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Abstract: In order to achieve high precision on indoor location, a Wi-Fi indoor location method based on improved
back propagation (BP) neural network is proposed. The classical BP neural network is optimized in real time by the
ant colony optimization algorithm. Meanwhile, the momentum term is introduced to construct an improved four-layer
BP neural network model. The model uses the Wi-Fi signal feature as the input of the BP neural network and succeeds
in the area classification under multiple Wi-Fi signal features. The experimental results demonstrate that the improved
BP neural network can increase the classification accuracy of the classifier effectively, and achieve a high-precision indoor
area location. Furthermore, it performs better practical results while ensuring the time complexity. The advantages
of this method are high practicability, low cost, high prediction classification accuracy, and robust stability, which can
achieve the efficient classification of the short-range area.

Key words: Indoor Wi-Fi location, back propagation neural network, ant colony optimization algorithm, momentum
term

1. Introduction
With the rapid development of the wireless network, the accuracy of location is particularly concerned. The
global positioning system (GPS) can satisfy people’s location needs for outdoor environments well, but in
relatively closed or complex situations, it often cannot obtain very accurate results and even correct area
location, such as large buildings, shopping malls, and underground parking lots. Therefore, the indoor area
location technology is given more attention.

Nowadays, there are many ways to achieve an indoor location, such as Bluetooth, radio frequency
identification (RFID), and Wi-Fi. As an example of Bluetooth-based indoor location technologies, Lee et
al. [1] used a Bluetooth receiver, an accelerometer, a magnetic field sensor, and a barometer on a smartphone
to propose an indoor localization solution. Xinlong Jiang et al. [2] used Wi-Fi signal and Bluetooth low energy
signal into a unified model to introduce a fusion semisupervised extreme learning machine. As an example of
RFID-based indoor location technologies, He Xu et al. [3] used the weighted path length and support vector
regression algorithm to solve the problem that the accuracy of the LANDMARC location algorithm relies on
the density of reference tags and the performance of RFID readers. And He Xu et al. [4] also proposed a
∗Correspondence: dongchen@fzu.edu.cn
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novel indoor location algorithm based on Bayesian probability and k-nearest neighbor to reduce the location
fluctuation and the error caused by multipath and environmental interference in LANDMARC. As an example
of Wi-Fi–based indoor location technologies, SB Keser et al. [5] used multiple signal types (Wi-Fi–RSS and
MF fingerprints) to propose an F-score-weighted indoor location algorithm to solve the problem that Wi-Fi
signal distribution is nonstationary and accuracy is insufficient. Jingxue Bi et al. [6] considered the difference
in signal strength caused by the orientation of users and proposed an indoor Wi-Fi location method based on an
omnidirectional fingerprint database. Ban et al. [7] used pedestrian dead reckoning, Wi-Fi–based localization
methods, and residual magnetism to propose a high-accuracy indoor location method.

Among them, the Wi-Fi signal feature location method has high location accuracy, low construction
cost, and strong practicability. It is suitable for crowded areas and has broad application prospects. Machine
learning is a method of using algorithms to parse data and then mine the underlying rules in the data to make
decisions or predictions about certain things. In recent years, machine learning has been applied to the Wi-Fi–
based positioning method and has achieved an excellent positioning effect [8–12]. Liao et al. [13] combined the
decision tree classification model with indoor maps to reduce the dependence on hardware devices and improve
the accuracy and reliability of the system. By normalizing the relation between K adjacent points in the k-
nearest neighbor algorithm, Yeqing Fang et al. [14] improved the location accuracy and reduced the location
matching time. Xiao et al. [15] used the BP neural network algorithm and the k-means algorithm for different
scenarios to improve the detection rate in different situations and shorten the detection delay. However, there is
still room for improvement in the positioning accuracy of these methods. Therefore, this paper aims to improve
the accuracy of the Wi-Fi–based positioning method further.

