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Abstract: Using regular encryption schemes to protect the privacy of the outsourced data implies that the client should
sacrifice functionality for security. Searchable symmetric encryption (SSE) schemes encrypt the data in a way that the
client can later search and selectively retrieve the required data. Many SSE schemes have been proposed, starting with
static constructions, and then dynamic and adaptively secure constructions but usually in the honest-but-curious model.

We propose a verifiable dynamic SSE scheme that is adaptively secure against malicious adversaries. Our scheme
supports file modification, which is essential for efficiently working with large files, in addition to the ability to add/delete
files. While our main construction is proven secure in the random oracle model (ROM), we also present a solution secure
in the standard model with full security proof. Our experiments show that our scheme in the ROM performs a search
within a few milliseconds, verifies the result in another few milliseconds, and has a proof overhead of 0.01% only. Our
standard model solution, while being asymptotically slower, is still practical, requiring only a small client memory (e.g.,
≃488 KB) even for a large file collection (e.g., ≃10 GB), and necessitates small tokens (e.g., ≃156 KB for search and
≃362 KB for file operations).

1. Introduction
Huge amounts of data requiring storage, maintenance, and protection is generated these days by individuals
and enterprises. Not all individuals and enterprises possess the physical and human resources required for data
management. Hence, they choose to employ cloud storage services with numerous advantages such as reduced
cost, high availability, and global access to data.

As the outsourced data is stored in a remote domain that the owner has no direct control on it, the data
is encrypted to provide confidentiality. Searchable encryption enables the owner to outsource her encrypted
files, and later search over them and retrieve files selectively, without the cloud service provider (CSP) learning
the keyword or the contents of files. This requires a search token that is generated by the owner using her secret
key. We focus on searchable symmetric encryption (SSE) for performance.

To store a collection of files, the client first determines the dictionary, which is the superset of keywords
that appear in all files. Then, she builds an index, which is a data structure showing which file contains which
keywords. She encrypts both the index and the files, and transfers them to the CSP. To search for the files
containing a keyword, the client generates and sends a token enabling the CSP to search over the encrypted
index, and find and return the corresponding encrypted files.

The efficient SSE schemes [1–10] reveal some information, such as the number and size of the outsourced
files, the access pattern, which relates the set of encrypted files to the tokens (without learning the contents of
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the token or the files), and the search pattern, which indicates whether two or more of the tokens were for the
same query [1]. A secure SSE scheme leaks nothing more.

Previous studies on cloud storage mainly considered efficient integrity verification [11–18]. Our goal in this
paper is to achieve integrity and confidentiality simultaneously, while preserving the efficient search functionality
in outsourced storage scenarios. We propose a verifiable dynamic SSE scheme that is secure against malicious
servers, with the ability to efficiently add/delete/modify (parts of) encrypted files, and with security fully proven
via simulation in both the random oracle model and the standard model.

1.1. Related work
The oblivious RAM (ORAM) [19] supports search on the outsourced data while hiding the access pattern.
However, as the usage of ORAM (one block per access) differs from that of the SSE (many blocks per access),
it cannot fully prevent access or search pattern leakage in SSE [20].

1.2. Early works and definitions

Goh [21] introduced the secure index as an efficient data structure for keyword search. The scheme is secure
against chosen-keyword attacks (CKA1). Chang and Mitzenmacher [22] proposed the simulation-based notion of
security. Curtmola et al. [1] stated that both CKA1 [21] and simulation-based [22] definitions are not adequate,
and gave a stronger definition (CKA2).

1.3. Dynamic data
The problem in the dynamic setting is that once an update operation is performed, the server gains extra
information related to previous queries. The server can learn whether or not the newly added files contain the
keywords that have already been queried for (even though the keyword is encrypted and the server does not
know it) [22]. Kamara et al. [3] extended the construction of Curtmola et al. [1] to provide a dynamic SSE
(DSSE) scheme. They gave a security definition for DSSE that is adaptively secure against chosen-keyword
attacks (CKA2), and presented the first dynamic CKA2-secure construction with optimal query time. Kamara
and Papamanthou [5] proposed a parallel and dynamic SSE scheme. Stefanov et al. [6] proposed a dynamic
SSE scheme with small leakage, but the scheme uses a structure similar to ORAM that requires redundant
heavy rebuilds and hence is not suitable especially for devices with small storage. Cash et al. [23] proposed a
dynamic SSE scheme following [24].

1.4. Verifiable SSE
Most existing SSE schemes [1–3, 22, 23, 25] provide security against semihonest adversaries. Kurosawa and
Ohtaki [26] defined the verifiable SSE security, which is stronger than the ’adaptive semantic security’, against
the malicious adversaries [1]. These schemes support only static data. Although the schemes of Stefanov et
al. [6] and Kamara and Papamanthou [5] can support verifiability for dynamic data, their proof sizes are very
large (the whole index, in the worst case). Our scheme takes the advantages of both worlds and supports
verifiability in dynamic settings. Recently, several papers have provided elegant solutions for verifiability and
dynamism, with forward secrecy [27] and potentially via trusted hardware [28]. While the existing schemes
perform modification as ‘delete-then-add’, our scheme supports it directly, thus more efficiently. Simultaneously
with our work, Zhu et al. developed a similar solution [29] in the three-party model using Merkle Patricia trees,
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without file modification. We also note that Zheng et al. presented a verifiable dynamic scheme in the public
key setting [30].

