∗)
and Rep(∗) the best values among these family of respectively RI and Rep configurations. In the following,
first we discuss the appropriate values for the parameters of the performance fluctuation model and then we
assess the impact of different parameters on the performance of the algorithms.

5.1. Fluctuation model parameters

In [2], resource performance loss was sampled from a normal distribution with average of 15% loss and standard
deviation of 10% loss. Similarly, loss in data transfer performance is modeled by a normal distribution with
average of 30% loss and standard deviation of 15% loss. In this study, in order to model resource performance
variations, we use the MMPP model with a CTMC as shown in Figure 1. In this model, we have

δi,i+1 = δ, i = 0, . . . , k − 2, δi,i−1 = δ, i = 1, . . . , k − 1. (8)

For the processing capacity of resources in state ci , denoted as Ci , we have Ci = C0(1 − i × θ), i =

0, . . . , k − 1 where C0 denotes the resource processing capacity without any degradation. Therefore, according
the expected value and variance formulas for the uniform distribution, the average, Cavg , and variance, Cvar ,
for processing capacity are computed as follows:

Cavg = C0

(
1− k − 1

2
θ
)
, Cvar = C2

0

(k2 − 1

12
θ2
)
. (9)
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In order to obtain the same average performance degradation as in [2], the values of the parameters θ

and k are chosen such that we have Cavg = (1 − 0.3)C0 = 0.7C0 and Cvar = 0.152C2
0 = 0.225C2

0 . Therefore,
we have k = 7 and θ = 0.05 , which means that the maximum performance degradation in our performance
fluctuation model is 30%.

5.2. Comparison with previous works
In this section, we present a comparative evaluation of the CGOR algorithm and some relevant works. We
describe the experiments we conducted in order to evaluate the CGOR algorithm. In our comparisons we
consider average execution time, which is defined as the average time required for executing the task graph,
and average execution cost. In order to study the performance of the CGOR approach, we have assessed the
impact of the following parameters on the above-mentioned criteria: application size, parallelism level, number
of resources, task size variance, and resource failure rate. We simulate the scheduling of tasks graphs with
n ∈ {200, 400, 600, 800} tasks in an environment with m = 5 computational resources. The time to failure of
resources is assumed to follow an exponential distribution with average rate λavg = 0.75× 10−3 s. Finally, the
number of simulation runs for each configuration is set to 50.

5.2.1. Application size

In order to assess the impact of varying the application size (the number of task graph nodes) on the performance
of the algorithms, the algorithms are executed on task graphs with 200, 400, 600, and 800 tasks. Figure 4a and
Figure 4b show the impact of application size on the average values for execution time and cost, respectively. The
results show that as the application size increases the CGOR algorithm obtains a more significant improvement
over the existing algorithms in terms of both execution time and cost. Also, in Figure 5a, the CDF distribution
of the execution time of the algorithms is given for a task graph with n = 500 nodes. The results show a
significant performance improvement in terms of average execution time.
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Figure 4. The impact of application size on (a) the average execution time and (b) the average execution cost for
different scheduling algorithms.
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Figure 5. (a) The CDF of average execution times of algorithms; (b) the impact of number of resources on average
execution time.

5.2.2. Number of resources and concurrency level

As more resources are provisioned for the execution of the task graph, more tasks can be replicated. Figure 5b
shows the average execution time of a task graph with n = 500 nodes for environments with different numbers
of resources. The results show that in situations with resource shortage the CGOR algorithm achieves a more
significant improvement over the prior algorithms. In such situations, the CGOR algorithm is able to adjust
the number of replicas of tasks according to the number of available resources. Also, in situations where enough
resources are available, the proposed algorithm is tuned to employ more resources for replicating tasks. As the
figure shows, increasing the number of resources beyond six is not a good idea as we achieve only a negligible
improvement in execution time at the price of a significant cost increase.

The concurrency level of the graph, in the random task graph generation procedure, is controlled by
a parameter W representing the maximum graph width. Therefore, in order to assess the impact of graph
concurrency level experiments are repeated for different values of W from five to twelve. The results in Figure 6a
show a performance improvement in almost all cases.

5.2.3. Average resource failure rate

In order to assess the impact of varying failure rate on the performance of algorithms, the average failure rate is
varied from 0.0075× 10−5 to 0.7200× 10−5 s. Figure 6b shows the impact of failure rate on average execution
time of scheduling algorithms.

5.2.4. Average data and task size

The impact of input/output data size is assessed by varying the maximum data size from 0.1 × 106 KB to
1.9× 106 KB. The results, in Figure 7a, show that performance improvement of the proposed approach is more
significant for applications with higher computation to communication (CCR) ratio. This is because in choosing
resources only task sizes are taken into consideration. Also, Figure 7b shows the impact of varying average task
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Figure 6. The impact of (a) number of resources and (b) average failure rate on average execution time.

size. In the random graph generation procedure, tasks sizes are randomly chosen from a uniform distribution
with a minimum of 5× 106 . In order to obtain different average values, experiments are repeated with different
values for maximum task size from 0.1× 108 to 3.1× 108 . The results show that the amount of improvement
is more significant for task graphs with larger tasks.
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Figure 7. The impact of (a) average task size and (b) average data size on execution time.

2182



MALAKOUTIFAR and MOTALLEBI/Turk J Elec Eng & Comp Sci

5.2.5. Fluctuation model
In order to assess the impact of fluctuation model behavior, we examine the performance of the algorithms in
environments with different fluctuation rates and different levels of performance degradation. In order to assess
the impact of the rate of fluctuations we have simulated the scheduling of a task graph with n = 500 nodes
for environments with different performance fluctuation rates from 0.1× 10−4 to 10× 10−4 . Figure 8a shows
the impact of varying fluctuation rate on the relative performance of the algorithms. The results show that all
algorithms have better performance when the fluctuation rate is low. The relative performance of the algorithms
is the same for all fluctuation rates. Figure 8b shows the impact of maximum performance degradation on the
performance of the algorithms. The amount of performance degradation is varied from 10% to 70%. It is worth
mentioning that we consider performance fluctuations only for computational resources. The results show the
performance improvement of the CGOR algorithm in all cases.
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Figure 8. The impact of (a) average performance fluctuation rate and (b) maximum performance on execution time.

6. Conclusions and future work
In this paper, we presented a new algorithm, called CGOR, for scheduling task graphs in environments with
failure-prone and performance-varying resources. Technical contributions of the CGOR algorithm are as follows:
1) Based on the introduced notion of concurrency graphs, we have proposed a structure-aware approach for
finding idle resources and use them for bringing more resilience. Unlike the work in [2], the proposed algorithm
does take into consideration the possibility of task failures. 2) We propose a new redundancy selection algorithm
that determines the optimal combination of the two redundancy techniques according to the number resources
with idle durations and the criticalities of active tasks. In order to avoid the drawbacks of the resubmission
technique, the CGOR algorithm tries to use idle resources for task replication. 3) We propose a resource selection
criterion for selecting appropriate resources with respect to their instantaneous processing capacities. We use
a MMPP-based performance fluctuation model for modeling the changes in the performance of computational
resources. The performance of the CGOR approach is assessed using a simulation study and is compared against
the prior state-of-the-art algorithms. We develop a random task graph generation procedure for generating
synthetic workloads. Based on the experimental study, using a large set of randomly generated task graphs,
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the CGOR algorithm significantly outperformed the previous algorithms in terms of both performance and cost
metrics in most situations.

In the future, we are going to include the checkpointing redundancy in the proposed hybrid redundancy
selection algorithm.
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