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Abstract: Floating point arithmetic circuits provide wide dynamic range and high precision, and they are widely used
in scientific computing and signal processing applications, but the complexity increases in hardware implementations
of floating point units. In VLSI design architecture, many applications suffer in size of the components used in logical
operations. The aim of reducing architecture is to gain reduction in power loss and also in area, but the reduction in
size of the components leads to an increase in delay and memory. Hence, to overcome these limitations and to optimize
the area, a novel design of floating point processing element (FPPE) architecture is proposed in this work with a smaller
number of logical components and registers. A partially folded arithmetic function architecture is modeled for the design
of an infinite impulse response (IIR) filter using FPPE and implemented on a field programmable gate array (FPGA)
with efficient area. FPGAs are widely used in the implementation of floating point computing modules due to the
increase in gate density and embedded arithmetic cores. Synthesis results prove that the proposed design of the IIR filter
provides efficient area compared with existing works. The modules are designed in Verilog and implemented on Xilinx
FPGAs.

Key words: Field programmable gate arrays, floating point arithmetic, floating point processing element, IEEE 754-
2008 standard, infinite impulse response filters

1. Introduction
Floating point arithmetic and logic units are a part of computer systems. The requirements of floating point
arithmetic have become very intense due to its dynamic range representation of real numbers compared to
fixed point values. These floating point numbers are represented as per the IEEE 754-2008 standard [1]. This
standard represents the single precision (32 bits) and double precision floating point formats (64 bits), but
the complexity of these arithmetic circuits increases on hardware implementation due to increase in bit width
representation [2]. Application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs)
are some of the current technologies used for hardware implementation. Nowadays, FPGAs are used for the
implementation of floating point arithmetic units because of their increased integration density compared with
ASICs and provide increased computing speed [3–6]. Most scientific computing applications, engineering fields
like image processing, cryptography, network security, and signal processing rely on floating point arithmetic
algorithms.

Digital filters are the basic building blocks of digital signal processing systems that are used to remove
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the noises in systems. Recursive and nonrecursive filters are the two major types of filter designs. Recursive
or infinite impulse response (IIR) filters depend on the past output results and have an infinite number of
coefficients. These filters have feedback and nonlinear phase characteristics. Nonrecursive or finite impulse
response (FIR) filters depend on only the present input sequences. FIR filters have linear phase characteristics
but require more computations and hence the design of FIR filters in digital signal processors consumes more
memory [7].

Nowadays, digital signal processing designs are widely embedded in FPGA devices by utilizing the inbuilt
digital signal processing (DSP) blocks and embedded multipliers for transform computations and to determine
the filter coefficients, but the hardware implementation of these DSP modules on FPGAs consumes more area
due to the multiplication operations in transforms and filters. Hence, in this work, floating point processing
element (FPPE) architecture is designed to implement IIR filters on FPGAs with reduced number of registers
and logical operations.

The paper is described as follows: Section 2 describes a literature survey of floating point arithmetic units
on FPGAs. Section 3 presents the design of FPPE architecture. Section 4 details the design of FPPE-based
architecture for the design of area-efficient IIR filters. Section 5 presents the simulation and synthesis results
with discussions. Finally, Section 6 concludes the work with future scope.

2. Literature survey

Many researchers proposed methods for the design of floating point arithmetic units and implementation of IIR
filters on FPGAs. These modules were optimized for area, speed, and power in hardware implementation on
FPGAs. Some of the works are presented here.

Scrofano et al. evaluated balanced and unbalanced binary tree arithmetic expressions using pipelined
floating point cores. The implementation of results on FPGAs was compared in terms of area, speed, and
latency [8].

Kaur et al. proposed the design and implementation of IIR filters on FPGAs. This work was compared
in terms of delay and frequency for pipelined and nonpipelined architectures. The synthesis results proved that
the pipelined architectures produced increased speed of computations compared with nonpipelined architectures
[9].

Mehra and Thakur proposed the design and implementation of digital IIR filters on FPGAs. These designs
utilized the multiply and accumulate (MAC) unit for computing the filter coefficients. Parallel pipelining was
also utilized in the design to provide efficient area [10].

Jeong-Hwan et al. realized the design of digital IIR and FIR filters for the removal of noise in electrocar-
diogram (ECG) signals monitored for patients. The design was implemented in a smart phone with Android
operating system by designing the graphical user interface in MATLAB [11].