This paper uses the BP neural network model’s strong nonlinear mapping ability and good data fitting
ability to adapt to noise data. Meanwhile, aiming at solving the problems of BP neural network’s slow
convergence speed and easy to fall into local minimum value, we use the ant colony optimization (ACO)
algorithm to optimize the classical BP neural network in real time and introduce the momentum term to
propose a Wi-Fi indoor location method based on improved BP neural network. Experiments show that this
method can improve the accuracy of the indoor location method based on Wi-Fi signal features.

2. Preliminaries
2.1. Momentum term
To solve the problem that slow convergence speed and easy to fall into the local minimum value of the classical
BP algorithm, the momentum term has been introduced to speed up the updating rate of the weight value and
promote the accuracy rate of neural network prediction [16]. The weight calculation equation for input-hidden
and hidden-hidden is as follows:

ω
(l)
ij = ω

(l)
ij − η1 ·

∂E(ω, b)

∂ω
(l)
ij

+ γ ·∆ω
(l)
ij . (1)

In Eq. (1), ω(l)
ij represents the weight between the node i of the layer l and the node j of the layer l+1 ,

η1 represents the rate of weight learning. ∂E(ω, b)

∂ω
(l)
ij

represents the partial derivative of the error for the weight.

γ is the momentum term, and the value range is [0,1], it indicates the degree of influence caused by the weight

changes of the previous reverse transfer subprocess in the current reverse transfer. ∆ω
(l)
ij represents the weight
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used in the previous network calculation. Choosing the appropriate value of γ can let the BP neural network
to converge with a large learning rate. The initial parameters of the momentum term γ can be determined by
referring to the value of the learning rate [17]. When the learning rate is small, the momentum term γ is often
in the range [0.85,0.95]; when the learning rate is large, the momentum term γ is often in the range [0.5,0.7].

E(ω, b) =
1

2

n−1∑
j=0

(dj − yj)
2 . (2)

When performing forward and reverse transfer subprocesses for each training sample, Eq. (2) is used to
determine whether the network error of a single sample meets the requirements. After iterating over the
entire training sample, the mean error of the entire training sample is obtained using Eq. (3) to determine
whether the network meets the training requirements:

Ē(ω, b) =
1

2

n−1∑
j=0

(dj − yj)
2/sampleNum , (3)

where ω is the weight, b is the threshold, dj is the actual output of the network, yj represents the expected
output of the sample, and sampleNum indicates the total number of samples.

2.2. Hidden layer
In the process of neural network construction, increasing the number of hidden layers can reduce network errors
and improve accuracy. However, it also complicates the network, which increases training time and overfitting.
Therefore, we decided to use two layers of hidden layers. There are many methods to determine the number of
hidden layer nodes, such as trial and error, pruning, growth, and direct typing methods. [18] The determination
of the number of hidden layer nodes not only has a significant impact on the performance of the constructed
BP neural network model but also is the direct cause of the overfitting phenomenon. This paper uses the direct
typing method to determine the number of hidden layer nodes. The calculation equation is as follows:

hide =
√
in+ out+ α , (4)

where in indicates the number of nodes in the input layer, out shows the number of nodes in the output layer,
hide is the number of nodes in the hidden layer, and α is a constant in the range [1,10].

2.3. ACO–BP algorithm
Because of the simple principle and easy implementation, the BP neural network is widely used. However, there
are also many problems in itself, such as slow convergence, sensitivity to initial values, and easy to fall into a
local optimum. Therefore, Hong et al. [19] used the good global search ability of the ant colony algorithm to
optimize the weight of the neural network.

The basic flow of the ACO–BP algorithm is as follows: First, assume that there are m weights p1 , p2 ,
..., pm in the network with the range of (Wmin , Wmax ). The range of values of the weights is evenly divided
into N equal parts to form a set Ipi . The ant starts from the first initial weight and randomly selects a node
according to the probability value in the current initial weight optional value set as the initial weight used in
the round. Save the selected node number of each layer that the ant searched for as the ant path. The initial
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weight number to be selected is incremented by one, and the next candidate value is randomly selected, and
record the path. The probability equation for selecting a node for each layer is as follows:

P [τkj (Ipj)] =
τj(Ipj)∑N
j=1 τj(Ipj)

, (5)

where k is the number of each ant in the ant population, Ipi is a set of optional values for a specific w , τj(Ipj)
is a pheromone of some optional value of w . In the initial state, the ants choose the probability of each node
of each layer to be equal and completely random.