2. Background

We use x ← X to show x is sampled uniformly from the set X , |X| to show the number of elements of X ,
and || for concatenation. PPT denotes probabilistic polynomial time, and k is the security parameter. By
efficient algorithms we mean those with expected running time polynomial in the security parameter. A function
ν(k) : Z+ → [0, 1] is called negligible if ∀ positive polynomials p , ∃ constant k0 s.t. ∀ k > k0, ν(k) < 1/p(k) .
Overwhelming probability is ≥ 1− ν(k) for some negligible function ν(k) .

Hash functions take arbitrary-length strings, and generate fixed-length outputs. Let h : K ×M→ C be
a family of hash functions, where each member is identified by a K ∈ K . A hash function family is collision-
resistant if ∀ PPT adversaries A,∃ a negligible function ν(k) s. t. Pr[K ← K; (M,M ′) ← A(h,K) : (M ′ ̸=
M) ∧ (hK(M) = hK(M ′))] ≤ ν(k) .

A symmetric-key encryption scheme is defined as three PPT algorithms SKE= (Gen,Enc,Dec) such that
Gen is the key-generation algorithm that given the security parameter outputs a key; Enc is the encryption
algorithm that on input the key and a message m returns the corresponding ciphertext c ; and Dec is the
decryption algorithm that takes the key and ciphertext c as input and gives the message m . We require SKE
to be CPA-secure, which informally means that the scheme leaks no information to an adversary with access to
an encryption oracle. For formal definitions, refer to [31].

For pseudo-random function (PRF), let GenPRF(1k)∈ {0, 1}k be a key generation function, l the keyword
length and l′ the encrypted keyword length, F : {0, 1}k × {0, 1}l→{0, 1}l′ be a family of pseudorandom
functions, and F ′ : {0, 1}l→{0, 1}l′ be the family of all functions mapping l -bit strings to l′ -bit strings. Define
Fs : {0, 1}l → {0, 1}l

′ as Fs(x) = F (s, x) . F is a PRF family if ∀PPT distinguishers D, ∃ a negligible function
ν(k) such that: |Pr[s← GenPRF(1k) : DFs(.)(1k) = 1]− Pr[f ′ ← F ′ : Df ′(.)(1k) = 1]| ≤ ν(k) .

For file collections, the client owns n files f = (f1, f2, ..., fn) , each with a unique identifier id(fi) . The files
are encrypted as c = (c1, c2, ..., cn) using a CPA-secure symmetric encryption scheme, where ci = Enc(K, fi) .
The set of all unique keywords contained in the collection of files is called the dictionary, and is represented by
w = {w1, w2, ..., wm} . We refer to the list of the files containing the keyword w as fw (i.e. fw = {fi : w ∈ fi}),
and to that of the encrypted files as cw (i.e. cw = {ci : fi = Dec(K, ci) ∧ w ∈ fi}). The set of keywords a file
contains is wf = {wi : wi ∈ f}). The files can be of any type as long as a keyword index operation for them is
provided. N is the number of all keyword-file matchings.

An authenticated data structure (ADS) provides membership and nonmembership proofs for the queried
data items [32]. A skip list [33] based ADS achieves logarithmic proofs [34]. Merkle hash tree [35] is another
widely used ADS for static data. Each leaf node stores the hash of its associated data, and each internal node
holds the hash of its children. Because the leaves are ordered, nonmembership proofs may be provided by
showing two consecutive items without the queried data where it should have been. The value of the root is
the digest of the ADS that is stored by the client as metadata.

Figure 1a illustrates an authenticated skip list storing six data items. ‘−∞ ’ and ‘+∞ ’ are two special
values known as the left and right boundary values, respectively. The proof path of a query about d2 is drawn
using the dashed lines and the parts contributing to the proof are colored. The membership proof generated
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(a) An authenticated skip list. (b) Verification.

Figure 1. (a) An authenticated skip list storing six items and (b) Verifying proof of d2.

for d2 in the simplest form looks like: ‘h1, d2, h(d3), h2, h(+∞) ’. Except for the queried value that is sent in
clear as part of the proof, all others are the hash values stored at the nodes in the proof path. Using the proof,
the client reconstructs the required part of the ADS, and compares its digest with the one she keeps locally, as
presented in Figure 1b. Any mismatch shows misbehavior of the server. Briefly, if item d2 did not exist (assume
both nodes with label d2 did not exist in Figure 1a), then the nonmembership proof would have looked like
‘h(−∞), h(d1), h(d3), h2, h(+∞) ’ enabling verification of d1 and d3 being consecutive without d2 existing.

A hierarchical ADS (HADS) consists of multiple levels of ADSs, possibly of different types [14, 36, 37].
It relates together the relevant data stored at different levels, and can easily be distributed on multiple servers.

A dynamic provable data possession (DPDP) scheme provides proofs of integrity for the outsourced data,
while enabling efficient updates [13]. It is possible to construct a DPDP scheme using an HADS.

(a)  e forward index. (b)  e inverted index. (c)  e file index.

Figure 2. The example scenario with three files and four keywords.

3. Construction
We use a two-level efficient HADS [37] constructed using authenticated skip lists1 at both levels, to implement
the indices. Our scheme consists of three indices: the forward index (FI) relating each keyword to the set of
file identifiers it appears in, the inverted index, (II), tying each file to the set of keywords it contains, and the
file index (FX), linking the DPDP structure of each file as a second-level ADS to its identifier at the first level.
The ADSs have (key, value) pair-based structures.

The first level of the forward index stores the set of encrypted keyword identifiers. It is used to prove
that the queried keyword does (or does not) exist in the set of stored keywords. The keys of the nodes are the
outputs of a PRF on keyword identifiers, as FK1

(id(wi)) , and the corresponding values contain Rwi
, which is

the root of the respective second-level ADS, FIwi
, storing the identifiers of the files wi appears in.

