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Abstract: Path-oriented random testing aims at generating a uniformly distributed sequence of test data from a program
input domain space to traverse a desired execution path of the program. To this aim, this article proposes a new algorithm
to refine a program inputs domain space from invalid subdomains not covering the path. The validity of the subdomains
is checked by a constraint propagation method against the path constraints (PCs). The proposed algorithm uses a divide-
and-conquer technique to iteratively split the inputs domain into subdomains and each time refutes those subdomains
that are inconsistent with the PCs. The remaining shrunken subdomains provide all possible test data covering the
desired path. Obviously, the more accurate the input domain is, the more effective test data will result. Experiments

show the proposed method outperformed other related methods on a set of classical benchmark programs.
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1. Introduction

Automatic test data generation is concerned with the detection of program input data satisfying a given testing
criterion. Currently, path coverage is the most applicable criterion for white-box testing [1,2]. To satisfy
this criterion, test data should be generated in such a way that each path could be executed at least once.
However, every practitioner knows that sometimes to detect a latent fault it will be required to execute the
faulty path several times with different test data before the fault could be detected. Hence, selecting test cases
that effectively detect faults at a minimum cost is an imperative task. To this aim, those values that do not
cover the faulty path should be removed from the domain of input variables.

Among varying approaches to automatic test data generation, random testing (RT) is a simple and
common method [3,4]. RT methods randomly select test data from a program input domain with a uniform
probability distribution. Here, uniform probability distribution means that all the points in the input domain
space have the same probability of being selected. Despite its simplicity and cost-effectiveness, many researchers
believe that RT is not an efficient method in terms of coverage capability [5], while many studies showed that
RT is an effective method in detecting faults not found by other methods [6].

The key advantage of RT generators over other methods is that it does not need any information about the
program under test (PUT) and test data are generated without considering the specification or the structure of
the PUT [7,8]. RT is applied by an approach known as path-oriented random testing (PRT) [9] to generate test
data to cover a given execution path of the PUT. PRT initially uses backward symbolic execution [10] to derive

the path constraints (PCs) and then divides the domain of all the input variables within the derived PCs into
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k equally sized subdomains. Thereafter, the validity of each of the k subdomains against the PCs is checked by
applying two known techniques of constraint propagation and constraint refutation. The constraint propagation
algorithm is applied by PRT in order to examine values within each of the k subdomains to ensure that there
is at least one value consistent with the PC. The difficulty is that the constraint propagation algorithm cannot
detect subdomains with no values inconsistent with the PC. PRT removes all those subdomains not covering the
PC. However, when selecting points from within the remaining subdomains, not every point necessarily satisfies
the PC. Therefore, a major challenge with PRT is to select the appropriate value for the dividing parameter k.
Obviously, the larger the value of k, the larger the number of subdomains to be evaluated against the PC. On
the other hand, if k is small then the resultant subdomains could include many values inconsistent with the PC.

To address these problems and overcome the shortcomings of the PRT methods while retaining their
advantages, this paper suggests a new PRT method, namely path-oriented random testing through iterative
partitioning (IP-PRT). IP-PRT carries on with subdividing the subdomains, including at least one value
consistent with the PC, until the number of invalid points in the program input domain space is reduced
to a reasonable number. To keep track of the remaining valid subdomains, a Boolean hypercube in which each
edge corresponds to an input variable domain is used. A random test data generator is invoked to select test
data from the resulting subdomains.

The remaining parts of this paper are organized as follows. In Section 2, a motivating example is
presented. Section 3 introduces a few basic terminologies, the RT method, and its improvements. In Section 4
our suggested test data generation method, IP-PRT, is elaborated. The outperformance of IP-PRT compared
to others is demonstrated in Section 5, followed by threats to validity in Section 6. Finally, the conclusions of

our research are presented in Section 7.

