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Abstract: In this paper, a post-pruning method known as zero-one loss function pruning (ZOLFP) that is based on
zero-one loss function is introduced. The proposed ZOLFP method minimizes the expected loss, rather than evaluating
the misclassification error rate of a node and its subtree. The subtree is pruned when expected loss of the node is less
than or equal to the sum of the loss of its leaves. The experimental results demonstrate that ZOLFP method outperforms
Un-pruned C4.5 Decision Tree (UDT-C4.5) algorithm, reduced error pruning (REP), and minimum error pruning (MEP)
in terms of performance accuracy in all used datasets. It is also shown that the complexity of the proposed method
ZOLFP is not more than the complexity of REP and MEP methods. Furthermore, the results show that ZOLFP method
achieves satisfactory results compared to REP, MEP, and UDT-C4.5 algorithms in terms of precision score, recall score,

true positive rate, false positive rate, F-measure, and area under ROC scores during the experiment process.
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1. Introduction

Due to the advance progress in information technology, a huge amount of data is generated. Different approaches
have been introduced to analyze and handle this huge data for future decision making. Data mining is one of
the newest powerful technologies used to extract valuable and meaningful knowledge from large databases. It is
also known as knowledge discovery process or data pattern examination [1-3]. Several data mining techniques
have been developed and used for knowledge extraction process from databases [4]. A decision tree that has a
flow-like structure is one of the effective data mining techniques that is widely used due to its higher accuracy
[5]. Induction is performed in top-down method and some attribute selection measures are used to select
attributes such as information gain, gain ratio, and gain index. During the induction process, a decision tree
may generate an unwanted and meaningless tree that is large in size with more complexity because of the
overfitting problem. Therefore, pruning methods are introduced to combat overfitting problems that affect the
efficiency and accuracy of data. Two types of pruning are used: postpruning and prepruning. In postpruning,
initially the tree is grown and then unsuitable branches are removed. Hence, postpruning decision tree produces
the (complete) tree and then adjusts it in order to improve the classification accuracy on unseen instances. In
prepruning, the overfitting is checked during the tree building process. There are two techniques for prepruning;:
minimum number of object pruning and chi-square pruning.

Several postpruning methods have been introduced in the literature such as reduced error pruning (REP),
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error complexity pruning, minimum error pruning (MEP), and cost-based pruning. Among these techniques,
REP produces smaller trees with better accuracy. REP traverses the decision tree in postorder by checking
all internal nodes and replaces subtrees with their leaf nodes when the former misclassification error rate is no
smaller than the later. In this method as in some other postpruning methods, the dataset is divided into three
sets as training set that is used for training, the validation set that is used for pruning the tree, and test set
that is used for an unbiased estimation over future unseen instances [6]. One of the advantages of this method

is its linear computational complexity, but when the test set is much smaller than the training set, it tends to
overprune.

The aim of most pruning algorithms is to minimize the expected error rate of the decision tree. Recently,
some postpruning methods have been introduced to prune the tree with respect to the loss matrix [7-9]. Thus,
in such cases, it may be desirable to prune the tree by estimating the expected loss instead of estimating
the misclassification error rate. Pruning for loss minimization is another point of view in pruning that may
result in different pruning behavior than does pruning for error minimization. This type of pruning relays on
the probability distribution to adjust the prediction to minimize the expected loss or to supply a confidence
level associated with the prediction [10]. While some researchers employed statistical methods to tackle the
overfitting problem [11], some researchers adopted the idea of incorporating the general loss matrix into C4.5
decision tree algorithm to reduce the misclassification cost or to minimize the misclassification loss. These
algorithms developed heuristic splitting methods that perform dual tasks. The first task is to select the splitting
that minimizes the misclassification cost and the second task is to select proper split for subsequent splits.