1Similar ADSs, e.g., Merkle hash tree [35] or authenticated 2-3 tree [38] can also be used.
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We use these second-level ADSs to prove that this set of files is exactly the set matching the keyword in
a search query. For a keyword wi , we associate two keys K ′

wi
= FK2

(id(wi)) and Kwi
= FK3

(id(wi)) for hiding
the identifiers of files containing wi (i.e. the identifiers in fwi ). We use these keys to compute the (key, value)
pairs (to build the FIwi

) as keyfj = FK′
wi
(id(fj)) and valfj = ((id(fj) ⊕H1

Kwi
(rj)), rj) , for all id(fj) ∈ fwi

,

where H1 is a hash function modeled as a random oracle and rj is a random value. The keyfj will be used for
add/delete/modify operations, and the valfj will be used during searches. A small part of the forward index
construction regarding Figure 2a is shown in Figure 3a.

(a) �e forward index. (b) �e inverted index.

Figure 3. A small part of real construction showing leaves storing (key, value) pairs. The upper values in boxes are the
keys, and the lower ones are the values.

The inverted index, II, has a similar structure, tying a file identifier to the keywords the file contains,
to support efficient deletion and modification. Without it, upon deletion of a file, the server should scan the
whole forward index to find all occurrences of the file identifier; a process that is neither efficient nor private.
The first-level ADS of the inverted index stores the encrypted file identifiers FK1(id(fj)) as the keys, and Rfj

as the values at leaves. Rfj is the root of the second-level ADS, IIfj , storing the keywords fj contains.
To build each IIfj , first the two keys K ′

fj
= FK2(id(fj)) and Kfj = FK3(id(fj)) are generated. Then,

they are used to compute the (key, value) pairs as keywi
= FK′

fj
(id(wi)) and valwi

= ([FK1
(id(wi))||keyfj ] ⊕

H2
Kfj

(ri), ri) , using the hash function H2 and the random values ri , for all keywords in fj . They contain the

information required for finding the desired nodes in the forward index efficiently (for deletion/modification).
Figure 3b presents a small part of the inverted index construction corresponding to Figure 2b.

The encrypted indices above provide support for verifiability of the queries. That is, they can be used
to guarantee that the file identifiers returned as a response to a search query would indeed be the real ones
matching the query (see Section 3.1). Equally important is to make sure those file contents are also unmodified.
Therefore, we build the file index as another two-level efficient HADS, to protect the integrity of the outsourced
(encrypted) files. At the first level, an authenticated skip list is built using the file identifiers as keys, and the
root of the related second-level ADSs as values. Each second-level ADS is associated with an encrypted file
inside a DPDP [13] or FlexDPDP [17] instantiation to protect its integrity. The DPDP divides the file into a
number of blocks, computes a tag for each block, and puts them into an authenticated rank-based skip list.
Roots of these ADSs are used to construct the first-level ADS, similar to that of the inverted index2.

The BuildIndex algorithm takes the files in, finds all searchable keywords among them to make the
2This is also similar to the directory-hierarchy extension of DPDP [13], which proves the (non-)existence of the files. Therefore,

the client needs to keep only single metadata, regardless of the number of files.
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dictionary w, and follows the above-mentioned steps to build the indices. The client stores the security keys
and roots of these indices locally. The indices are then uploaded to the server along with the encrypted files.

Since the indices are encrypted, the client provides the server with the required information about each
operation through tokens. The tokens depend on the client’s private key, and only the client can generate such
tokens. The information required for operations on the file index (according to DPDP) is also sent with each
update token. For its details, we refer the reader to [13].

3.1. Search
3.1.1. Token
The search token carries information about a keyword wi enabling the server to operate on the encrypted indices
and find the file identifiers containing wi . Since the forward index relates wi to the file identifiers containing it,
the token needs to include the required keys to operate on this index. Hence, we define Ts = (FK1

(id(wi)),Kwi
) .

3.1.2. Server computation

Using FK1
(id(wi)) , the server locates a leaf node in the first level of the forward index, storing the root of the

respective second-level ADS. If not found, he generates a nonmembership proof for FK1
(id(wi)) and returns it

with an empty file set to the client. If found, a membership proof for FK1
(id(wi)) is generated, and Kwi

is
used to decrypt the encrypted file identifiers at leaves of the second-level ADS. Then, the server generates the
integrity proofs for these file identifiers using the file index as in DPDP. Finally, all proofs together with the
encrypted files are sent to the client.

(a) Search. (b) Verification.

Figure 4. Search and verification operations on the forward index.

Example: The search token for the keyword w2 in our example in Figure 2a is Ts = (FK1(id(w2)), FK3(id(w2))) .
The first key, FK1(id(w2)) , specifies a path to a leaf node in the forward index, whose value will tell the
server which second-level ADS to continue with, as in Figure 4a. The server generates the membership proof
‘h1;w2;h2, h(+∞) ’. (The colored nodes contribute to the proof generation.) The second key, FK3

(id(w2)) , is
used to decrypt the leaf values of this second-level ADS to find the file identifiers.

3.1.3. Client verification
Upon receipt, the client first rebuilds the second-level ADS containing the file identifiers using the information in
the proof, and uses its root to reconstruct the proof path of the first-level ADS of the forward index. Then, she
compares the computed root value against the one in her local metadata, and any mismatch leads to rejection.
These steps are presented in Figure 4b. If it is accepted, she compares the list of files in the answer with those
given in the proof, and rejects the answer in case of any mismatch. Finally, she verifies the integrity of all the
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received files with the help of the DPDP part of the proof, and accepts the answer if the integrity of all files is
verified.