When an ant walks from the starting point to the end point, it saves the numbered path antPath of the
selected node. The set of initial weights corresponding to the numbered path is taken out and brought into the
BP neural network. After multiple training iterations of the training set samples in the BP neural network,
calculate and save the mean error of the training set samples. After completing an iterative training for the
whole ant population, according to the mean error of the sample obtained from the initial weight corresponding
to the path selected by each ant to update the pheromone value of the entire node graph. The update equation
is as follows:

τj(Ipj)(t+ n) = ρ · τj(Ipj)(t) + ∆τj(Ipj) , (6)

where Ipi is a set of optional values for a specific w , t+n is the search iteration of the whole ant every time, n
is the number of iterations, ρ is the pheromone trail persistence, which is a constant in the range [0,1], ∆τj(Ipj)

is a pheromone increment generated based on a sorting strategy, and its calculation equation is as follows:

∆τj(Ipj) =


DBQ

ant[k] · pathAccu
if the ant k selects the element Pj(Ipj),

0 else.
(7)

where DBQ represents the total amount of pheromone in the initial state, ant[k].pathAccu is the mean error
of the sample obtained after the ants selected a set of weights into the BP neural network for 500 iterations.

Repeat the above steps several times according to the preset number of iterations. During this process,
record the best ant path continuously, and approach the optimal path gradually. After completing the repe-
titions, a set of initial weights corresponding to the optimal path are brought into the BP neural network for
a comprehensive training iteration again. After completing the final training, the trained BP neural network
model is used to predict the test set and predict the results.

3. Optimization of BP neural network
3.1. Activation function
Usually, the traditional neural network uses the Sigmoid function as the activation function and its forward
transfer subprocess calculation formula as shown in Eq. (8).

Sj =

n−1∑
i=0

ω
(l)
ij xi + bj , (8)

where ω
(l)
ij represents the weight between the node i of the layer l and the node j of the layer l + 1 , the

threshold of node j is bj , and the output value of each node is xi .
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However, in the application background of this paper, the input range of the seven input features is in the
range [–100,0]. If they are brought into the BP neural network for calculation directly, in the forward transfer
subprocess, because Sj is negative and its numerical amplitude changes greatly, so most of the values of Sj fall
on the left side of the Sigmoid function, where the slope is small, and the output value is close to zero infinitely.
As a result, the gap between the outputs of the first layer of the BP neural network is too small to extract and
distinguish features effectively, so that the training of the BP neural network fails. Therefore, it is necessary to
preprocess the data before training the network model. The authors in [20] proposed an improved activation
function model, as shown in Eq. (9).

f(x, a, b, c, d) =
d

(1 + e[−a(x−b)])
+ c, (9)

where a adjusts the slope of the function, b adjusts the left and right position of the function, c adjusts the
upper and lower position of the function. Moreover, d adjusts the mapping interval range of the function. To
make the Sigmoid function have stronger nonlinear mapping ability, modify the activation function as Eq. (10).

Sigmoid(x) = f(x) =
A

(1 + e
(
−x

B
)
)

, (10)

where A is an adjustment parameter in the vertical direction for appropriately adjusting the range of the values
of Sigmoid function, and B is an adjustment parameter in the horizontal direction for appropriately adjusting
the tightness of the Sigmoid function.

3.2. Determination of BP neural network structure
There are seven input layer nodes to receive the different Wi-Fi signal strength values, because the sample
data of the application background has seven input features. There are four output layer nodes, and each node
output value indicates the probability that the positioning result is in the room. According to Section 2.2, we
bring the number of hidden layer nodes corresponding to α of different values into the BP neural network and
perform 4000 iterations of training. Table 1 shows the experimental results.

Table 1. The effect of α on the mean error.