In this paper, a new decision tree postpruning method known as zero-one loss function pruning (ZOLFP)
that is based on zero-one loss function is introduced for loss minimization. Instead of estimating the misclassi-
fication error rate, the loss (or cost) of misclassification is estimated for each node and its subtree. If the loss
of the node is less than or equal to the sum of the loss for the whole subtree under that node, the subtree is
pruned. Several experiments are conducted to investigate the effectiveness of proposed ZOLFP method and its
results are compared with those of the REP and MEP methods and Un-pruned C4.5 Decision Tree (UDT-C4.5).

The paper is organized as follows. Section 1 presents the introduction and research motivation, whereas,
in Section 2, the literature review and related works are discussed. The proposed lost minimization based
on ZOLFP algorithm is investigated and studied with a running example in Section 3. In Section 4, the
experimental results about the proposed method are presented and compared with some existing approaches.

Finally, the conclusion of the paper and future work are explained in Section 5.

2. Related Works

Over the past decades, different postpruning techniques have been introduced by researchers to investigate
the overfitting problem. In [4], the researchers performed a comparative study to investigate and analyze
six well-known postpruning techniques, namely, REP, pessimistic error pruning, MEP, critical value pruning,
cost complexity pruning, and error-based pruning. The researchers highlighted the theoretical weakness and
strengths of each method. Their results showed that REP produced the smallest subtree with the lowest error
rate with respect to the pruning set. However, in [12], the researchers introduced a new decision tree algorithm
based on J48 and REP. The new method was compared to original J48 decision tree and the results showed
that their method produced a smaller tree and produced better performance accuracy. In [13], the researchers
implemented decision tree induction algorithm with REP technique to improve the performance accuracy. Their

proposed method generated an optimal decision tree with less complexity and better performance accuracy.
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The research in [14] addressed the problem of multilabel classification where each example can belong
to more than one class at the same time. The researchers introduced a new pruning technique known as
PruDent. In terms of performance accuracy, PruDent was more accurate when compared with other state-of-
the-art approaches and its computational costs were linear. On the other hand, one of the drawbacks of this
method was the reliance on confidence scores. Furthermore, authors in [15] adopted ability, stability, and scale
as new classification standards for classification evaluation. Results showed that the improved method solved
problems better than single standard evaluation methods and reflected more advantages. Thus, this improved
method produced a more balanced classification performance and less model complexity. The researchers in
[16] introduced a new decision tree algorithm that was named as competition cost-sensitive C4.5 for numeric
data based on C4.5. They designed a heuristic function that was based on the test cost and the information
gain ratio. The results showed that the proposed postpruning algorithm was more effective and stable, and it

produced a decision tree with a lower cost.

In [17], the researchers developed a postpruning decision tree algorithm that was based on the Bayesian
theory, where the branches that were generated by the C4.5 algorithm validated by the Bayesian theorem. This
method produced a small decision tree since the branches out of the condition range were removed. The results
showed that the proposed method produced a simpler decision tree compared to the original C4.5 algorithm.
In [6], various measurement techniques were utilized to evaluate the performance of postpruning methods
like accuracy, stability, and simplicity. A multiobjective evaluation was proposed to select the best subtree
during the postpruning process. Moreover, the researchers developed a procedure for obtaining the optimal
subtree based on user-provided preference and value function information. The researchers in [18] conducted a
comparison study for REP method in decision tree. The performance of REP was analyzed and they deduced
that if the algorithm produced a simple tree with low accuracy it meant that the algorithm computed high
misclassification during instance learning process. The results showed that J48 and REP produced a tree
with high accuracy of classification with less complexity. The researchers in [19] introduced a new pruning
method that aimed to improve both classification accuracy and tree size. The newly introduced method was
first applied to decision tree by implementing prepruning at the inducing phase of the tree, and postpruning
after the inducing process. The researchers in [20] introduced a new decision tree pruning method based on
backpropagation neural networks, called soft-pruning. Firstly, C4.5 method was employed for decision tree
induction and then the obtained trees were pruned by using the soft-pruning method. The experiment results

indicated that the soft-pruning method performed better than original C4.5 pruned and unpruned trees.