(a)  e forward index. (b)  e inverted index. (c)  e file index.

Figure 5. The indices after adding a new file f4 containing w2 and w4 . The affected parts are bold.

3.2. File addition
3.2.1. Token
The add token carries information for adding the tie between the file identifier and all its keywords into the file
index, updating the forward index and the inverted index accordingly. To add the file fj containing s distinct
keywords {wit}st=1 , the token will look like Ta = (FK1(id(fj)), {keywit

, valwit
, FK1(id(wit)) , keytfj , val

t
fj
}st=1) .

The following example describes how the server uses this token.

Example: We add a new file f4 with two keywords w2 and w4 , divided into three blocks, into the example
given in Figure 2. The token will be Ta = (FK1

(id(f4)), {keyw2
, valw2

, FK1
(id(w2)), key

2
f4
, val2f4 , keyw4

, valw4
,

FK1
(id(w4)), key

4
f4
, val4f4}) . The server first builds a second-level ADS using the key-value pairs (keyw2

, valw2
)

and (keyw4
, valw4

) , and ties its root to the first level of the inverted index using the key FK1
(id(f4)) , as shown

in Figure 5a. Then, he finds the second-level ADSs of FK1
(id(w2)) and FK1

(id(w4)) in the forward index,
and adds the key-value pairs (key2f4 , val

2
f4
) and (key4f4 , val

4
f4
) into them, respectively. Finally, he instantiates

a DPDP construction for this file as a second-level ADS and ties its root to the first-level ADS of the file index
using the key id(f4) . The changes this file addition gives rise to are identified in bold lines in Figure 5. The
server sends proofs generated by each index to the client.

3.2.2. Client verification
The client first builds a second-level ADS using the keywords and the same randomness as the server, and
another second-level ADS according to DPDP, and ties them to the first-level ADS of the inverted index and
file index, respectively, using the proof. Moreover, she adds the file identifier into the second-level ADS of its
keywords in the forward index. If all three updated indices match the proof coming from the server, the client
accepts the proof and updates her metadata accordingly.

3.3. File deletion
3.3.1. Token
The token contains information required for the server to find and delete a file fj and all relations between
this file and its keywords, and update the indices accordingly. FK1

(id(fj)) is needed to locate the second-level
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ADS of the inverted index, through which the server obtains the information required for updating the forward
index. To decrypt that ADS, Kfj is needed. To delete the actual (encrypted) file, id(fj) is required. Thus,
the delete token is Td = (FK1

(id(fj)),Kfj , id(fj)) .

Example: The delete token for deleting f3 containing keywords w1 and w4 , from the example in Figure 3
will be Ta = (FK1

(id(f3)),Kf3 , id(f3)) . The server first locates FK1
(id(f3)) in the inverted index to find the

respective second-level ADS, and uses Kf3 to compute all H2
Kf3

(ri)s to decrypt the values at its leaves to attain

(FK1(id(w1))||key1f3) and (FK1(id(w4))||key4f3) . Then, he locates FK1(id(w1)) and FK1(id(w4)) in the forward

index to reach their related second-level ADSs from which he will delete key1f3 and key4f3 , respectively. Then,
he deletes the nodes storing FK1

(id(f3)) and id(f3) and their related second-level ADSs from the inverted and
file indices, respectively, and the file id(f3) . Finally, he sends the proofs to the client.

3.3.2. Client verification
The client applies all modifications locally and compares the result against what is received from the server. If
the proof is accepted, she updates her local metadata accordingly.

3.4. File modification
3.4.1. Token
The modification is a combination of add and delete tokens, and causes some of the existing relation between
the file and its keywords to be removed, and some new ones to be added. However, given Kfj (the key of
the hash function), the server can find all keywords in the file. To prevent this, we should give the server
only the required H2

Kfj
(ri)s, which requires knowledge of ri s. Therefore, the client gives the server the

valwi
s of the keywords being deleted, receives their ri s, and prepares the required H2

Kfj
(ri)s. The token

is Tm = (FK1(id(fj)), {keywit
, valwit

, FK1(id(wit)), key
t
fj

, valtfj}
t1
t=1, {keywi′t

,H2
Kfj

(ri′t)}
t2
t=1, id(fj)) , where t1 ,

t2 are the numbers of keywords added and deleted, respectively.
Even though the token treats the index modification as deletion and addition of keywords, the file

operation, which is the slow and large part, is treated as a modification, according to the underlying DPDP.
Previous works indeed required deleting the whole file and adding its new version from scratch.

3.4.2. Server computation

The server manages the newly-added keywords as the file addition, and those being removed as the file deletion,
and sends generated proofs to the client, who performs the verification similar to the respective cases.

3.5. VDSSE in the standard model
Our scheme employs one-time pad encryption using two hash functions modeled as random oracles. Alterna-
tively, one can use a deniable encryption scheme [39] or a noncommitting encryption scheme [40]. It is claimed
that [6] and [23] can be extended to the standard model by replacing the hash functions with pseudorandom
functions, but the security of the resulting schemes cannot be proven.

The one-time pad is a basic noncommitting encryption scheme: For any ciphertext, a key matching the
ciphertext to the desired message can easily be found. It can effectively replace all random oracle uses.
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We use two PRFs F and G to replace H1 and H2 . Therefore, instead of storing FK′
wi
(id(fj)) and

((id(fj)⊕H1
Kwi

(rj)), rj) as the (key, value) pair, we store (l, [FK(id(fj))⊕FKwi
(l)]) as the (key, value) pair at

the lth node of FIwi . Similarly, instead of FK′
fj
(id(wi)) and ([FK1(id(wi))|| keyfj ] ⊕ H2

Kfj
(ri), ri) , we store

(t, [FKfj
(id(wit))||⟨[FK(id(wit))||lt]⊕GKfj

(t)⟩]) as the (key, value) pair at the tth node of IIfj .

