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Abstract: A simple scheme was proposed by Knuth to generate binary balanced codewords from any information word.
However, this method is limited in the sense that its redundancy is twice that of the full sets of balanced codes. The gap
between Knuth’s algorithm’s redundancy and that of the full sets of balanced codes is significantly considerable. This
paper attempts to reduce that gap. Furthermore, many constructions assume that a full balancing can be performed
without showing the steps. A full balancing refers to the overall balancing of the encoded information together with
the prefix. We propose an efficient way to perform a full balancing scheme that does not make use of lookup tables or
enumerative coding.
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1. Introduction
Balanced codes have been widely studied over the years because of their applicability in the field of communi-
cation and in storage structures such as optical and magnetic recording devices like Blu-Ray, DVDs, and CDs
[1, 2]; error correction and detection [3, 4]; cable transmission [5]; and noise attenuation in VLSI integrated
circuits [6]. For some balancing techniques, the decoding of balanced codes is fast and can be done in parallel,
which avoids latency in communication.

A binary word of length k , with k even, is said to be balanced if the number of zeros and ones equals k/2 .
Knuth proposed a simple and efficient scheme to generate balanced codewords [7]. This approach stipulates
that any binary word x of length k can always be encoded into a balanced one denoted as y by inverting
the first e bits of x , where 1 ≤ e ≤ k . The index e is encoded as the prefix p , which is appended to y and
sent through a channel. At the receiver, the decoder receives the concatenated codeword y p and retrieves the
original information word through the prefix by inverting back the first e bits of y . This algorithm is very
suitable for long sequences as it does not make use of any lookup tables, neither at the encoder nor at the
decoder. A detailed explanation of this method is covered in Section 2.

Many works have been done to reduce the redundancy generated by Knuth’s algorithm (KA). In [8], two
attempts were described by Weber and Immink; the first one was using the distribution of the prefix index.
This consists of setting the encoder to choose smaller values for the prefix index knowing that the position
index e might not be unique. By default, KA makes use of the first balancing index while inverting from the
least position bits. It has been shown that the distribution of that index for equiprobable information words
is not uniform and presents a redundancy that is slightly less than that of KA. The second attempt used the
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multiplicity of balancing points within a word to transmit auxiliary data. The previous schemes provide a
fixed length (FL) and variable length (VL) prefix implementation. However, these methods only made a minor
improvement on KA.

The second attempt from [8] was exploited in [9] and renamed as bit recycling for Knuth’s algorithm
(BRKA); it relies on a high probability of having more than one balancing index while performing KA. In other
words, this scheme uses the multiplicity of balancing indexes to encode a shorter prefix than that from KA.
In [10], a technique for balancing words was presented based on permutations, the arcade game Pac-Man, and
limited-precision integers; the redundancy of KA was improved and the redundancy of the full set of balanced
codes was nearly achieved at the cost of high complexity and large memory usage.

In [11], a systematic variable-to-fixed length technique was presented for encoding binary source sequences
into binary balanced codewords. This method is simple in the sense that its encoding only has to keep track of
the sequence’s weight while the decoding is done in one step. However, this scheme’s redundancy is larger than
that of the fixed-to-fixed length schemes for long codes and smaller for short codes. On the other hand, a class
of fixed-to-variable length balanced binary line codes was introduced in [12]. This was done by appending a
minimum number of bits to each fixed size block of source digits leading to balanced words of variable length. It
was shown that this technique is easily implementable and provides high coding efficiency and less redundancy.

A major contribution was made by Immink and Weber [13] through an efficient encoding of the index
prefix for both VL and FL schemes. This scheme is based on distinctly associating each word of a code to a
balanced codeword. More details on this method will be provided. Furthermore, the distribution of the prefix
length was discussed as well as the complexity of the proposed algorithm.

In this paper, a modification of a scheme described in [13] is proposed to generate efficient and less
redundant balanced codes compared to most state-of-the-art techniques. This approach is designed for com-
munication systems that model the data as packets, contrary to cascade-based models. The rest of this paper
is structured as follows: a background study is done in Section 2, the system model of the proposed scheme is
described in Section 3, and then, in Section 4, the proposed encoding is presented. Sections 5 and 6 provide
detailed analysis as well as performance and discussions of the proposed scheme redundancy. Finally, the paper
is concluded in Section 7.