Chong and Parameswaran implemented multimode embedded floating point arithmetic units on FPGAs.
The embedded floating point units included the design of the floating point adder and multiplier to perform
double precision operations or two single precision operations simultaneously. Such designs provided the
performance and area benefits for the implementation of single precision and double precision floating point
arithmetic units on FPGAs [12].

Tsai et al. proposed the hybrid Taguchi genetic algorithm for the design of digital IIR filters. The
experimental results proved that the proposed algorithm can be used to design low-pass, high-pass, and band-
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pass filters with better performance characteristics compared to the existing genetic algorithm-based IIR filter
designs [13].

Vazquez and Bruguera proposed an algorithm-based architecture for computing power and extraction
of roots using fixed point and floating point exponents. The algorithm was designed using an optimized
iterative sequence of operations including reciprocal, left-to-right carry-free multiplication, and high radix online
exponential function. Logarithm and exponential functions are part of the sequence of the above operations
[14].

Jaiswal et al. presented two architectures for floating point adders in multimode configuration. The
quadruple double precision architecture worked in dual mode, which operated either quadruple precision or
two double precision in parallel. The second quadruple double precision quadruple single precision architecture
worked in tri mode. It computes either one quadruple precision, two double precision, or four single precision
operations in parallel. The proposed designs provided better results in terms of area and delay [15].

Wijayaratna et al. proposed an IIR filter design used for the preprocessing stage of beam enhanced
aperture arrays [16]. Basiri and Mahammad proposed VLSI architecture for a folded sixth-order IIR filter used
in DSP applications [17]. The design produced 58.4% reduction in energy compared with MAC architecture.

Joldes et al. presented algorithms for precision extension using floating point expansions. New algorithms
were introduced for the normalization, division, and square root of floating point expansions. The reciprocal
and square root operations were designed based on the Newton–Raphson iteration method. Floating point
expansions provided highly optimized hardware implementations. Accurate results were provided using error
analysis procedure [18].

Akkas and Schulte proposed the design of a quadruple precision floating point multiplier. The design
supported the parallel operation of the evaluation of two double precision floating point multiplications. The
results provided the latency of three clock cycles for quadruple precision multiplications and latency of only two
clock cycles for two double precision multiplications in parallel [19].

Li et al. proposed the design of a fully pipelined single precision floating point arithmetic unit. The design
was implemented in 3 pipeline stages. Along with four basic arithmetic operations, square root calculation was
also performed and implemented on the FPGA [20].

Fu et al. compared hardware designs on FPGAs using floating point and logarithmic number systems
and determined the choice of format in terms of area and speed. The proposed designs were compared with
Monte Carlo radiative heat transfer simulation and showed better accuracy [21].

3. Floating point processing element architecture

FPPE is an important architecture for the computation of binary arithmetic operations like addition, subtrac-
tion, and multiplication in DSP applications [22]. To design the FPPE model, several techniques are used for
estimating mantissa value and an exponential term with minimum usage of logical components. There are
some limitations of those techniques that lead to an increase in delay and memory. Hence, to overcome these
limitations of the VLSI architecture in DSP processing, the FPPE architecture is designed with the blocks of
shift adders, multipliers, and dividers as shown in the block diagram of Figure 1.

The double precision value (64 bits) is considered as the input register. This register consists of two
operands, A and B, of 32 bit values. The sign bit of the two operands is computed using the XOR operation
from the 63rd bit and 31st bit. The bits from [62:55] and [30:23] are considered for exponent computation. The
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Figure 1. Block diagram of FPPE.

exponents of the two operands are computed by the adder block, resulting in output of 8-bit size. The first
16 bits from the LSB of the mantissa of the two operands is considered for multiplication and division. The
multiplication of the two operand mantissas (16 bits each) produces an output of 32-bit size on repeated addition.
The multiplication of two operands has been computed in 4 stages. In the first stage, the least significant bit
group of the two operands is multiplied. The first input most significant bit group and second input least
significant groups are multiplied in the second stage. In the third stage, the first input least significant bit
group and second input most significant bit group are multiplied. The two inputs’ most significant bit groups
are multiplied in the fourth stage. The fourth stage’s output is shifted and added to the third stage’s output.
The second stage’s output is shifted and added to the first stage output. The resultant output of these two
stages is shifted and added to produce the output. As per the floating point standard of IEEE single precision,
the obtained output is normalized. The normalized output of the mantissa is 33 bits. The final resultant output
of the shift adder and multiplier is 42 bits, consisting of one sign bit, 8 bits of exponent, and 33 bits of mantissa.
The division of two operand mantissas produces a quotient and remainder of 16-bit size. The dividend and
divisor input values are assigned to the registers. The 2’s complement value of the divisor is stored in the
register. In the adder block, the 16-bit values of the two operands are added. The resultant sum is added to the
divisor value consecutively until the sum of the output and carry is generated. If the resultant sum is greater
than or equal to the 16-bit divisor, the count value is incremented and moved to the R4 register that represents
the quotient value.