One issue in this simple construction is that it is very likely that id(f1) appears in the first location of
many second-level ADSs of the forward index. Therefore, a two-time pad attack would be possible. To prevent
this type of attacks, we store fwi

and wfj in permuted random order inside their second-level ADSs.
Now, in the absence of random oracles, the server should be given all FKwi

(l) values to answer a search
query (inside the search token). In a similar manner, the server needs all GKfj

(t) values to perform a deletion,
provided by the delete token. To build such tokens, the client should store locally the number of files containing
each keyword wi , cntwi

, and the number of keywords each file fj contains, cntfj . In essence, the tokens
change, but the operations remain effectively the same as their random oracle model counterparts.

3.5.1. Search
The search token for wi , in addition to FK(id(wi)) , encompasses cntwi

-many one-time pad keys, i.e. it looks

like Ts = (FK(id(wi)) , {FKwi
(l)}cntwi

l=1 ) . FK(id(wi)) specify a path in the first level of the forward index to a

second-level ADS, FIwi
, whose values will be decrypted using {FKwi

(l)}cntwi

l=1 . The rest of the token generation
and server computation are exactly as in the ROM.

3.5.2. File addition
The client extracts the keywords in the file fj , increments their counter (cntwi

) by one, and sets {keywil
= l}tl=1 ,

where t is the number distinct searchable keywords in fj . The rest of the token generation and server
computation are exactly as in the ROM.

3.5.3. File deletion
Although we can give the corresponding PRF key to the server as in ROM, we cannot simulate it in our proof.
Instead, the delete token for a file fj conveys all values required for decrypting the data stored at the respective
second-level ADS of the inverted index, IIfj . Hence, the delete token for a file fj with cntfj -many distinct

keywords looks like: Td = (FK(id(fj)), {GKfj
(t)}

cntfj
t=1 ) . It is worth noting that since the file identifiers in the

second-level ADSs of the forward index are position-dependent, removing one of them needs keeping the other
positions unaffected. Thus, instead of deleting the leaf nodes containing the file identifier, we replace their
contents with a NULL value showing that the node is empty. This means that deletion will not reduce the
token size of later searches.

3.5.4. Modification
Since the keywords of a file are stored with the order of appearance in the related second-level ADS of the
inverted index, upon modification, the client does not know their location in the related second-level ADS. As
in ROM, the client first asks the server the locations of keywords being deleted, giving him the FKfj

(id(wi))

values. Then, she generates the required GKfj
(t) values for decrypting the encrypted data at leaves of the
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second-level ADS IIfj corresponding to the deleted keyword. The rest of the token generation and server
computation are exactly as in the ROM.

3.5.5. Optimization
If some additions and deletions are going to be performed almost simultaneously, to reduce the number of leaves
with NULL values due to deletion during the modification, we can replace the new keywords with the deleted
ones. However, if the number of deleted keywords is greater than that of the new keywords, the remaining deleted
nodes will be replaced by NULL values. Note that this combination optimization is not a security breach, since
the server already knows the (encrypted) identifiers of the deleted and added keywords in a dynamic scheme.

3.5.6. Efficiency
Previously, a search and delete token contained the keys of the hash functions. Upon receiving this key, all
the server needed to do was to run the hash function with the associated ri random values. Now, the server
only stores PRF encryptions of the identifiers, without any randomness. Thus, server storage decreases a little.
However, the client storage increases, as she needs to store, for each keyword and file identifier, the number of
assigned file and keyword identifiers, respectively, which is O(n + m) , plus two extra keys used by F and G.
Alternatively, the client can store the counters encrypted on the server [23] and retrieve them before performing
a search. This increases communication and leakage. The search and delete token sizes also increase, depending
on the number of files associated with a keyword and the number of keywords associated with a file, respectively.
We show that these are very realistic numbers in practice.

4. Analysis

To evaluate our SSE scheme, we implemented a prototype with the two-level efficient HADS construction [36]
with Flexlist [41] at both levels of the indices, in C++ using Cashlib library. All experiments were performed on
a 2.50 GHz machine with 24 cores (but using a single core), with 16 GB RAM and Ubuntu 12.04 LTS operating
system. The performance numbers are averages of 50 runs. We took into account only the server computation
time for working on the encrypted indices, i.e. the server computation time on the files and the file index is
excluded. We have two scenarios.

4.1. First scenario: small number of large documents
This scenario corresponds to the case that a client outsources her searchable files to a cloud server. We
investigated the local storage of several accounts at Koç University and observed that there are about 1000
academic papers and ebooks, each containing 5000 to 30,000 distinct keywords, on average. There are about
100,000 distinct keywords in total. This leads to 1000 and 100,000 leaves at the first levels of the inverted index
and forward index, respectively. The number of nodes of the second-level ADSs differs depending on the number
of keywords each file contains, and the number of files each keyword appears in.

4.1.1. File addition and deletion
Figure 6a illustrates the addition and deletion times of a file with different number of keywords. It shows that
the server performs more computation as the number of keywords in the file increases. This is expected, since
the server needs to add/delete all keywords to/from the second-level ADSs of the forward index. Adding a new
file with 5000 and 30,000 distinct keywords, for example, takes about 2 and 11 s, respectively.
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Figure 6. File addition, deletion, and modification for the first scenario.