2. Background

Let x = (x1x2 . . . xk) be a bipolar sequence of length k and p = (p1p2 . . . pr) , the prefix of length r .
c = (c1c2 . . . cn) of length n = k + r is the transmitted codeword comprising the encoding of x denoted as y

and appended to p , c = (p · y ) . All these words are defined within the alphabet A2 where A2 = {−1, 1} .
Let d(x) refer to the sum of all digits in x , also called the disparity of x . The word x is said to be balanced

if d(x) =
∑k

i=1 xi = 0.

Similarly, the disparity of the first j bits of x , also called the running digital sum (RDS), is denoted as
dj(x) , and dj(x) =

∑j
i=1 xi , where 1 ≤ j ≤ k . For the scope of this paper, the information word length is

considered to be even.

2.1. Knuth’s balancing scheme

Knuth’s celebrated scheme consists of complementing word bits up to certain point. This is equivalent to
splitting a word into two segments, where the first one has its bits flipped and the second is unchanged. It was
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shown in [7] that this simple and efficient procedure will always generate at least one balanced codeword. If e

is the index of the first balancing point then, the disparity of x is given by:

d(x) = −
e∑

i=1

xi +

k∑
i=e+1

xi. (1)

Those summations reflect the two segments that build a balanced codeword. Because dj+1(x) =

dj(x) ± 2 , it is always achievable to find an index e corresponding to a balancing point such that d(x) = 0 .
The index e might be unique; by convention, KA only considers the first one while inverting from the least
index bits. In a parallel scheme, the index e is encoded as the prefix and prepended to y . The length of the
prefix, r , is given by:

r = ⌈log2 k⌉, for k ≫ 1. (2)

The redundancy of a full set of balanced codewords of length k , denoted as H0(k) , equals:

H0(k) = k − log2
(

k

k/2

)
. (3)

An approximation of H0(k) was given in [7] as:

H0(k) ≈
1

2
log2 k + 0.326, for k ≫ 1. (4)

For large k , the Knuth’s scheme redundancy is almost twice as large as H0(k) .

2.2. Efficient binary balanced codewords

Let x j be the word x where the first j bits are inverted. If e represents the index of the first balancing
point then y = xe is the balanced codeword through Knuth’s scheme. There are k different ways of inverting
the word x . In [13], it was established that some words from the set x1, x2, . . . , xk can be associated with
the balanced word y following Knuth’s scheme. Let s(y ) be the set of all words associated with a balanced
codeword, y , s(y ) = {x : x j = y with 1 ≤ j ≤ k} , and |s(y )| its cardinality.

The prefix of the encoded word corresponds to the information word rank within the subset s(y ) . It was
shown in [13] that the size of s(y ) is such that 2 ≤ |s(y )| ≤ k

2+1 , where |s(y )| = max{dj(x)}−min{dj(x)}+1

with max{dj(x)} and min{dj(x)} being the maximum and minimum RDS values of x , respectively. For the
FL scheme, the prefix has exactly log2

(
k
2 +1

)
bits, while in the VL scheme, the prefix length varies between 1

and log2
(
k
2 + 1

)
bits.

3. System model
Figure 1 shows a model of communication for two different systems. In Figure 1a, the data are received as a set
of balanced codewords; in this model, the decoder must keep track of the start and ending of each data block
for the purpose of synchronization that relies on prefixes.

In Figure 1b, the packet conception represents a single data block, received one at the time. This concept
is used in various communications systems such as Bluetooth/wireless communication, smart grid systems, GSM
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Figure 1. System model: (a) cascade-based vs. (b) packet-based.

networks, power line communication (PLC), visible light communication (VLC), and network communication.
The communication is incremental as packets are transmitted one at the time and an “ACK” message is required
before a subsequent packet is sent; in this case, the decoder only keeps track at the end of the packet (EOP).

4. Encoding scheme

This consists of associating every information sequence of length k with a balanced codeword using Knuth’s
inversion rule as described in [13]. This leads to

(
k
k
2

)
distinct sets. Furthermore, each of these sets is compressed

to decrease the redundancy based on Lemma 1.
Let x be the information sequence to be encoded. If x is already balanced, a protocol is adopted

between the transmitter and the receiver to have a prefix-less codeword; otherwise, x is balanced following
KA, associated with the corresponding balanced codeword y . Following the same procedure, all information
sequences can be associated with balanced codewords, y , and listed according to the lexicographic order within
subsets s(y ) . The prefix of each x corresponds to its rank within s(y ) .

