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Abstract: Objects and their feature identification in hazy or foggy weather conditions has been of interest in the last
decades. Improving image visualization by removing weather influence factors for easy image postprocessing, such as
object detection, has benefits for human assistance systems. In this paper, we propose a novel variational model that
will be capable of jointly segmenting and dehazing a given image. The proposed model incorporates atmospheric veil
estimation and locally computed denoising constrained surfaces into a level set function by performing a robust and
efficient image dehazing and segmentation scheme for both gray and color outdoor images. The proposed model not
only shows efficient segmentation of objects in foggy images by outperforming state-of-the-art methods but also produces
dehazed object results in the same time.
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1. Introduction
Despite the increasing ubiquity of digital photography, images of outdoor scenes have low visibility due to fog
or haze and consecutively recovering the original colors of natural scenes is a hard problem. Augmenting the
depth information from images captured with ordinary cameras is still a long-standing unsolved problem in
image processing and computer vision. In the last decades, several methods that moderately solve the problem
have been proposed [1–4]. Among the earliest dehazing approaches, one can distinguish the polarization filters
techniques [5, 6], in which multiple images were required to remove fog from a given scene. Those models
have limited applications as most of the imputed data are with only one single haze image. Moreover, this
technique does not guarantee absolute removal of fog or haze. To overcome the disadvantage of multiple images
in defogging methods, Tan et al. [7] observed that fog-free images have higher contrast in comparison with foggy
images. As a straightforward outcome of this observation, they introduced the contrast maximization method.
Although this method requires one single image as algorithm input, the restored images of this method often
will have halo artifacts and overstretches due to the fact that the method does not conform to physical effects.
Further, He et al. [4] proposed an image prior-dark channel model to remove haze from a single input image.
The method is based on a key observation that most local patches in outdoor haze-free images contain some
pixels whose intensity is very low in at least one color channel. Using this prior with the haze imaging model,
one can directly estimate the thickness of the haze and recover high-quality haze-free images. To remove haze,
He et al. [4] proposed the following formula:
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I(x)dark = min
y∈Ω0

(x)
( min
c∈(r,g,b)

Ic(y)), (1)

where Ic(x) is a color channel of the given image I(x) definite in the domain Ω ∈ R2 , and Ω0(x) is a local
patch with center x. In most of nonsky local image areas, we have

I(x)dark = min
y∈Ω0

(x)
( min
c∈(r,g,b)

Ic(y)) = 0. (2)

However, the output images of the method may have color tone modification due to imprecise estimation
of air/light. Considering the degradation of image quality of outdoor scenes as a process affected by attenuation
and the air/light [8], occurring due to the scattering of atmospheric particles [9], this phenomenon can be
restored by reversing Koschmieder’s law [1], which is given with the following formula:

I(x) = I0(x)e−kd(x) + I∞(x)(1− e−kd(x)), (3)

where I(x) is a given image with fog, I0(x) is a fog-free image, k is the defunctness coefficient of the fog, d(x)
is the distance of the scene point from the photographic equipment at pixel x, and I∞(x) is the sky intensity.
For homogeneous fog, both I∞(x) and k are global constants over the whole image, while for heterogeneous
fog it may vary locally. Representing the air/light as A(x) , the formula in Eq. (3) can be written as

I(x) = I0(x)
(
1− A(x)

I∞

)
+A(x). (4)

To improve this model, Cho et al. [1] proposed the minimization of the following functional:

E(A(x)) =
∫
Ω

(H(W (x)−A(x))dx + λ2

∫
Ω

φ(||∇A(x)||)dx, (5)