α 1 2 3 4 5 6 7 8 9 10
Mean error 0.1807 0.1220 0.1472 0.1185 0.1442 0.1339 0.0657 0.0929 0.1074 0.1048

As shown in Table 1, when α is 7, the mean error of the sample is 0.0657, which is the smallest.
According to Eq. (4), the number of hidden layer nodes of the BP neural network is 10. As a result, the
BP neural network adopts a 7-10-10-4 four-layer structure which is shown in Figure 1. According to the BP
neural network structure, there are 210 weights to be optimized, and the complexity is enormous. This paper
optimized the 40 weight parameters between the third layer and the output layer to improve the efficiency of
the algorithm properly. The range of each weight w is [-1,1], and the range of each weight w is divided evenly
into ten values.
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Figure 1. Structure of the BP neural network.

3.3. ACO–γ–BP algorithm
Initialize the parameters of the neural network before training the BP neural network. This paper further
optimizes the BP neural network weight and threshold parameter initialization based on the Nguyen–Widrow
algorithm [21]. Set the threshold b of the two hidden layers and the output layer to 0. The weight ω of the
hidden layer to the output layer is taken as a random number in the range [-1,1]. The weights and thresholds of
the other layers are still generated using the Nguyen–Widrow algorithm. As a result, the values of the generated
weights are all different. The iterative consistency can be avoided, and the returned gradient values will be
moderate.

Due to the existence of random factors, BP neural network cannot fully ensure the optimal result of a
minimum error in each training. Meanwhile, the BP neural network training model cannot achieve a higher
accuracy prediction. Therefore, this paper proposes the ACO-γ -BP algorithm by combining the momentum
term with the ACO–BP algorithm. Figure 2 shows a specific process. The steps are as follows:

Step 1. Initialize the parameters of the ACO algorithm, including the size of the ant colony, the number of
iterations, and the optional set of initial weights;

Step 2. According to the probability calculation Eq. (5), one node is selected from the optional set of initial
weights as the initial weight randomly;
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Figure 2. The flow of ACO–γ –BP neural network.

Step 3. Determine whether the candidate weights are selected. If all the candidate weights are selected, go to
Step 4. Otherwise, return to Step 2;

Step 4. Bring the candidate weights into the BP neural network and perform several iterations. Record
the minimum error and the corresponding weights. Meanwhile, update the pheromone and increase the
number of iterations by 1;

2517



CHEN et al./Turk J Elec Eng & Comp Sci

Step 5. Determine whether the number of iteration N reaches the maximum number of iteration Nmax . If
yes, go to Step 6. Otherwise, return to Step 2;

Step 6. Bring the optimal weight into the BP neural network which combines with the momentum term.
Initialize other parameters at the same time and input the training data.

Step 7. Perform several iterations. If the mean error accu of the entire sample after each iteration is less
than the preset value ACCU , or reach the set number of iterations ITERS , the loop is jumped out, and
terminate the iteration. Otherwise, return to Step 8;

Step 8. For each sample, complete the forward transfer subprocess first, and then calculate the output error
of each sample. If the output error of a single sample is less than the preset value ERROR , skip the
sample loop, and enter the next sample. If the output error of the single sample is higher than the preset
value ERROR , perform an inverse. The weight ω and threshold b between each layer of the BP neural
network are updated and perform the forward transfer again to calculate the output error until jumping
out of the loop.

Step 9. When the preset number of iterations is completed or the average sample output error accu is less
than the preset value ACCU , the BP neural network training is completed basically.

Step 10. Each test sample is input into the trained neural network for testing.

4. Experiments
4.1. Dataset processing

The dataset of this experiment comes from the machine learning database of the University of California Irvine.
The wireless indoor localization dataset is a collection of seven different indoor wireless network signal strengths
that can be observed using a smartphone. The final output variable is the positioning result judged by the signal
strength features of the seven wireless networks. The dataset was provided to the UCI database by Rajen Bhatt
on December 4, 2017, with a total of 2000 instances [22].