4. IIR filter
Partially folded arithmetic function-based architecture for an ALU processing unit with FPPE is proposed in
the application of the IIR filter as shown in Figure 2.

The pipelined register design (PRD) algorithm is used for the allocation of registers. This algorithm
reduces the size of the DSP unit with a minimum number of logical components and registers. In this DSP unit,
a multiplier-free 64-bit second-order IIR filter is designed by using the adder and shifter followed by accumulator
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Figure 2. Partially folded arithmetic function architecture.

to proceed to the FPPE. In the design of the IIR filter, 3 registers are used for the temporary allocation of
data. The delay is estimated in each data shift to the register. If the delay is less than predicted, registers are
allocated. If the delay is more than predicted, the data are shifted and then sent to the pipelined register. The
input is processed in the folded block that computes the filter coefficients in 4 pipelined stages. Eight forward
and eight backward filter blocks are designed using the PRD algorithm.

4.1. Pipelined register design algorithm
The input values are stored in the bock RAM memory of the FPGA using a block memory generator. These
values are accessed as .Coe files in the Xilinx FPGA. A lifetime chart is used for the computation of minimum
registers required to implement the design in the hardware [23]. A data variable is alive from the time it is
produced through the time it is consumed. Once consumed, the alive variable becomes dead. A variable requires
one register until the variable remains in the alive state. Horizontal lines represent the clock cycle and vertical
lines represent the lifetime of the alive variables. Eleven nodes of the IIR filter design are computed in each
clock cycle as shown in Figure 3. Based on the lifetime chart, registers R1, R2, R3 are used for the allocation
of temporary results as shown in Table 1. The registers are filled with intermediate data in a pipelined manner
during shifting and adding operations of the filter design as per the following steps.
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Figure 3. Lifetime chart.

Step 1: Initialize registers, RS = {R1, R2, . . . , RN}
Where N = 3; i.e. 3 registers are used to perform folded transform.
Step 2: fori = 1 to number of stages
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Table 1. Register allocation.

Clock Filter stage Registers
R1 R2 R3

0 2, 0 2, 2 2, 1 2, 3
1 2, 4 2, 6 2, 5 2, 7 2, 2 2, 0 2, 3
2 2, 8 2, 10 2, 9 2, 11 2, 6 2, 2 2, 7
3 2, 12 2, 14 2, 13 2, 15 2, 10 2, 8 2, 11
4 2, 14 2, 10 2, 15

Step 3: t = 0;
Step 4: for j = 1 to number of lines
Step 5: If Delay (i, j) = ‘1’
Step 6: t = t+ 1;
Step 7: end if;
Step 8: Estimate kernel function (s) .
Step 9: If Wi,j = D

Step 10: R (Wi, j) = 1 ; //where ‘i ’ and ‘j ’ are the size of weight matrix at each stage and
k = 1, 2 …N .

Step 11: AR = Rk ; //Allocate registers.
Step 12: end ‘if’.
Step 13: end ‘j ’ loop.
Step 14: end ‘i ’ loop.
Initially the count value is initialized to zero. For every stage, the delay value is computed for shifting

of values between the registers and the count value gets incremented. When the filter coefficients of real and
imaginary parts get matched with the delay value, registers are allocated for the data bits.

This type of merging technique reduces the delay rate of a proposed model of the DSP unit with minimum
number of logical components. In each condition, one register is used to produce the logical output that holds
paring of blocks at each stage. The crossing of the bit sequence from input to output optimizes the delay block
due to the link formation in the register.

The IIR filter is designed with clock and reset input. The input size of each filter block is considered as
8 bits in parameter order of 8. The intermediate results are stored in temporary registers. The eight forward
and eight backward filter blocks are designed as shown in the block diagram of Figure 4. In each filter block,
two inputs of 8-bit size are considered and manipulated in four stages.