where Ω is the domain of the given image, A(x) is air/light or atmospheric veil, W (x) = min(I(x)) is the
minimum components of I(x) for each pixel (image of the whiteness within the observed image), H is the
Heaviside function, λ is a regularization parameter that balances the influence between two terms of Eq.
(4), and φ represents an edge-preserving regularization function (assumed to be an even function in C2(R)) .
This model outperformed the existing image dehazing algorithms by not only showing good results for image
restoration in heavy fog but at the same time by not producing halo effects. To improve the performance of the
model of Cho et al. [1], several works have been introduced in recent years [10–13]. However, these models and
other similar models [2–4] may not work properly in multiple image dehazing cases.
On the other hand, segmentation of a given image refers to the process of locating objects and boundaries
(lines, curves, etc.) in images. The most popular and successful methods for image segmentation are active
contour approaches. Those techniques can be classified into two groups: edge-based [14–18] and region-based
[19, 20, 28] models. The choice of these models depends on results’ acceptability for every image and problem
in each specific segmentation application. In comparison with edge-based methods, the region-based active
contour frameworks are well known for their correctness in segmenting images with or without noise with or
without gradient. The Chan–Vese (CV) model is one of the most popular region-based active contour models
[19], which is obtained due to the minimization of the following functional:

FCV (c1, c2, C) = µ length(C) + λ1

∫
inside(C)

|I(x)− c1|2dx + λ2

∫
outside(C)

|I(x)− c2|2dx,
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where λ1 , λ2 are positive constants and c1 , c2 are average intensities inside and outside of the contour C ,
respectively. Representing contour C with a zero level set, i.e. C = {x ∈ Ω|ϕ(x) = 0} , and minimizing the
above energy functional with respect to ϕ , c1 , and c2 , we obtain the following variational formulation:

δϵ(ϕ)

[
µ∇.

(
∇ϕ
|∇ϕ|

)
− λ1(I(x)− c1)

2 + λ2(I(x)− c2)
2

]
= 0, (6)

c1 =

∫
Ω
I(x)H(ϕ(x))dx∫
Ω
H(ϕ(x))dx , and c2 =

∫
Ω
I(x)(1−H(ϕ(x)))dx∫
Ω
(1−H(ϕ(x)))dx . (7)

The drawback of the CV model is its deficiency in segmenting images with inhomogeneous intensity, including
fog and haze. To improve the CV model, Li et al. [21] proposed a local binary fitting (LBF) energy model,
which is capable of segmenting images with intensity inhomogeneity. The LBF energy embedding the varia-
tional model is given by:

FLBF (C, f1, f2) = µlength(C) + λ1e1 + λ2e2 (8)

with

e1 =

∫
Kσ(x− y)|I(y)− f1(x)|2H(ϕ(y)dy, (9)

e2 =

∫
Kσ(x− y)|I(y)− f2(x)|2(1−H(ϕ(y))dy,

where ϕ is a level set function, H(ϕ) is the Heaviside function, Kσ(x) = 1
(2π)n/2σ2 .e

−|x|2/2σ2 is the Gaussian

kernel, and f1 and f2 are two smooth functions that approximate the local image intensities inside and outside
contour C , respectively. Minimization of the above equation with respect to ϕ , f1 , and f2 leads to the following
equations:

δϵ(ϕ)

[
µ∇.

(
∇ϕ
|∇ϕ|

)
− (λ1e1 − λ2e2)

]
= 0, (10)

f1(x) =
Kσ(x) ∗ I(x)Hϵ(ϕ(x))
Kσ(x) ∗Hϵ(ϕ(x))

, and f2(x) =
Kσ(x) ∗ I(x)(1−Hϵ(ϕ(x)))
Kσ(x) ∗ (1−Hϵ(ϕ(x)))

. (11)

Similar work was recently introduced by Zhang et al. [27]. The proposed model incorporates a local image
fitting (LIF) term for segmentation. Their proposed energy functional is as follows:

ELIF (ϕ) = µlength(C) +
1

2

∫
Ω

|I(x)− I ′0(x)|2dx, (12)

where

I ′0(x) =m1Hϵ(ϕ(x)) +m2(1−Hϵ(ϕ(x)) (13)

represents the local computed image and m1 and m2 are the local averages given by:

m1 =mean(z0 ∈ ({x ∈ Ω : ϕ(x) < 0}
∩

Wσ(x))), (14)

m2 =mean(z0 ∈ ({x ∈ Ω : ϕ(x) > 0}
∩

Wσ(x))), (15)
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with Wσ(x) a rectangular window function. The window function can be chosen in different ways, e.g., a
truncated Gaussian window or a constant window. In can be easily noticed that in the case where Wσ(x) is a
truncated Gaussian window then m1 and m2 are equal to f1 and f2 in Eq. (10).