4.1.2. File modification

Figure 6b depicts the results of a file modification affecting a different number of keywords when the file
already contains 30,000 keywords. A modification affects a set of keywords on the indices; hence, the operation
time increases with the number of affected keywords. However, for a fixed number of affected keywords, the
modification time is very slightly affected by the total number of keywords in the file as shown in Figure 6c; i.e.
the dominant factor is the number of affected keywords.

We further compare our modification solution to first deleting the file and then adding the modified file,
as required by schemes without file modification capabilities. As the Figure 6c shows, a modification on a file
affecting 1000 keywords takes between 345 and 355 ms in our scheme, while the delete-then-add would require
between 1500 and 9000 ms, based on the file size. This difference would get much worse if we also consider the
file upload and the file index operations.
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Figure 7. Proof generation and verification, and proof size and overhead to the query result.

4.1.3. File search
The server uses the first-level ADS of the forward index to generate the membership proof. Then, he decrypts
all the encrypted file identifiers stored at the leaf nodes of the corresponding second-level ADS, and sends all
the files along with the proof to the client. Hence, the search time does not pose a considerable variation as the
number of keywords increases, and was between 7 ms and 29 ms in our tests.

4.1.4. Iterated search
The server can send all the search results together, or may send them in small groups (e.g., 50 files each time).3

Sending the search results iteratively in groups of a small size helps the client to stop receiving more results
when she is satisfied. Figure 7a compares the server proof generation time for the cases of sending all the search
results together versus sending a result of size 50 files each time. It shows that the proof sizes for 100 and 1000
files in the result are about 2 and 18 KB, respectively, while that is about 2 KB for each group including 50
files. As expected, this strategy is meaningful only in scenarios where the client is expected to stop retrieval
before receiving (almost) all the results.

4.1.5. Proof overhead
Proof overhead of our scheme is very insignificant compared to the size of resultant files being transferred, e.g.,
about 0.01% of the search result size as shown in Figure 7b, and can be neglected.

4.2. Second scenario: large number of small documents

This scenario corresponds to the case that a large number (e.g., 100,000) of webpages are outsourced to an
untrusted cloud server. We investigated the number of distinct keywords in different websites (e.g., bbc.com,
office.com, nytimes.com, and other websites related to news, technology, and education) using the online word

3If the search results of all keywords are stored ranked, the client is normally interested in those with high ranks, and may not
want to receive those with low ranks [8, 42].
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counter tool from words.contentor.com and realized that the number of distinct words in a typical webpage is
generally between 100 and 5000.
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Figure 8. File addition, deletion, and modification for the second scenario.

4.3. File addition and deletion
The respective times for this scenario are depicted in Figure 8a. It shows a reduction compared to Figure 6a
since each file contains smaller number of distinct keywords (i.e. at most 5000). Figure 8a reveals that the
addition of a new file including 500 and 5000 distinct keywords takes about 420 and 3500 ms, respectively.

4.4. File modification
In a similar manner, the file modification shows a drop compared to the previous scenario, as shown in Figure
8b. It ranges from 80 to 600 ms when the number of keywords increases from 100 to 1000. Once again, Figure
8c shows the modification time depends primarily on the number of affected keywords, not the total number
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of keywords in the file. Moreover, it illustrates a modification affecting 500 keywords takes between 310 and
325 ms in our scheme, confirming the 4–20-fold efficiency gain of our modification solutions compared to the
delete-then-add methods.
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Figure 9. The proof size and proof overhead compared to the query result.

4.5. File search
The search and verification operations behave similarly to the previous scenario. The server search time increases
very slightly with the number of files in the result, and was between 5 and 11 ms.

4.6. Iterative search
This scenario resembles the search engines and similar applications, where the client receives a small part of
the query results at a time (e.g., 10 per page for Google). Our server can also prepare and send a small part of
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the query results each time, accompanied by the corresponding membership proof. Since a consecutive part of
the results are sent each time, the server uses the range query technique [37] at the second-level ADSs of the
forward index, and hence the computation time changes very slightly with the number of results returned to
the client. However, the client needs to verify all results she receives each time, which increases the verification
time. The verification times for different sizes of the query result parts received each time are presented in
Figure 9a, and are around 4 to 14 ms.

4.7. Proof overhead
Our scheme generates very small proofs, as illustrated in Figure 9b. When the whole query results are sent
once, the server generates the membership proof for the keyword using the first-level ADS of the forward index,
and only the file identifier existing in the corresponding second-level ADS. Therefore, the proof size increases
with the number of files in the query result. When the results are sent in parts, the sizes of the proofs are
independent of the number of results sent each time, and changes very slightly with the total number of the
files sharing the keyword (i.e. size of the second-level ADS). When compared to the size of the files in the query
result, we observe that our proofs are still insignificant in size, e.g., < 0.02 times the search result size, as shown
in Figure 9c.

4.8. Standard model performance

Our scheme in the standard model requires O(n+m) client storage. As the encrypted bit-length of a random
file identifier and the number of keywords in a file (e.g., 128 and 20 bits, respectively) are very small compared
to the size of a typical file (e.g., 10 MB), the client storage is very small compared to the outsourced files.

4.8.1. First scenario
With 1000 files (n = 1000) and 100,000 keywords (m = 100,000), the client storage will be 101,000×20 =
2,020,000 bits ≃247 KB, regardless of the file and keyword sizes, depending only on the number of files and
keywords. The search token size is also very small, e.g., 1000×128 = 128,000 bits ≃16 KB, when a keyword
matches all 1000 files. The add token, which is the biggest one in the standard model, is of size 128 + 10,000×(20
+ 20 + 128 + 128) = 2,960,128 bits ≃362 KB for a file with 10,000 keywords. The size of a delete token is
about half that of an add token. The modify token depends on the number of deleted and added keywords.