Each instance contains seven input features and one output feature. The input features represent the
Wi-Fi signal strength of seven different areas. The output feature is a value in the set {1, 2, 3, 4} corresponding
to the room in which the Wi-Fi source is located. In order to adapt to the structure of the BP neural network
algorithm used in the experiment, transform the output into a vector form with four values. The value 1

indicates that the positioning result is in the room, and the value 0 represents that the positioning result is not
in the room. For example, [1, 0, 0, 0] indicates that the positioning result is room 1. Next, split the dataset
of the 2000 instances into two parts. Part of it is a training set containing 1600 pieces of data (400 in each of
four categories) for training in neural networks. The other part is a test set containing 400 pieces of data (100
in each of four categories).

4.2. Experimental and data analysis
In the experiment, the ITRES is 5000, the ACCU is set to 0.085, and the ERROR is set to 0.03. The weight
learning rate η1 is 0.1, and the threshold learning rate η2 is 0.1. Since the learning rate setting in this paper is
relatively small, the momentum term is set to 0.8. In the first subprocess of the forward transfer of the neural
network model, the parameters A and B of the activation function are set to 1 and 13. In other processes,
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the A and B are set to 1. The size of the ant colony is 23 . The pheromone trail persistence is 0.6. The total
pheromone is initialized to 40.
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Figure 3. Prediction results for different rooms ((a) Room 1, (b) Room 2, (c) Room 3, (d) Room 4).

Table 2 and Figure 3 show the partial predictions after a single run of the improved BP neural network.
Because the model uses the Sigmoid function, the output value of the model (AO1 -AO4) does not indicate
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Table 2. Single ACO–γ –BP simulation results.

Test PY1 PY2 PY3 PY4 AO1 AO2 AO3 AO4 T/F
1 1 0 0 0 0.993268533 0.000000002 0.003485541 0.001493633 T
2 1 0 0 0 0.983780853 0.000000025 0.021965037 0.000607081 T
3 1 0 0 0 0.998478785 0.000000004 0.001485652 0.000326315 T
4 1 0 0 0 0.959101809 0.000000008 0.043312116 0.008095678 T
5 1 0 0 0 0.995024275 0.000000002 0.002216829 0.001174293 T
6 1 0 0 0 0.905691429 0.000000357 0.158920736 0.000606709 T
7 1 0 0 0 0.984765314 0.000000002 0.006848231 0.001803628 T
8 1 0 0 0 0.999140768 0.000000012 0.000936436 0.000022077 T
9 1 0 0 0 0.985861526 0.000000013 0.008530792 0.000149862 T
10 1 0 0 0 0.979401329 0.000000004 0.007739209 0.000717659 T
11 0 1 0 0 0.000000000 0.980556293 0.091323357 0.000000001 T
12 0 1 0 0 0.000000000 0.993481632 0.086216873 0.000000000 T
13 0 1 0 0 0.000000000 0.957889836 0.195528076 0.000000003 T
14 0 1 0 0 0.000000012 0.959448773 0.197769317 0.000000002 T
15 0 1 0 0 0.000000000 0.924403841 0.256712321 0.000000003 T
16 0 1 0 0 0.000000004 0.653875623 0.456297997 0.000000077 T
17 0 1 0 0 0.000000000 0.904311614 0.195353957 0.000000005 T
18 0 1 0 0 0.000000000 0.971412786 0.152003131 0.000000002 T
19 0 1 0 0 0.000000000 0.987799609 0.093390874 0.000000001 T
20 0 1 0 0 0.000000001 0.390585345 0.420841242 0.000000127 F
21 0 0 1 0 0.000028719 0.000018803 0.900775346 0.001764779 T
22 0 0 1 0 0.000007752 0.000001305 0.930297926 0.005612373 T
23 0 0 1 0 0.000200196 0.000004759 0.935257509 0.006583013 T
24 0 0 1 0 0.000000292 0.002012459 0.949207599 0.000029515 T
25 0 0 1 0 0.000010362 0.000000506 0.941713728 0.010483651 T
26 0 0 1 0 0.000000559 0.000002884 0.696347047 0.001081681 T
27 0 0 1 0 0.000310232 0.000001131 0.955610592 0.004590282 T
28 0 0 1 0 0.000200196 0.000004759 0.935257509 0.006583013 T
29 0 0 1 0 0.000028719 0.000018803 0.900778346 0.001764779 T
30 0 0 1 0 0.000007752 0.000001305 0.930297926 0.005612373 T
31 0 0 0 1 0.006738883 0.000000000 0.000013457 0.997514667 T
32 0 0 0 1 0.004402669 0.000000000 0.000008677 0.998492869 T
33 0 0 0 1 0.003962752 0.000000000 0.000001676 0.997923896 T
34 0 0 0 1 0.009824197 0.000000000 0.000107522 0.991364359 T
35 0 0 0 1 0.005869826 0.000000000 0.000049473 0.995958598 T
36 0 0 0 1 0.059235163 0.000000000 0.000033706 0.993421569 T
37 0 0 0 1 0.022794259 0.000000000 0.000005954 0.998547507 T
38 0 0 0 1 0.006709634 0.000000000 0.000023795 0.997248173 T
39 0 0 0 1 0.015133906 0.000000000 0.000000073 0.998500851 T
40 0 0 0 1 0.015162804 0.000000000 0.000008417 0.997600618 T
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the probability of being located in a specific room. Take the room corresponding to the maximum value of
the output value as the prediction result. In Table 2, Test indicates the test sample number, PY 1 − PY 4