Another attempt to enhance the CV model was made by Wu et al. [22], who proposed the following
energy functional:

F (ϕ) = λ

∫
(I(x)− c1)

2

c21
(ϕ+ 1)2dx +

∫
(I(x)− c2)

2

c22
(ϕ− 1)2dx, (16)

where c1 , c2 are constants and λ > 0 . The proposed variational segmentation model is convex with unique
global solution for its energy functional within the interval [−1, 1] .

Furthermore, Zhang et al. [27] combined the region base idea introduced by Chan and Vese [19] with a
geodesic model idea and formulated the following minimization functional in terms of level set formulation:

∂ϕ(x)
∂t

= α(SPF )|∇ϕ(x)|, in Ω,

ϕ(t = 0;x) = ϕ0(x), in Ω,

where SPF denotes the signed pressure force function, α is a positive constant, and ϕ0 is the initial level set
function. Akram et al. [23] modified the Zhang model for images with intensity inhomogeneity by replacing
the SPF function with a local SPF function. Although Akram et al. [23] improved the performance of the
region-based active contour models by efficiently stopping the contours at weak or blurred edges, the model is
not designed to handle images having multiple intensity objects. To improve the local SPF model, Ali et al.
[24] proposed a combination of the SPF function with the generalized average concept in a new segmentation
framework. Their model is given as follows:

∂ϕ(x)
∂t

= α(GSPF )|∇ϕ(x)|, in Ω,

ϕ(t = 0;x) = ϕ0(x), in Ω.

The model shows significant improvements over the model of [23] for segmentation of multiregion images with
inhomogeneous intensities. To the best of our knowledge, there is no single designed model to jointly segment
and dehaze images with fog or haze.

In this work, we propose a novel variational model that will be capable of jointly segmenting and dehazing
a given image at the same time. Our model is mainly based on estimating the atmospheric veil and level set
function for efficient image dehazing and segmentation, respectively. Most of the recent image segmentation
models may not efficiently segment foggy images. The proposed technique is robust for both gray and color
outdoor images. The experimental tests of our proposed method on color and gray images will validate that
our formulation is far better than the latest segmentation techniques available in the literature.

2. The proposed model

Let I(x) denote the given image with fog factor over a domain Ω , I : Ω ⊂ R2 −→ R , and its statistically
locally computed approximated image If (x) is as follows:

If (x) = f1(x)Hϵ(ϕ(x)) + f2(x)(1−Hϵ(ϕ(x)), (17)
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where f1(x) and f2(x) are smooth functions similarly obtained as in Eq. (10). Both terms will statistically
contain significant information under haze and fog conditions contrary to global fitting terms such as c1 and
c2 for the CV model.

In order to jointly dehaze and segment a given image, we propose the following energy functional:

E(ϕ(x), A(x)) =
∫
Ω

|∇A(x)|dx + λ2

∫
Ω

H(ϕ(x))(W (x)−A(x))dx+

µ

∫
Ω

δ(ϕ(x))|∇ϕ(x)|dx+

λ1

∫
Ω

(If (x)− IA(x))2dx + (1− λ1)

∫
Ω

(logIf (x) +
IA(x)
If (x)

)dx, (18)

where µ, λ1 , and λ are positive parameters. The first and the second terms of Eq. (18) represent the physical
properties of the atmospheric veil. Atmospheric veil A(x) is an increasing function of the scene point distance
d(x,y), whereas A(x) is positive and higher than the minimum of the components of I(x) [1]. This imposes the
smoothness of the air/light A(x) everywhere into the image domain, positivity A(x) ≥ 0 , and A(x) < W (x) ,
where W (x) = min(I(x)) . The other terms in Eq. (18) are variational segmentation fitting and smoothness
terms for the curve fitting where IA(x) is given by:

IA(x) =
I(x)−A(x)
1− A(x)

I∞(x)
. (19)