2. Motivating example
Consider the problem of generating test data to satisfy a given execution PC, x x y < 4, where the input
variables x and y are restricted to the interval 0..15. The input domain space of the problem is illustrated in
Figure 1. As shown in Figure 1, the input domain space is a {0, .., 15} x {0, .., 15} plain in which the gray
region includes all valid points (x;, y;) satisfying the PC, x x y < 4. The gray region contains 39 points,
covering about 15% of the whole input domain space. Therefore, when using a uniformly distributed random
test data selection scheme, the probability of getting an invalid input value not satisfying the PC will be 85%.
This probability may be reduced by minimizing the number of invalid values not satisfying the PC in the

input domain space. To this aim, as suggested in this paper, the following steps could be taken.
1. Each dimension of the input space is subdivided into k equally sized subregions, where k is a power of 2.
2. The validity of each subregion is examined against the PC by a constraint propagation algorithm.

3. All those subregions that contain at least one point satisfying the PC are kept and the remaining ones,

which do not include any valid points, are refuted.
4. Repeat Step 1 until the number of iterations exceeds a threshold value.

For instance, as shown in Figure 2a, with dividing each dimension of the initial input domain space in
Figure 1 into two distinctive subdomains 0..7 and 8..15, we get the following 4 subdomains: D; = (x € 0 ...
7,y€8..15),Dy=(x€0...7,y€0...7),Dg=(x€8...15,y€8...15),and Dy = (x € 8... 15,y
€0..7).
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Figure 1. The domain of the predicate x x y < 4.

As observed in Figure 2a, subregion D3 has no intersection with the gray region. Therefore, as shown
in Figure 2b, D3 could be completely eliminated from the input domain space. After removing D3 from the
input domain space, the number of invalid points will be reduced to 153 and the probability of getting invalid
points not satisfying the PC will be decreased from 85% to 79.7%. The remaining subregions, Dy, Da, and
D4, despite having many invalid points, are considered valid since they include a few gray points. In order
to further refine the subregions, as shown in Figure 2c, this time each dimension of the input domain space is
subdivided into 4 subdomains.

After removing the D5, Dg, D7, Dg, and D; subregions from the input domain space, the number of
invalid points is reduced to 73 and the probability of getting invalid points not satisfying the PC is decreased
from 85% to 65.1%. One may carry on with this process of removing the invalid subregions until an acceptable

probability is reached.

3. Background

In this section, first various methods that have been proposed to improve the performance of RT are introduced
(Section 3.1). In the next section, the use of symbolic execution to derive the constraints of a desired path is
explained (Section 3.2). Thereafter, the details of constraint propagation are discussed (Section 3.3). Finally,
the PRT method is detailed (Section 3.4).

3.1. Improvements in RT

RT is a simple and low-cost software testing technique [3,4]. It randomly selects test cases from the whole
input domain space. The test data selection process is continued as long as useful inputs are found. RT is
simple and easy to implement, but it may fail to find test data to satisfy the desired coverage criterion. The
main reason is that random techniques are blind in the sense that they do not incorporate the program control
flow and structure into the process of test data generation. With this aim, search-based test data generation
techniques have been developed to improve the efficiency of RT [11]. Search-based test data generation consists
of inspecting the input domain of PUT for test data satisfying a selected test data adequacy criterion. For this
reason, the focus has been on the use of metaheuristic search and evolutionary algorithms such as hill climbing,

simulated annealing, tabu search, and genetic algorithms [1,11-14]. Each of these search-based algorithms is
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Figure 2. Input domain partitioning: a) partitioning the square input domain space into a 2 X 2 grid; b) the subdomain
D3 can be refuted; c) partitioning the input domain space into a finer 4 x 4 grid for further pruning.

strongly dependent on the domain of the problem under consideration because they use heuristics or knowledge
related to the problem domain. Each of these algorithms has its own advantages and disadvantages compared to
the other algorithms. Search-based approaches often generate test data according to a test adequacy criterion,
encoded as a fitness function that is used as an objective for the search [2]. The search-based approach is very
generic because different fitness functions can be defined to capture different test data generation objectives. A
major difficulty with the heuristic-based techniques is that they do not provide the same results for different
runs. Moreover, a heuristic-based approach may take a relatively long execution time before finding reasonable
results satisfying its objectives.

In order to speed up the heuristic-based search methods, Chen et al. proposed a method named adaptive

random testing (ART) [7]. ART improves heuristic-based and random test data generation methods by focusing
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on generating test data that spread them more. ART is based on the observation that failure-causing inputs
are most often very close to each other and could be gathered in one or more regions of the program input
domain space. In other words, failure-causing inputs are denser in some areas than others. Thus, if previously
executed test cases are not failure-causing values, new test cases should be chosen that are very different from
them. Accordingly, test data should be uniformly distributed across the input space.