indicate the expected output values of the model; AO1−AO4 indicate the actual output values of the model.
Furthermore, T represents the classification result true, and F represents the classification result false. In
Figure 3, the X-axis represents the number of the test sample, the Y-axis represents the predicted value of the
model output, and the Z-axis represents the room number. The correct rate of this forecast is 89.75%. Of the
400 forecasted samples, 359 are accurate. The accuracy rates of the four types of areas are 92%, 87%, 83%, and
100%, respectively. This result also shows that the BP neural network in this paper is uniform in the prediction
rate of each class reasonably.

Table 3. Multiple ACO–γ –BP simulation results.

Time Accuracy rate Number of iterations
1 92.50% 2664
2 93.50% 1910
3 93.75% 890
4 92.50% 1323
5 93.50% 838
6 92.75% 794
7 90.50% 1961
8 88.75% 3683
9 92.25% 1522
10 90.50% 1043
11 89.75% 2181
12 90.50% 4582
13 89.75% 3649
14 90.25% 2326
15 91.50% 3009
Average 91.48% 2158.33

To further analyze the correctness and usability of the proposed algorithm, we run the program multiple
times and count the results of the experiments. Get and record 15 of the running experiments, as shown in
Table 3. Considering the number of iterations when the algorithm reaches the preset ACCU , in the 15 cases
of the above table, the minimum number of iterations can reach 800–1000 times. Because the weights and
thresholds selected by the ACO algorithm are very robust, adapt most samples of the test set, in the iterative
process. The convergence speed of the BP algorithm is very fast, so the number of iterations is small, and the
prediction accuracy is also remarkably high.

Consider the case where the number of iterations is large, which needs to be more than 4000 times to reach
the preset ACCU . By observing the mean error of the samples outputted in each iteration, after introducing
the weight momentum term, the convergence of the algorithm in the early stage is stable and fast. However,
when the mean error of the sample output reaches about 0.10 to 0.15, frequent fluctuations occur, and the back
and forth oscillation causes the number of algorithm iterations to increase significantly. It is because during the
BP neural network model training process, although the output mean error of the sample is similar, some of the
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samples have a large change in the weight of the entire BP neural network in the reverse transfer subprocess.
This type of sample is called singular value which modifies the weights of the BP neural network during its own
single sample training. Although the error of its own output is reduced, the changed weight causes the output
error of other single training samples to increase greatly. Thus, the weight of the BP neural network has to be
repeatedly adjusted and fluctuated back and forth. This situation cannot be entirely avoided. When the BP
neural network trains the model, the specific value of the single sample output error falling to the preset value is
unknown. Meanwhile, the change in the weight and the threshold is unknown. The appropriate increase in the
preset iteration number can still reduce the output error of the BP neural network model to the preset value.
Thus, the correctness can even be guaranteed.
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Figure 4. Comparison of training error.