In other words, the first two terms of the proposed energy function satisfy the edge-preserving regularization
property while adequately removing fog, whereas the last three terms will evolve the curve ϕ towards an
object’s boundary. Minimizing the energy functional E(ϕ(x), A(x)) with respect to ϕ(x) , we will get the
following equation:

µδ(ϕ(x))∇( ∇ϕ(x)
|∇ϕ(x)| ) + 2λ1(IA(x)− If (x))(−f1(x)δ(ϕ(x)) + f2(x)δ(ϕ(x)))

+(1− λ1)(
1

If (x)
(f1(x)δ(ϕ(x))− f2(x)δ(ϕ(x))) +

IA(x)
I2f (x)

(f1(x)δ(ϕ(x))− f2(x)δ(ϕ(x))) = 0. (20)

Eq. (20) can be rewritten as

µδ(ϕ(x))∇( ∇ϕ(x)
|∇ϕ(x)| ) + (f1(x)δ(ϕ(x))− f2(x)δ(ϕ(x)))

[
− 2λ1(IA − If ) + (1− λ1)(

1

If
+

IA
I2f

)
]
= 0.

Using the time marching method to solve the above equation we get the following evolution equation:

∂ϕ(x)
∂t

= δ(ϕ(x))
[
µ∇( ∇ϕ(x)
|∇ϕ(x)| ) + (f1(x)− f2(x))[

(1− λ1)

I2f
(If + IA)− 2λ1(IA − If )]

]
. (21)

In a similar way, minimizing the energy functional E(ϕ(x), A(x)) with respect to A(x), we derive the following
equation:

∇
( ∇A
|∇A|

)
− λ2δ(ϕ)(W −A) +

2λ1

(1− A
I∞

)3
(
I

I∞
− 1)

(
I −A− If (1−

A

I∞
)
)
− (1− λ1)

If (1− A
I∞ )2

(
I

I∞
− 1) = 0.
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Rewriting the above equation, we obtain:

∇
( ∇A
|∇A|

)
− λ2δ(ϕ)(W −A) +

( I
I∞
− 1)

(1− A
I∞

)2

[ 2λ1

1− A
I∞

(
I −A− If (1−

A

I∞
)
)
− 1− λ1

If

]
= 0,

and its evolution equation,

∂A

∂t
= ∇

( ∇A
|∇A|

)
− λ2δ(ϕ)(W −A) +

( I
I∞
− 1)

(1− A
I∞

)2

[ 2λ1

1− A
I∞

(
I −A− If (1−

A

I∞
)
)
− 1− λ1

If

]
. (22)

2.1. Numerical implementation

Shortly rewriting Eq. (21), we have

ϕ(x)
∂t

= K(ϕ(x)),

where K(ϕ(x)) is the right-hand side in Eq. (21). Considering Ω as a two-dimensional space and using the
finite differences for the discretization of Eq. (21), we obtain:

ϕn+1
i,j − ϕn

i,j

∆t
= K(ϕn

i,j).

In other words,

ϕn+1
i,j = ϕn

i,j +∆tδ(ϕn)
[
µκϕ + (f1 − f2)[

(1− λ1)

I2f
(If + IA)− 2λ1(IA − If )]

]
, (23)

where κϕ represents the curvature and is computed according to the following formula:

κϕ = div(
∇ϕ
|∇ϕ|

) =
ϕxxϕ

2
y − 2ϕxyϕxϕy + ϕyyϕ

2
x

(ϕ2
x + ϕ2

y)
3/2

(24)

where ϕx , ϕy , ϕxx , ϕyy , and ϕxy are computed as follows:

ϕx =
1

2h
(ϕi+1,j − ϕi−1,j), ϕy =

1

2h
(ϕi,j+1 − ϕi,j−1),

ϕxx =
1

h2
(ϕi+1,j + ϕi−1,j − 2ϕi,j), ϕyy =

1

h2
(ϕi,j+1 + ϕi,j−1 − 2ϕi,j),

ϕxy =
1

h2
(ϕi+1,j+1 − ϕi−1,j+1 − ϕi+1,j−1 + ϕi−1,j−1), (25)

where h is the grid point.
In a similar way, Eq. (22) can be discretized as follows:

An+1
i,j −An

i,j

∆t
= R(An

i,j),

where R(An
i,j) is the right-hand side in Eq. (22) and κA = div( ∇A

|∇A| ) can be written in a similar form as follows:

κA = div(
∇A
|∇A|

) =
AxxA

2
y − 2AxyAxAy +AyyA

2
x

(A2
x +A2

y)
3/2

, (26)
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where Ax , Ay , Axx , Ayy , and Axy are computed as:

Ax =
1

2h
(Ai+1,j −Ai−1,j), Ay =

1

2h
(Ai,j+1 −Ai,j−1),

Axx =
1

h2
(Ai+1,j +Ai−1,j − 2Ai,j), Ayy =

1

h2
(Ai,j+1 +Ai,j−1 − 2Ai,j),

Axy =
1

h2
(Ai+1,j+1 −Ai−1,j+1 −Ai+1,j−1 +Ai−1,j−1), (27)

An+1
i,j = An

i,j +∆t
(
κA − λ2δ(ϕn)(W −An

i,j),

+
( I
I∞
− 1)

(1− An
i,j

I∞
)2

[ 2λ1

1− An
i,j

I∞

(
I −An

i,j − If (1−
An

i,j

I∞
)
)
− 1− λ1

If

])
. (28)

In the following we show some basic steps of our algorithm.

Algorithm 1 Joint segmentation dehazing method algorithm: (ϕk(x), Ak(x)) ← JDS(ϕ(k−1), A(k−1), µ, λ1,
λ2, ϵ,maxiter, tol).

1. Initialize the level function ϕ(x) by ϕ0(x) and A0 by A0 .

A0(x) = βI(x), 0 < β < 1,

and the level set function ϕ(x) with ϕ0(x)

ϕ0 = ϕ(x, t = 0) =


−ρ if x ∈ Ω− ∂Ω

0 if x ∈ ∂Ω

ρ if x ∈ Ω− Ω

where ρ > 0 is a constant, Ω is image domain, and ∂Ω is the boundary of Ω .
2. Calculate fk

1 (x) and fk
2 (x) using Eq. (10).

3. Update ϕ(x)k , Eq. (21), using its discretization, Eq. (23).
4. Update A(x)k , Eq. (22), using its discretization, Eq. (23).
5. Check whether the solution is stationary. If not, repeat from Step 2.

3. Experimental results
In this section, we display the results obtained from our model for foggy images of various scenes and show that
the model can easily handle dehazing and segmentation by outperforming other existing models. Simulation
and performance evaluation of the proposed algorithm is accomplished with various clean and foggy images on
the MATLAB platform in the Windows 8.1 environment and Intel core i3 environment on a 1.70 GHz personal
computer with 4.00 GB installed memory (RAM). For both gray and color images, we fixed the parameters
λ1 = 0.01 , λ2 = 100 , µ = 0.02 , and maxiter = 100 . To achieve better results the parameters can be tuned
depending on the fog/haze level, or, alternatively, an optimized scheme can be found.

3.1. Dehazing comparison with existing models
In the first test set we show the capability of the proposed model in fog removal. Figure 1 shows defogging
results of the proposed method applied on different images and compared with the state of the art of Ancuti et
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al. [25] and Cho et al. [1] models. From the experimental results, in this figure we witness a robust performance
in restoring the given image and clearly observe the correctness of the proposed method in terms of dehazing
outdoor images. The proposed algorithm shows clear details of fog-free scene objects as compared to other
methods in images with intense fog. The obtained results have acceptable visual quality without sky region or
less sky region.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 1. The defogging performance of the proposed model in comparison with the models of Ancuti et al. [25] and
Cho et al. [1]. The first column is the given image, the second column shows the output results of the Ancuti [25] model,
the third column shows the output results of the Cho [1] model, and the fourth column shows the results of the proposed
model.
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3.2. Segmentation accuracy of the proposed method for clean images and its comparison with
state of art models

In order to show the segmentation performance of the proposed model we test the model on gray and color clean
images. Figures 2 and 3 show the obtained results of the proposed method in comparison with the segmentation
performance of the SPF [26] and GSPF [24] models. As expected, the application of the LBF model to the
same set of images gives similar results as the proposed method, not being repetitive. From the experimental
results we notice that our method performs well in segmenting gray and vector-valued images, whereas the
other methods have similar results. The experiments carried out in this test set are followed by experiments
with images containing fog and their comparative quantitative analysis on coupled dehaze and segmentation.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. The first column is the given gray image, the second column shows the local SPF results [26], the third
column shows GSPF results [24], and the fourth column shows the result of our method.