Lemma 1 Any balanced codeword is always associated with another balanced one.

Proof This is an observation from the KA structure; any already balanced codeword always results in another
balanced one. In the worst-case scenario, the balanced state is always found by inverting all bits of an already
balanced codeword. 2
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Let |s(y )| denote the cardinality of the subset s(y ) that comprises all associated sequences with y . The
inclusion of balanced sequences within the set of information sequences as presented in [13] adds an extra rank
in the rank position in every set; this is useful for cascade-based models. However, as described in Lemma 1, a
balanced sequence is always associated to another one. This important observation leads to the compression of
s(y ) by removing the already balanced sequence. This is suitable for the packet-based model as described in
Figure 1a.

Example 1 Let us consider binary sequences of length k = 4 .

y 0011 0101 0110 1001 1010 1100 p

s(y) 1⃝1011 1101 1000 0001 0010 0000 00
2⃝1111 1001 1110 0111 0110 0100 01

3⃝1100 1010 0101 0011 10

(5)

1⃝1011 → 0011

2⃝1111 → 0111 → 0011

3⃝1100 → 0100 → 0000 → 0010 → 0011

Eq. (5) shows the encoding process described in [13], whereby balanced codewords (marked in bold) are
part of subsets s(y ) . Lines 1⃝ , 2⃝ , and 3⃝ show how balanced codewords are obtained from Knuth’s balancing
scheme. p represent prefixes.

y 0011 0101 0110 1001 1010 1100 p

s(y) 1⃝1011 1101 1000 0001 0010 0000 0
2⃝1111 1110 0111 0100 1

(6)

Eq. (6) presents the proposed encoding process where all subsets do not include balanced sequences.

The cardinality of the subset s(y ) can be derived from RDS calculations on the balanced codeword, y ,
as presented in Lemma 2.

Lemma 2 |s(y )| = max{dj(y )} − min{dj(y )}.

Proof It was proved in [13] that |s(y )| = max{dj(y )}−min{dk(y )}+1 ; the balanced codeword was removed
from every set. Thus, the new |s(y )| is subtracted by 1, leading to |s(y )| = max{dj(y )} − min{dj(y )}. 2

For any subset s(y ) , its size is always bounded as per Theorem 1.

Theorem 1 1 ≤ |s(y )| ≤ k
2 .

Proof It was established in [13] that 2 ≤ |s(y )| ≤ k
2 + 1 ; then, after removing the balanced codeword from

every set, it follows that 1 ≤ |s(y )| ≤ k
2 . 2

Therefore, the required fixed prefix length for this scheme is log2 k
2 ; this is a slight improvement on

Knuth’s scheme that has a redundancy of log2 k as well as on the scheme in [13] where it equals log2(k2 + 1) .
In addition, prefixes are obtained from ranking the information sequences associated to a balanced codeword
from 0 to k

2 − 1 .
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5. Study of sparseness of |s(y )|

Let N(λ, k) be the number of possible balanced codewords y of length k such that |s(y )| = λ .
The following equation holds from Theorem 1:

k/2∑
λ=1

N(λ, k) =

(
k
k
2

)
.

For the convenience of the reader, details on computing N(λ, k) for 1 ≤ λ ≤ k
2 are derived by following

the guidelines in [13].
The derivation of N(λ, k) was done using the computation of the number of bipolar sequences whose

running sum lies within two finite bounds, B1 and B2 (with B2 > B1) [14].
The interval of running sum values that a sequence may reach, also referred to as the digital sum variation

(DSV), is given by B = B2 − B1 + 1 . Each iteration in the random walk of a sequence defines an entry of a
B ×B connection matrix, MB .

MB is such that MB(i, j) = 1 if there is a path in the random walk from state si to state sj , and
MB(i, j) = 0 if no path can be established. For each iteration, a random walk of the running sum can only move
one state up or down. Therefore, MB(i+1, i) = MB(i, i+1) = 1 and MB(i, j) = 0 , where i, j = 1, 2, . . . , B−1

as presented in Eq. (7).

MB =



0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 0 1
0 0 0 . . . 1 0


(7)

Mk
B(i, j) denotes the (i, j)th entry of the k th power of MB .