The algorithm proposed in this paper mainly compares with the ACO–BPNN algorithm proposed by Li
et al. [23]. In order to make the performance of this algorithm more persuasive, the algorithm also compares
with the classical BP algorithm and the γ -BPNN algorithm which combines the BP algorithm and momentum
term. In this paper, we perform several experiments on each of the four algorithms. Each algorithm is set
to the same value on the same initialization parameters, and the other variables of the algorithm comparison
experiment are unified. Table ?? shows the comparison results, while Figure 4 shows the downward trend of the
mean error of each experimental training sample observed during the experiment. In Figure 4, the horizontal
axis represents the number of iterations of the neural network, recorded every ten times, and the vertical axis
represents the mean error of the entire training samples.

As can be seen from the statistical analysis results given in Table ??, the proposed method can achieve
the best average classification accuracy and the best average number of iterations. The algorithm proposed
in this paper compares mainly with the ACO–BPNN algorithm. After introducing the momentum term, the
ACO-BPNN algorithm has appeared multiple times to reach the preset error target value around 1000 iterations.
However, the number of iterations of the ACO–BPNN algorithm without the momentum term is mostly between
2500 and 3500. After introducing the momentum term which the experimental results are shown in the last
two columns of Table 4, the accuracy is increased by 0.17% only, but the average number of iterations is
reduced by 20.46%. At the same time, combined with the experimental results in Figure 4, based on the ACO–
BPNN algorithm, after introducing the momentum term, the fluctuation in the entire error decline process
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Table 4. Statistics of multiple experimental results of four algorithms.

Time BPNN γ -BPNN ACO-BPNN Ours
Accuracy Iteration Accuracy Iteration Accuracy Iteration Accuracy Iteration

1 90.75% 1086 89.25% 1742 91.00% 2161 92.50% 2664
2 90.25% 2410 90.50% 2425 93.50% 2659 93.50% 1910
3 90.00% 3800 92.00% 2042 92.50% 1642 93.75% 890
4 91.75% 1427 91.00% 2741 89.75% 3817 92.50% 1323
5 90.75% 2616 89.50% 1305 91.50% 3191 93.50% 838
6 90.00% 2731 88.00% 2014 90.75% 2357 92.75% 794
7 93.75% 1173 92.50% 1610 92.50% 3267 90.50% 1961
8 92.25% 2370 92.00% 2128 89.00% 2156 88.75% 3683
9 90.75% 4273 88.25% 5000 90.50% 2461 92.25% 1522
10 92.50% 3337 93.50% 794 88.75% 3683 90.50% 1043
11 86.00% 5000 90.75% 3201 91.75% 3181 89.75% 2181
12 91.25% 1900 92.25% 3306 90.25% 2326 90.50% 4582
13 91.75% 2032 91.50% 2490 91.25% 2117 89.75% 3649
14 90.25% 1016 92.25% 1890 90.50% 2924 90.25% 2326
15 91.25% 1945 90.25% 2674 90.25% 2762 91.50% 3009
Average 90.88% 2474.40 90.90% 2357.40 91.32% 2713.60 91.48% 2158.33

is significantly reduced. Meanwhile, the network error decline speed is moderate, and the final error value
significantly reduces.

5. Conclusions
Aiming at solving the problem that BP neural network is easy to fall into the local minimum value and slow
convergence speed, which affects the accuracy of the Wi-Fi signal feature location method, this paper proposes a
Wi-Fi indoor location method based on improved BP neural network. In this paper, we use the ACO algorithm
to optimize the initial weight of the BP neural network. Meanwhile, to accelerate the update speed of the
neural network weights, we also introduce the momentum term. Compared with other BP neural network
models, the classification accuracy of the proposed algorithm is further improved and reduces the number of
iterations effectively.
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