4.8.2. Second scenario
For 100,000 files (n = 100,000) and 100,000 keywords (m = 100,000), the client storage will be 200,000×20
= 4,000,000 bits ≃488 KB, regardless of the file and keyword sizes, depending only on the number of files and
keywords. The search token size is 10,000×128 = 1,280,000 bits≃156 KB when a keyword matches 10,000 files.
The add token size is 128 + 5000×(20 + 20 + 128 + 128) = 1,480,128 bits ≃ 180 KB for a file with 5000
keywords. The delete token size is about half that of an add token, and the size of modify token depends on
the number of deleted and added keywords.

4.9. Comparison to previous work

Cash et al. [23] evaluated the performance of two of their schemes (denoted PH and 2L) on comparable hardware
(see both experimental setups). In our second scenario with a large number of small files, we have around 250M
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(keyword, file identifier) pairs. When we compare their similar setting, we obtain the results shown in Table.
Their PH solution is optimized for small result sets and performs comparable to our solution, whereas it performs
much worse for large result sets. Their 2L solution, on the other hand, does not differentiate much based on
the result set size, but performs worse by more than an order of magnitude, compared to our solution. This is
due to the fact that in Cash et al. [23], the (keyword, file identifier) pairs are encrypted and stored at random
locations that necessitate lots of disk accesses at random locations, while in our case, all file identifiers associated
with a single keyword can be stored contiguously. Recently, Zhu et al. [29] generalized the work of Cash et
al. [23] causing time overhead on the order of microseconds. Thus, our time comparison with Cash et al. [23]
immediately applies to the comparison against the Zhu et al. [29] scheme.

Table. for comparison of search times (ms) in our scheme and [23].

# of files in the result Cash et al. [23] Our scheme2L PH
10 140 8 5
10,000 150 800 11

5. Conclusion
In this paper, we presented a verifiable dynamic SSE (VDSSE) scheme for outsourcing encrypted files and later
retrieving them selectively, verifiably in the malicious server setting, and supporting encrypted file modification.
Although our VDSSE in the standard model is asymptotically slower than its counterpart in the random oracle
model, its efficiency is acceptable in practice: e.g., for 10 GB of outsourced files, on average, the client storage
is ≃488 KB only, and the search and add tokens are just ≃156 KB and ≃ 62 KB, respectively.

Acknowledgement

We acknowledge the support of TÜBİTAK, the Scientific and Technological Research Council of Turkey, under
project numbers 114E487 and 115E766, European Union COST Action IC1306, and the Science Academy
BAGEP Distinguished Young Scientist Award.

References

[1] Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable symmetric encryption: improved definitions and efficient
constructions. In: ACM CCS’06; Alexandria, VA, USA; 2006. pp. 79-88.

[2] Chase M, Kamara S. Structured encryption and controlled disclosure. In: ASIACRYPT’10; Singapore; 2010. pp.
577-594.

[3] Kamara S, Papamanthou C, Roeder T. Dynamic searchable symmetric encryption. In: ACM CCS’12; Alexandria,
VA, USA; 2012. pp. 965-976.

[4] Naveed M, Prabhakaran M, Gunter CA. Dynamic searchable encryption via blind storage. In: IEEE Security and
Privacy (SP’14); San Jose, CA, USA; 2014. pp. 639-654.

[5] Kamara S, Papamanthou C. Parallel and dynamic searchable symmetric encryption. In: Financial Cryptography
and Data Security (FC’13); Okinawa, Japan; 2013. pp. 258-274.

[6] Stefanov E, Papamanthou C, Shi E. Practical dynamic searchable encryption with small leakage. In: NDSS’14;
San Diego, CA, USA; 2014. pp. 72-75.

2621



ETEMAD and KÜPÇÜ/Turk J Elec Eng & Comp Sci

[7] Pappas V, Krell F, Vo B, Kolesnikov V, Malkin T et al. Blind seer: A scalable private dbms. In: IEEE Symposium
on Security and Privacy (SP’14); San Jose, CA, USA; 2014. pp. 359-374.

[8] Wang C, Cao N, Li J, Ren K, Lou W. Secure ranked keyword search over encrypted cloud data. In: IEEE ICDCS’10;
Genova, Italy; 2010. pp. 253-262.

[9] Liu C, Zhu L, Chen J. Efficient searchable symmetric encryption for storing multiple source dynamic social data
on cloud. Journal of Network and Computer Applications 2017; 86:3-14.

[10] Etemad M, Küpçü A, Papamanthou C, Evans D. Efficient dynamic searchable encryption with forward privacy.
Proceedings on Privacy Enhancing Technologies 2018; 2018 (1): 5-20.

[11] Ateniese G, Burns R, Curtmola R, Herring J, Kissner L et al. Provable data possession at untrusted stores. In:
ACM CCS’07; Alexandria, VA, USA; 2007. pp. 598-609.

[12] Juels A, Kaliski BS. Pors: Proofs of retrievability for large files. In: ACM CCS’07; Alexandria, VA, USA; 2007.
pp. 584-597.

[13] Erway C, Küpçü A, Papamanthou C, Tamassia R. Dynamic provable data possession. In: ACM CCS’09; Alexandria,
VA, USA; 2009. pp. 213-222.

[14] Etemad M, Küpçü A. Transparent, distributed, and replicated dynamic provable data possession. In: ACNS’13;
Banff, Alberta, Canada; 2013. pp. 1-18.

[15] Küpçü A. Official arbitration with secure cloud storage application. The Computer Journal 2015; 58 (4): 831-852.