Theorem 2 The number of balanced codewords y of length k and |s(y )| = λ , N(λ, k) for 1 ≤ λ ≤ k
2 , is such

that

N(λ, k) =

λ+1∑
i=1

Mk
λ+1(i, i)− 2

λ∑
i=1

Mk
λ (i, i) +

λ−1∑
i=1

Mk
λ−1(i, i).

Proof The number of balanced codewords such that |s(y )| = λ′ for 2 ≤ λ′ ≤ k
2 + 1 in [13] was

N(λ′, k) =

λ′∑
i=1

Mk
λ′(i, i)− 2

λ′−1∑
i=1

Mk
λ′−1(i, i) +

λ′−2∑
i=1

Mk
λ′−2(i, i).

Therefore, for 1 ≤ λ ≤ k
2 , the set of all random walks between bounds B2 and B1 is shifted one unit

down. This leads to N(λ, k) balanced codewords where λ = λ′ − 1 .
This leads to the following:

N(λ, k) =

λ+1∑
i=1

Mk
λ+1(i, i)− 2

λ∑
i=1

Mk
λ (i, i) +

λ−1∑
i=1

Mk
λ−1(i, i).
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2

A simplified expression of MB was provided in [13] based on a formula to compute powers of MB derived
by Salkuyeh [15] as follows:

B∑
i=1

Mk
B(i, i) = 2k

B∑
i=1

cosk πi

B + 1
. (8)

This makes the computation of N(λ, k) much simpler, as follows:

N(λ, k) = 2k
( λ+1∑

i=1

cosk πi

λ+ 2
− 2

λ∑
i=1

cosk πi

λ+ 1
+

λ−1∑
i=1

cosk πi

λ

)
. (9)

The computation of N(λ, k) as presented in Eq. (9) becomes obvious for special values of λ as shown
in Eq. (10). The enumeration of sequences corresponding to these values of λ as well as the pseudocode for
computing |s(y )| , for generating the ordered set of information sequences and determining the prefix index,
were provided in [13].

λ N(λ, k)
1 2
2 2(2

k
2−1)

k
2 − 1 k(k − 4), k > 4
k
2 k

(10)

6. Analysis and discussions

In this section, the average number of bits denoted as H(k) required to encode the prefix index of a sequence of
length k is computed. The number of all information sequences associated with balanced codewords is 2k−

(
k
k
2

)
.

k/2∑
λ=1

λN(λ, k) = 2k −
(
k
k
2

)
. (11)

It follows that

H(k) =

∑k/2
λ=1 λN(λ, k) log2 λ

2k −
(
k
k
2

) . (12)

The average number of bits for the construction in [13] is as follows:

H1(k) = 2−k

k
2+1∑
λ=2

λN(λ, k) log2 λ. (13)

The average number of bits for the method in [9] is given by

H2(k) =

k
2∑

c=1

P (c)AV (c), (14)

where

P (c) = 2c+1−k

(
k − 1− c

k
2 − c

)
, 1 ≤ c ≤ k

2
, d = c− 2⌊log2 c⌋,
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and

AV (c) = (c− 2d). ⌊log2 c⌋ .
1

2⌊log2 c⌋ + 2d.
1

2⌈log2 c⌉ . ⌈log2 c⌉ .

Table 1 presents the comparison of the average number of bits necessary to encode the prefix from
various schemes. Let dHa,Hb

be the difference between the average prefix length Ha and Hb ; we observed that
dH,H0 ≤ 0.61 , dH,H1 ≤ 0.64 , and dH2,H ≤ 1.23 .

Table 1. Comparison of the prefix’s average number of bits

k H0 H H1 H2

4 1.4150 0.8000 1.4387 0.5000
8 1.8707 1.4632 1.8985 0.9375
16 2.3483 2.0806 2.3790 1.3706
32 2.8370 2.6629 2.8691 1.8082
64 3.3314 3.2207 3.3641 2.2516
128 3.8286 3.7615 3.8616 2.7039
256 4.3272 4.2902 4.3603 3.1647
512 4.8265 4.8104 4.8597 3.6330
1024 5.3261 5.3246 5.3594 4.1082

Figure 2 shows the comparison between the average redundancy for balanced prefixes for H(k) and
H1(k) , denoted as H ′(k) and H ′

1(k) respectively, as well as log2(k) and ⌈log2(k)⌉ . H ′(k) is obtained from a
simple modification of H(k) provided in Eq. (12) as follows:

H ′(k) =

∑k/2
λ=1 λN(λ, k)∆(λ)

2k −
(
k
k
2

) . (15)

Similarly, H ′
1(k) is derived from H1(k) given in Eq. (13) as follows:

H ′
1(k) = 2−k

k
2+1∑
λ=2

λN(λ, k)∆(λ), (16)

where ∆(λ) corresponds to the smallest value of length k such that
(
k
k
2

)
≥ λ .