The researchers in [21] proposed a new C5.0 classifier method that employed feature selection, cross
validation, REP, and model complexity for the original C5.0 method to reduce the tree size and improve
the accuracy. The experimental results showed that when feature selection was applied, the attribute space
was reduced for feature set while applying the cross validation technique provided a more reliable estimate of
predictive. On the other hand, when the model complexity was increased, the accuracy of the classification
was also increased, and whenever the REP technique was applied, the overfitting rate of the decision tree was
reduced. The accuracy of the proposed method was improved compared to the original C5.0 method. A new
pruning method called multilevel pruned classifier that integrated the pruning phase into the building phase
was developed in [22]. The experiments were conducted on the dataset with and without pruning in terms of

complexity and classification accuracy.

The researchers in [23] proposed a decision tree method that adopted rough set theory for pruning. The
proposed method introduced depth-fitting ratio which involved both the depth and the explicit degrees of the
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subtrees under evaluation. The experimental results demonstrated that the newly proposed method was feasible
and effective for pruning. The constructed decision tree sizes were quite reduced, while the prediction accuracy
was well improved. Furthermore, in [24], a multistrategy pruning algorithm was introduced to trim the tree.
During the pruning process, three groups of strategies were implemented to get the optimal solution, which
were namely, simple size, degree of matching, and scale of the tree. The experimental results illustrated that
the multistrategy pruning algorithms for decision tree pruning improved the efficiency and accuracy of intrusion
detection system. The transactions were classified into four risk levels instead of classifying it either fraud or
nonfraud, such that the proposed method showed a promising progress.

In [25], the researchers introduced a decision tree pruning method based on genetic algorithms. The
experimental results indicated that applying genetic algorithms in decision tree pruning was effective and
feasible, and the pruning operation was converted to optimize the edge weight. The new approach was compared
with some decision tree pruning techniques including cost-complexity pruning, pessimistic error pruning, and
REP. The results showed that the new method had better or equal effect with other pruning methods. A
unifying framework based on the four-tuple (space, operators, evaluation function, and search strategy) was
introduced in [26]. The pruning methods were investigated by means of this framework and their common
aspects, strengths, and weaknesses were described. The experiments were conducted by utilizing these six well-
known pruning methods. A comparison was performed between the mentioned pruning methods, and their
common aspects, strengths, and weaknesses were also investigated. The results demonstrated the fact that

pruning methods did not reduce the productivity, but they could enhance the final tree accuracy.

3. Proposed zero-one loss function pruning algorithm based on loss minimization

In the past decade, many algorithms have been introduced to minimize the misclassification error rate, while
some researches attempted to minimize the expected loss or the cost of misclassifying an example in the dataset.
Although, recent researches continued to develop more accurate algorithms to enhance the misclassification error
rate, applications in business, medicine, and science have shown that real problems require more subtle measures
of performance [27-30]. Furthermore, in general, various kinds of errors have different costs. The performance
of classifiers is evaluated by estimating the error rate obtained from the dataset which represents the incorrect
classified examples. It is sometimes suitable to evaluate classifiers by considering the cost of the misclassification
errors based on loss matrix.

Several researchers have adopted the idea of incorporating the general loss matrix into C4.5 decision

tree algorithm to reduce the misclassification cost or to minimize the misclassification loss [31-34]. These
algorithms introduced heuristic splitting methods that perform dual tasks. Initially, they specify the splitting
that minimizes the loss and secondly, they select the proper split for subsequent splits. Normally, the loss
matrices are T, by 7. matrices where T, is the number of classes, while the rows represent the predicted
classes by the classifier algorithm and the columns represent the correct classes. The loss function L(i | j) gives
the “loss” of predicting class i when the true class is j, and diagonal elements, L(i | i), are always zero [35]. In
general, loss functions state exactly how each action costs, for instance, the loss function L(a; | C;) indicates
the loss obtained for taking action a; when the class is Cj.