ART methods use a variety of distance calculations, with corresponding computational overhead. Newly
proposed methods like partitioning-based ART [15-21] try to decrease the computational overhead while
maintaining the performance. For example, the authors of [21] proposed a new ART approach with the aim
of decreasing the distance calculation computational overhead while distributing test cases evenly. In [15], the
authors proposed an innovative divide-and-conquer approach to improve the efficiency of ART algorithms while
maintaining their performance in terms of effectiveness. They made use of the intuition of breaking up a large
problem into smaller subproblems and specified a threshold to limit the computational growth when a large
number of previously executed test cases are involved in an ART algorithm.

The main objective underlying all the above-mentioned methods is to generate test data in such a way
that each path could be executed at least once. However, every practitioner knows that sometimes to detect a
latent fault it will be necessary to execute the faulty path several times with different test data before the fault
can be detected. In this context, automatic detection of valid input subdomains for executing a given path is

undeniable. In this respect, it will be possible to generate as much test data as required.

3.2. Symbolic execution

In symbolic execution, a PUT is executed using symbolic values instead of concrete values for input variables
[22-24]. In this method, each execution path is associated with a PC that is the conjunction of all the predicate
interpretations that are taken along the path. A predicate is a Boolean expression associated with a conditional
statement that determines which fork of the condition will be traversed. A path is executable if and only if
the related PC is satisfiable. To find out whether a subdomain has any value that could satisfy the PC, the

constraint propagation technique can be used.

3.3. Constraint propagation

Constraint propagation is a deductive activity performed by a propagation system for a problem solver [9,25].
This technique can easily be used to assess the validity of a subdomain D against a PC. To this aim, the PC
is ANDed with the constraint that determines the boundary of D and then the added constraint is checked
for a solution or contradiction. When there could be a solution, the subdomain D is considered as a valid
subdomain, and in case of a contradiction (inconsistency), the subdomain D would be an invalid subdomain. A

contradiction occurs when two constraints cannot both be true at the same time and in the same condition. The
constraint propagation technique introduces the given constraints into a propagation queue. Then an iterative

algorithm manages each constraint one by one in this queue by filtering the domains of variables within the PC
for their inconsistent values. For instance, consider again subdomain D3 in Figure 2a. As can be seen from the
figure, this subdomain is restricted by the constraints 8 < x < 15 and 8 < y < 15. To examine its validity,
satisfying the constraint x x y < 4, at first two constraints, (x X y <4) and (8 < x < 15), are joined to
obtain a new constraint, (% <y §%) , for y. Thereafter, this constraint is joined with (8 <y < 15), which is
a contradiction. Therefore, as expected, it is inferred that subdomain D3 is an invalid subdomain to satisfy x
Xy < 4.
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3.4. Path-oriented random testing

PRT [9,25] works like random testing and generates test data randomly to execute a given path according
to a uniform probability distribution over the program’s input domain. This method first derives the PCs
corresponding to a selected path using backward symbolic execution and then separates each variable domain
into k equal subdomains. If the domain cannot be divided by k it should be enlarged until it can. By iterating
this process over all the n input variables, the input domain is partitioned into k™ subdomains. Then the
separated subdomains are checked, one by one, for satisfiability using constraint propagation. The subdomains
that could not satisfy the PCs would be refuted. Obviously, removing any portion of the invalid data from
the input domain will decrease the number of rejected test data that deviate to execute the desired path. As
a result, a uniform random sequence for the input domain can be built by first generating a uniform random

sequence over obtained subdomains and then picking up a single tuple in each subdomain at random.