The graphs of log2(k) and ⌈log2(k)⌉ represents the minimum redundancy and that of integer valued
redundancy of the traditional Knuth’s construction. We observe that it is only from k > 64 that the average
redundancy of the scheme presented in [13] is less than that of Knuth’s scheme, whereas for the proposed
construction, the average redundancy becomes advantageous as soon as k > 16 . Furthermore, the proposed
scheme outperforms [13], at least for k < 1024 .

According to Theorem 1, the two coding schemes are applicable for the proposed scheme. For the FL
prefix construction, the encoding of the prefix requires exactly log2(k2 ) bits representing the balanced index e

ranging from 0 to k
2 − 1 , whereas for the VL scheme, the prefix length varies between 0 and log2(k2 ) depending

on the nature of the information to be encoded. A zero prefix is used when the information sequence is already
balanced. However, the VL scheme is more efficient than the FL one on the average basis.
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Figure 2. Redundancy comparison for various schemes. Figure 3. Rounded up FL prefix schemes.

For practical systems purposes, a redundancy length r can only be a positive integer value. For [13],
r = ⌈log2(k2 + 1)⌉ ; in [7], r = ⌈log2(k)⌉ ; and for the proposed construction, r = ⌈log2(k)⌉ . Figure 3 presents
the rounded up FL prefix schemes. This shows that the proposed FL prefix scheme is more efficient than that
of [13] for at least k < 512 . This improvement on short length is a great advantage for most communication
systems as they make use of short packet sizes to convey information through various channels to avoid latency.

7. Overall balancing
With the objective of deviating from the traditional lookup tables, for which memory is consuming in coding,
we propose a 4B6B coding based on KA. Table 2 presents our proposed 4B6B coding, which does not make
use of lookup tables; red digits represent the inverted portion and bold digits are the positions of the balancing
point index. We can notice that the table is divided into two parts: the first one consists of all inputs starting
with a ‘0’ having corresponding balanced codewords starting with a ‘1’ and the second is all inputs starting
with a ‘1’ and having their match balanced codewords starting with a ‘0’.

Table 2. Proposed RLL 4B6B based on KA.

Input Balanced Input Balanced
0000 110010 0100 110001
0001 100101 0101 100110
0010 101001 0110 101010
0011 110100 0111 100011

Input Balanced Input Balanced
1000 011100 1100 001011
1001 010110 1101 010101
1010 011010 1110 011001
1011 001101 1111 001110

The encoder prefix consists of encoding every 4 digits into 6; a prefix with length different from multiples
of 4 should be filled up with ‘0’s, which leads to a FL scheme. The input word is inverted up to a certain index,
which is appended at the end of the word according to the following rules, which are embedded in the decoder:
if the input starts with a ‘0’, the index positions, e with 1 ≤ e ≤ 4 , are as follows: 1 → 01 , 2 → 10 , 3 → 00 ,
and 4 → 11 . For an input starting with a ‘1’, the index positions are 1 → 01 , 2 → 01 , 3 → 11 , and 4 → 00 .

2587



NGOMSEU MAMBOU et al./Turk J Elec Eng & Comp Sci

Therefore, an overall balancing can be achieved by encoding the prefix through the proposed 4B6B coding from
Table 2.

8. Conclusion
A modification of the construction given in [13] was proposed for packet transmission systems. The proposed
scheme requires exactly log2(k2 ) bits for the FL prefix and a prefix length between 0 and log2(k2 ) bits for the
VL scheme. The sparseness of |s(y )| was studied and the average efficiency of this scheme was discussed and
compared to existing ones. The proposed construction is more efficient and less redundant than various schemes;
it does not make use of lookup tables or enumerative coding. Future works include a further compression of
the prefix length for overall balancing through advanced efficient constructions such as in [16–18]. On the other
hand, we can extend the proposed algorithm to investigate the efficient balancing of q -ary sequences as higher
alphabets, especially powers of twos, as they present various advantages in communication systems in terms of
reducing latency, improving communication speed, and increasing robustness and reliability [19–22].
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