In this paper, a new decision tree postpruning method that is based on loss minimization is introduced.
This method focuses on employing the Zero-One loss function in C4.5 decision tree to avoid the over-fitting
problem and improve the performance. The expected loss or so-called the conditional risk of Zero-One loss

function is defined by:
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Te
Roji(ai | z) = Z P(Cj | x), (1)
=1
where P(C; | ) is the probability that an example x belongs to a specific class Cj.
Here, Laplace method is utilized to estimate the probability that an example belongs to class ¢ in the
specific node. If there are N; examples of class ¢ at a node and T, classes, then the probability P;. that an

example at this node belongs to class i is estimated by [36]:

Pe = (N; +1)/(T. + Nr), (2)

where N is the total number of examples at that node.
Thus, when Laplace method is employed in (1) to estimate the probability that an example belongs to
specific class in a node, the zero-one loss is computed as follows:

Ry =1— Pic. (3)

The proposed pruning method prunes the decision tree in the bottom-up fashion by adopting REP
approach. However, instead of estimating the misclassification error rate, the expected loss is estimated by
applying zero-one loss function method. For that reason, the proposed method is named as zero-one loss
function pruning. The zero-one loss for each node is computed by applying (3). Then, the expected loss, Le,,

for each class is computed by multiplying the zero-one loss by the loss function related to that node as:

Lew = RopL(i | j) = (1= P)L(i | j). (4)

The pruning process is performed by dividing the dataset into two sets as training set and pruning set.
The training set is used to create the decision tree and then it is tested by using the pruning set. During the
pruning, the expected loss for each tested node (L?,) is computed as the sum of the expected losses of its
classes. If the expected loss for the tested node is less than or equal to the sum of the expected loss for the
whole subtree under that tested node (L!,), these tested nodes are converted to leaf nodes, and leaf nodes are
labeled by the least expected loss class that is equivalent to label of the class with the majority class label in
decision tree nodes. The converted test nodes to leaf nodes are given the class label of the least expected loss
class. The tree is created based on C4.5 decision tree algorithm and then the pruning process is performed by
using the newly introduced ZOLFP method that is shown in Figure 1.

How the proposed method works is shown with a running example in Figure 2. In this example, there
are two classes for unpruned decision tree, a person is classified as healthy or sick accordingly. The proposed
method, ZOLFP, is examined to prune this tree based on loss (cost) approach. The ZOLFP method computes
the expected loss for each node by applying Eq. (4). The loss function for each node is indicated where h
denotes the healthy class and s denotes the sick class. In Figure 2a, the subtree should not be pruned when
ZOLFP method is applied because the parent loss is greater than the sum of losses of the children (10.4 versus
5.9). Figure 2b shows the reverse situation. Here, the ZOLFP method prunes the tree because the parent has

lower loss than the sum of losses of the children (9.2 versus 14.2). Thus, the subtree is pruned.

4. Experimental result of the proposed ZOLFP method

In this section, the performance of the proposed ZOLFP method is demonstrated and compared to UDT-C4.5,
REP, and MEP approach on different datasets.
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Input: Dataset
Output: Post-pruned decision tree with Zero-One Loss Function

1. Divide the dataset into two set 70% for the training set and 30% for pruning
set

Use the training set to create a decision tree based on C4.5
Use the pruning set to test and prune the decision tree
For each node

If node is a test (parent) node then

AN o

Compute the expected loss for this test (parent) node (L?,) and
the expected loss of its subtree (L%,)

7. If (Lgx= Ley) then

8. Convert the test (parent) node to a leaf
9. Else

10 Retain the test (parent) node

11. End if

12. End if

13. End for

14. Return the final tree

Figure 1. The algorithm of ZOLFP.

4.1. Experiment data

The experiment datasets are collected from UCI machine learning repository (https://archive.ics.uci.edu/ml).
In this paper, six different datasets have been used to evaluate the proposed method. Table 1 presents the

number of instances, the number of classes, and the number of attributes for the datasets.

Table 1. Dataset description.