In the first forward filter block, the first input of size [3:0] and second input of size [3:0] are given as
input to the ripple carry adder. This results in an output called sum1. In stage 2, the first input of size [7:4]
is ripple carry added with the second input of size [3:0] to obtain the output called sum2. In stage 3, the first
input of size [3:0] and the second input of size [7:4] are input to the ripple carry adder and output sum3 is
obtained. The first input of bit size [7:4] and the second input of bit size [7:4] is ripple carry added and output
sum4 is obtained. In the shifter and adder block, sum2 is shifted and added with sum1 to produce the output
sum5. Similarly, output sum6 is obtained by shifting sum4 and adding it with sum3. The resultant output
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Figure 4. Block diagram of IIR filter showing forward and backward blocks.

E1 is obtained by shifting sum6 and adding it with sum5. In the same way, the remaining seven forward and
backward filter blocks are computed. The forward and backward filter blocks’ outputs are added to yield the
final filter output.

5. Experimental results

This section describes the simulation and synthesis report of the proposed work. The design has been verified
by simulating the design in the Modelsim simulator tool. The hardware utilization of the resources has been
analyzed from the synthesis report implemented in the Xilinx Virtex 6 FPGA.

Figure 5 presents the simulation results of the FPPE architecture. The double precision floating point
value is given as input to the architecture. The output 42 bits [41:0] were obtained by cascading multiplied
outputs of a mantissa of size [32:0], output exponent of size [7:0], and output sign bit obtained by the XOR
operation of the two input sign bits. The divider block output was obtained as quotient Q [15:0] and remainder
R [15:0].

Partially folded arithmetic architecture with FPPE architecture was designed for the application of an
IIR filter. The simulation result of the IIR filter using FPPE was obtained as shown in Figure 6. The forward
filter block output was obtained in E1, E2, E4, E6, E8, E10, E12, and E14. The backward filter block output
was obtained in R1, R2, R4, R6, R8, R10, R12, and R14. The addition of forward and backward filters output
values yields the IIR filter output Dout [17:0]. Based on the clock and reset input, the output enable bit (Oen)
has been enabled and disabled corresponding to the manipulated output.

Table 2 represent the comparison of the proposed design of FPPE with other floating point architectures
implemented on the FPGA. This table proves that the proposed FPPE designed in this work provided an efficient
area in terms of slices and maximum operating speed (MHz) compared with other architectures. The Xilinx
auxiliary processor unit (APU) is a floating point coprocessor consisting of single precision and double precision
units. The APU and Nallatech core processor designs occupied more area compared with the proposed FPPE.
Also, the operating speed of the proposed FPPE is maximum compared with the Xilinx APU and Nallatech
core processor architectures.
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Figure 5. Simulation output of FPPE.

Figure 6. Output of IIR filter.

Table 3 proves that the proposed FPPE-based IIR filter design occupied fewer registers and lookup tables
(LUTs) for hardware implementation on the FPGA. Also, the design provided faster computations and occupied
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Table 2. Performance analysis of proposed FPPE with other floating point implementations on FPGA.

Synthesis results Proposed FPPE Xilinx APU Nallatech core
(Xilinx Virtex FPGA)
Area (slices) 987 2620 1600
Frequency (MHz) 658.588 200 120

a smaller number of DSP blocks of an FPGA. Hence, the proposed FPPE-based IIR filter architecture provided
efficient area and speed compared with the IIR filter architectures designed for beam enhancement RF aperture
arrays.

Table 3. Performance analysis of proposed FPPE IIR filter with IIR filter design of beam enhancement RF aperture
arrays.

Design of
Existing Proposed FPPE IIR filtersecond-order IIR filter

Virtex-6 FPGA (n = 25)
Slice registers 19,204 17,283
Slice LUTs 17,866 16,079
Latency (ns) 9.8 7.6
Max. frequency (MHz) 102.041 131.579
DSP blocks 425 212

6. Conclusion and future work
This work proposed the design of floating point arithmetic units for signal processing applications. Nowadays,
digital IIR filters are widely used in audio applications using floating point values and FPGA-based digital signal
processing architectures have been gaining importance. Hence, in this work, the FPPE architecture was designed
for the IIR filter and implemented on FPGA devices to provide efficient area. The designed FPPE provided
efficient area compared to the APU and Nallatech core processor architecture. The PRD algorithm along with
folding operations allowed the design to be implemented with reduced registers and logical components. The
proposed architecture provided efficient area and speed compared with the digital IIR filters designed for beam
enhancement RF aperture arrays.

In the future, the designed IIR filter can be utilized for the removal of noise signals from ECG and
electromyography signals in the field of biomedical processing and a part of this work is under progress. Various
audio input signals can be analyzed for filtering operations using IIR filters.
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