3.3. Segmentation accuracy for fog/haze images and its comparison with state-of-the-art segmen-
tation models

This test set shows the ability of our model to remove fog while segmenting the object of the given image. The
results obtained in Figure 4 and Figure 5, show that the proposed model successfully segmented the natural
fog images (last columns of Figures 4 and 5). The experiments are carried out on different numbers of scenes
containing low and high levels of fog/haze. In these figures we simultaneously compare the performance of
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3. The first column is the given vector-valued image, the second column shows the local SPF results [26], the
third column shows GSPF results [24], and the fourth column shows the result of our method.

the proposed method in terms of segmentation with state-of-the-art models such as LBF [21] and the Wu [22]
model. The incorporation of the physical properties of the atmospheric veil into the proposed variational model
and the representation of the given image as a piecewise continuous function clearly make the proposed method
outperform the existing models, which can not cope with such cases. From Figures 4 and 5, in the second and
third columns we notice that LBF [21] and the Wu [22] model will give poor results or even wrong results if the
scene of the image contains a relatively high level of fog and the foreground objects fall into intensity variation.
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(a) Initial Contour (b) LBF Results (c) Wu Results (d) Proposed Method Results

Figure 4. The performance of the proposed model in comparison with LBF (iteration= 3000 , λ1 = 1 , λ2 = 1) and
Wu (iteration= 5000) models on images with fog.

3.4. Quantitative analysis

To show the segmentation accuracy of the proposed model we use the Jaccard similarity (JS) coefficient for
quantitative comparison of different models, which is defined as the ratio of the junction of the areas and the
union. Let R1 and R2 denote the segmentation result and ground truth (GT), respectively. Then the JS
coefficient is computed in the following way:
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(a) Initial Contour (b) LBF Results (c) Wu Results (d) Proposed Method Results

Figure 5. The performance of the proposed model in comparison with LBF (iteration= 3000 , λ1 = 1 , λ2 = 1) and
Wu (iteration= 5000) models on images with fog.

JS(R1,R2) =
R1

∩
R2

R1
∪

R2
.

Clearly, the values of JS coefficients are JS ∈ [0,1] . The accuracy of a model is better if the JS coefficient
is closer to one and vice versa if JS is closer to zero. Figure 6 compares the JS coefficients obtained by LBF
[21], the Wu model [22], and the proposed method obtained over time, presented in the second, third, and last
columns, respectively. We easily observe that the proposed model performs better in comparison with the other
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(a) Initial Contour
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Figure 6. Quantitative analysis using JS coefficients for comparison between LBF, Wu, and proposed method.

models. The proposed algorithm produces higher JS values as compared to other state-of-the-art methods for
most of the images tested. Higher values of JS show better accuracy, which indicates a good performance of
the proposed model. Moreover, the graphs showing the JS coefficients reveal robustness and stability of the
performance of the proposed model, whereas the other methods cannot cope with such images. This is to be
expected as none of the methods mentioned above or other methods in the literature take fog/haze into account.
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4. Conclusions
In this paper, we presented an efficient variational segmentation under dehazing image reconstruction in a single
combined model. The proposed model jointly segments and dehazes a given image by combining active contour
on a region based on image segmentation with a variational level set formulation. To recover the boundary of
the desired object we introduce local binary fitting energy terms as well as edge-preserving regularization to
utilize accurate air/light maps. The model is applicable for both gray and color images. Experimental results
show that our new approach performs well in the comparison with other existing classical models. Moreover,
the proposed model has a simple structure and can easily be adapted for special cases such as inhomogeneous
fog/haze.
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