Datasets Number of instances | Number of attributes | Number of classes
Car 1728 7 4
Diabetes 768 8 2
Labour 57 16 2
Blogger 100 6 2
User knowledge | 258 6 4
Flare solar 1066 13 3

4.2. Experiment process

The experiment process is carried out by using java eclipse combined with Weka. Additionally, Weka attribute
evaluator techniques namely One Rule (OneR) and Information Gain (InfoGainAttributeEval) are employed to
select the attributes with high impact on the datasets and remove the worst attributes that affect the accuracy
performance as shown in Table 2.

The datasets in Table 1 are trained and tested with 10-fold cross validation by the proposed method
ZOLFP after the worst attributes are removed by OneR attribute evaluator and InfoGainAttributeEval attribute
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Figure 2. A running example of the ZOLFP method.

evaluator. A comparison is conducted between the 10-fold attribute evaluator’s result and the 60% hold-out
validation results as indicated in Table 3. The results in Table 3 show that 60% hold-out validation method
obtains better performance for ZOLFP method compared to the case when 10-fold cross-validation is used.

It is also obvious that ZOLFP with 10-fold OneR attribute evaluator achieves better accuracies compared

to ZOLFP with 10-fold InfoGainAttributeEval evaluator with four scores to the former and none scores for the
latter, whereas both methods have the same sores in one dataset. Because hold-out method suffers from some

limitation, it is not sufficient to give a reliable model so that cross-validation methods are considered is this
paper.

OneR attribute evaluator with 10-fold cross validation method is employed in this experiment since it
shows better performance compared to InfoGainAttributeEval attribute evaluator with 10-fold cross validation
method.
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Table 2. Indicates the removed attributes by OneR and InfoGainAttributeEval attribute evaluators.

Datasets OneR InfoGainAttributeEval
Car perspons, buying lug-boot, doors
Diabetes mass, pedi, skin pres, pedi, skin
wage2.wage, shift_ diff, education-allowance, standby-pay,
Labour . .
dur, hours.hrs, wage3.wage working-hours, duration
Blogger lmt, lpss Imt, Ipss
User knowledge | STG, SCG STR, SCG
previous 24 hours activity code, | historically, C-class
historically, M-class production, | production, evolution, did
Flare solar . . .
area of the largest spot, area, region become historically,
did region become historically area of the largest spot

Table 3. Performance accuracy results for ZOLFP with OneR and InfoGainAttributeEval attribute evaluators.

Accuracy (%)
Datascts 60% training, 40% 10-fold, | 10-fold,
testing, OneR (Hold out) | OneR | InfoGainAttributeEval
Car 97 95 84
Diabetes 89 76 73
Labour 95 82 7
Blogger 87 81 7
User knowledge | 93 84 75
Flare solar 99 99 99

4.3. Experiment result analysis

Typically, the complexity of the tree is measured by one of the metrics such as total number of nodes (tree size),
total number of leaves, tree depth, and the number of attributes used [18, 37]. Table 4 shows the accuracy and
the tree complexity in terms of tree size as the total number of nodes and leaves for ZOLFP, REP, and MEP
approaches. The results are also compared with UDT-C4.5 algorithm to illustrate the effect of pruning. For all
the datasets, the proposed ZOLFP method produces better accuracy compared to REP and MEP methods. In
terms of complexity, the proposed method, ZOLFP, produces smaller tree size than REP and MEP for three
datasets. For the dataset which the ZOLFP complexity is higher, the accuracy of ZOLFP is better than the
accuracies of REP and MEP. On the other side, it is obvious that the proposed method, ZOLFP, produces a
smaller tree with better accuracy compared to UDT-C4.5 for all datasets.