[16] Cash D, Küpçü A, Wichs D. Dynamic proofs of retrievability via oblivious ram. In: EUROCRYPT’13; Athens,
Greece; 2013. pp. 279-295.

[17] Esiner E, Kachkeev A, Braunfeld S, Küpçü A, Özkasap Ö. Flexdpdp: Flexlist-based optimized dynamic provable
data possession. ACM Transactions on Storage 2016; 12 (4): 1-44.

[18] Etemad M, Küpçü A. Generic efficient dynamic proofs of retrievability. In: ACM CCSW’16; Alexandria, VA, USA;
2016. pp. 85-96.

[19] Goldreich O, Ostrovsky R. Software protection and simulation on oblivious rams. Journal of the ACM 1996; 43
(3): 431-473.

[20] Naveed M. The fallacy of composition of oblivious ram and searchable encryption. Cryptology ePrint Archive,
Report 2015/668, 2015.

[21] Goh EJ. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

[22] Chang YC, Mitzenmacher M. Privacy preserving keyword searches on remote encrypted data. In: ACNS’05; New
York, NY, USA; 2005. pp. 442-455.

[23] Cash D, Jaeger J, Jarecki S, Jutla C, Krawczyk H et al. Dynamic searchable encryption in very-large databases:
Data structures and implementation. In: NDSS’14; San Diego, CA, USA; 2014. pp. 23-26.

[24] Cash D, Jarecki S, Jutla CS, Krawczyk H, Rosu M et al. Highly-scalable searchable symmetric encryption with
support for boolean queries. In: CRYPTO’13; Santa Barbara, CA, USA; 2013. pp. 353-373.

[25] Moataz T, Shikfa A. Boolean symmetric searchable encryption. In: ACM CCS’13; Alexandria, VA, USA; 2013. pp.
265-276.

[26] Kurosawa K, Ohtaki Y. Uc-secure searchable symmetric encryption. In: Financial Cryptography and Data Security
(FC’12); Bonaire; 2012. pp. 285-298.

[27] Bost R, Fouque PA, Pointcheval D. Verifiable dynamic symmetric searchable encryption: Optimality and forward
security. Cryptology ePrint Archive, Report 2016/062, 2016.

[28] Ferreira B, Portela B, Oliveira T, Borges G, Domingos H et al. Bisen: Efficient boolean searchable symmetric
encryption with verifiability and minimal leakage. Cryptology ePrint Archive, Report 2018/588, 2018.

2622



ETEMAD and KÜPÇÜ/Turk J Elec Eng & Comp Sci

[29] Zhu J, Li Q, Wang C, Yuan X, Wang Q et al. Enabling generic, verifiable, and secure data search in cloud services.
IEEE Transactions on Parallel and Distributed Systems 2018; 29 (8): 1721-1735.

[30] Zheng Q, Xu S, Ateniese G. Vabks: Verifiable attribute-based keyword search over outsourced encrypted data. In:
IEEE INFOCOM’14; Toronto, Canada; 2014. pp. 522-530.

[31] Katz J, Lindell Y. Introduction to Modern Cryptography. London, UK: CRC Press, 2008.

[32] Tamassia R. Authenticated data structures. In: ESA’03; Budapest, Hungary; 2003. pp. 2-5.

[33] Pugh W. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM 1990; 33 (6):
668-676.

[34] Goodrich MT, Tamassia R, Triandopoulos N. Efficient authenticated data structures for graph connectivity and
geometric search problems. Algorithmica 2011; 60 (3): 505-552.

[35] Merkle RC. A certified digital signature. In: CRYPTO’89; Santa Barbara, CA, USA; 1989. pp. 218-238.

[36] Etemad M, Küpçü A. Database outsourcing with hierarchical authenticated data structures. In: ICISC’13; Seoul,
Korea; 2013. pp. 381-399.

[37] Etemad M, Küpçü A. Verifiable database outsourcing supporting join. Journal of Network and Computer Appli-
cations 2018; 115: 1-19.

[38] Naor M, Nissim K. Certificate revocation and certificate update. IEEE Journal on Selected Areas in Communications
2000; 18 (4): 561-570.

[39] Canetti R, Dwork C, Naor M, Ostrovsky R. Deniable encryption. In: CRYPTO’97; Santa Barbara, CA, USA;
1997. pp. 90-104.

[40] Choi SG, Dachman-Soled D, Malkin T, Wee H. Improved non-committing encryption with applications to adaptively
secure protocols. In: ASIACRYPT’09; Tokyo, Japan; 2009. pp. 287-302.

[41] Esiner E, Küpçü A, Özkasap Ö. Analysis and optimizations on flexdpdp: A practical solution for dynamic provable
data possession. In: ICC’14; Muscat, Oman; 2014. pp. 65-83.

[42] Örencik C, Savaş E. An efficient privacy-preserving multi-keyword search over encrypted cloud data with ranking.
Distributed and Parallel Databases 2014; 32 (1): 119-160.

2623


	Introduction
	Related work
	Early works and definitions
	Dynamic data
	Verifiable SSE

	Background
	Construction
	Search
	Token
	Server computation
	Client verification

	File addition
	Token
	Client verification

	File deletion
	Token
	Client verification

	File modification
	Token
	Server computation

	VDSSE in the standard model
	Search
	File addition
	File deletion
	Modification
	Optimization
	Efficiency


	Analysis
	First scenario: small number of large documents
	File addition and deletion
	File modification
	File search
	Iterated search
	Proof overhead

	Second scenario: large number of small documents
	File addition and deletion
	File modification
	File search
	Iterative search
	Proof overhead
	Standard model performance
	First scenario
	Second scenario

	Comparison to previous work

	Conclusion