Additionally, precision score, recall score, the weighted averages of true positive (TP) and false positive
(FP) rates, F-measure, and area under receiver operating characteristic (ROC) are also investigated to evaluate
the performance of ZOLFP, REP, and MEP methods as shown in Table 5. For precision scores, ZOLFP produces
better scores than REP and MEP in all datasets, where in terms of recall scores, ZOLFP produces better scores
in five datasets. For Diabetes dataset, the recall scores of ZOLFP and REP are the same but the precision score

of ZOLFP is better than REP’s for the same dataset.
The proposed method produces the highest TP rate and F-measure in all datasets and the lowest FP

rates for four datasets. Consequently, the proposed ZOLFP method produces highest scores in terms of the
area under ROC and compared to REP and MEP with four scores.
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Table 4. Performance and tree size for ZOLFP, REP, and MEP methods.
Datasets Algorithms | Accuracy (%) | Number of Nodes | Number of Leaves
UDT-C4.5 | 94 186 134
ZOLFP 95 88 87
Car
REP 94 182 129
MEP 88 113 81
UDT-C4.5 | 73 43 22
Diabetes ZOLFP 76 31 16
REP 74 41 21
MEP 74 15 8
UDT-C4.5 | 72 47 39
ZOLFP 77 36 30
Labour
REP 65 13 8
MEP 75 18 17
UDT-C4.5 | 73 43 28
ZOLFP 77 33 23
Blogger
REP 72 15 13
MEP 75 12 9
UDT-C4.5 | 75 404 399
User knowledge ZOLEP 77 102 399
REP 75 81 80
MEP 74 81 80
UDT-C4.5 | 95 25 21
ZOLFP 99 7 6
Flare solar
REP 97 19 16
MEP 96 25 21

5. Conclusions

In this paper, a decision tree pruning method known as ZOLFP that takes into accounts both classification
accuracy and tree size is introduced. We proposed a zero-one loss function pruning method that minimizes
the expected loss of the produced tree. This method is based on loss minimization, instead of estimating the
misclassification error rate the loss of misclassification is estimated. The proposed method is trained on six
different datasets and a comparison is conducted between the proposed method ZOLFP, UDT-C4.5, REP, and
MEP methods in terms of performance accuracy and complexity.

The experiment results show that the ZOLFP method outperforms REP and MEP methods in term of
performance accuracy for all datasets employed. While in terms of complexity, the ZOLFP method produces
less tree size than REP and MEP in three datasets. On the other hand, the ZOLFP method outperforms
UDT-C4.5 method in terms of accuracy and complexity for all datasets. Furthermore, the results also show
that the proposed method, ZOLFP, yields reasonable performance scores for precision score, recall score, TP

rate, FP rate, and area under ROC compared to REP and MEP methods.
The proposed algorithm adopts a postpruning bottom-up method for C4.5 decision tree algorithm. As
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Datasets Aleorithms Precision | Recall | TP rate | FP rate | F-measure | Area under
5 rithms
¢ (%) (%) (%) (%) (%) ROC (%)
UDT-C4.5 | 94 94 94 3 94 96
Car ZOLFP 95 95 95 2 95 98
REP 94 94 94 3 94 98
MEP 89 88 88 6 88 96
UDT-C4.5 | 72 73 73 31 72 74
. ZOLFP 76 76 76 32 76 83
Diabetes
REP 75 74 74 29 75 81
MEP 74 74 74 31 74 77
UDT-C4.5 | 72 72 72 36 72 72
ZOLFP 76 77 77 27 81 84
Labour
REP 65 65 65 29 78 82
MEP 74 75 75 31 77 79
UDT-C4.5 | 72 73 73 39 72 73
ZOLFP 76 77 77 33 80 82
Blogger
REP 70 72 72 36 78 81
MEP 74 75 75 36 76 73
UDT-C4.5 | 76 75 76 10 95 89
User ZOLFP 77 77 77 6 99 95
knowledge | REP 75 75 75 7 97 94
MEP 75 74 75 11 96 91
UDT-C4.5 | 95 95 95 9 64 54
ZOLFP 97 99 99 8 75 64
Flare solar
REP 97 97 97 8 66 72
MEP 96 96 96 9 57 31

future works, the proposed method ZOLFP can be applied on C5.0 decision tree classifier and can be also
modified for other decision tree based classifiers such as best first tree and random forest [38]. Additionally, the

running time and complexity analys,s of the algorithms can be investigated.
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