4. The proposed method

The inspiration behind our suggested algorithm for automatically generating a sequence of valid test data
exercising a desired path comes from the difficulties and defects observed in the PRT method. As mentioned
in Section 3.4, considering n input variables for a PUT the PRT method divides the input domain into k"
subdomains and checks their satisfiability against the PC by a constraint propagation algorithm, which is a
time-consuming process. Certainly, the less the need for invocation of the constraint propagation algorithm, the
less the CPU usage will be. This can be achieved through an iterative approach that successively partitions the
input domain from a coarse scheme to a finer one. Doing this speeds up the suggested algorithm by reducing
the number of invocations of the constraint propagation algorithm. The reason is that in each iteration a large
portion of the invalid test data might be omitted and would not be assessed in the next iterations. For instance,
consider again the motivating example and assume k = 16. In the PRT method 162= 256 subdomains would
be created, which need to be examined against PC for the satisfiability, but with the iterative technique, this
would be decreased to 105. This is shown in Figure 3.

As shown in the figure, it is assumed that the input domain is partitioned iteratively into 4, 16, 64,
and 256 subdomains. The number of subdomains that need to be checked for satisfiability in each partitioning

scheme is shown in Table 1.

Table 1. The number of subdomains that need to be checked in each partitioning scheme.

Partition scheme | Number of subdomains that need to be checked
Initially 1

2 x 2 4

4 x4 12

8 x 8 28

16 x 16 60

At first, the whole input domain is checked for satisfiability, and then the input domain is partitioned into 4
subdomains, all of which are checked against the PC, and only one subdomain is refuted for further consideration.
Considering the refuted subdomain, when the input domain space is partitioned into 16 subdomains, only 12
subdomains need to be checked. This value would be changed to 28 and 60 when the input domain is partitioned
into 64 and 256 subdomains, respectively. In total, 1 + 4 + 12 + 28 4+ 60 = 105 subdomains would be checked,

which is a remarkable result compared to the PRT method.
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Figure 3. The valid subdomains in the various partitioning scheme: a) 2 X 2 partitioning scheme; b) 4 x 4 partitioning
scheme; c) 8 x 8 partitioning scheme; d) 16 x 16 partitioning scheme.

4.1. Overview of the IP-PRT algorithm

In IP-PRT, the input domain is divided into a regular grid of equally sized cells. The grid cells are categorized
as valid and invalid cells according to their relative subdomain validity. The related subdomains of each valid
cell are checked for satisfiability over the PC using constraint propagation. If adding a subdomain boundary to
the PC leads us to a contradiction, then the subdomain is considered as an invalid subdomain and the related
cell is marked as invalid. After checking all the subdomains, the current partitioning scheme will be discarded
and a finer partitioning scheme will be applied, and then all the invalid cells will be mapped into the new
partition. This process can be repeated until the testing resources are exhausted or the number of iterations

exceeds a threshold value.
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4.2. Grid coordinates used in IP-PRT

In IP-PRT, the whole input domain is iteratively divided into equally sized subdomains until the size of the
grid cells reaches a certain threshold value, specified by the tester. The coordinates of the subdomains for each
variable are kept in a grid cell, representing the domain space. In addition to the coordinates, in each cell,
the validity of the corresponding subdomain, determined by applying a constraint propagation algorithm, is
recorded.

Assume there is a function p(int x, int y) where the parameters x and y are bounded as 0 < x,y < M
and suppose the input domain is partitioned by a k x k grid, where k is a positive integer given by the tester.
Let C = % indicate the size of each grid cell, and then the boundaries of the grid cell, GridCells(i, j), could be
computed by applying the following relations:

(i—1)xC+1<z<ixCand(j—1)xC+1<y<jxC.

For instance, as shown in Figure 4, the grid cell (3, 2) refers to the subdomain in which the boundaries of input
variables x and y are 2C + 1 < x < 3Cand C + 1 <y < 2C

A

KC

3C

2C

C 2C 3C ..., KC

Figure 4. The coordinates of cell (3,2).

4.3. A divide-and-conquer algorithm

We present an algorithm that generates a sequence of random test data with a uniformly distributed probability.
The algorithm takes as inputs a set of variables along with their variation domain, PC a constraint set
corresponding to the PCs of the selected path, N the length of the expected random sequence, and a threshold
that determines the number of iterations. The threshold is taken to control the depth of the iterations.

To perform IP-PRT, first we need to determine the number of grid cells in partitioning the input domain
of each variable. If it is at the early stage of the partitioning, a coarse grid is appropriate because a large portion
of the invalid subdomains might be omitted at the beginning. Hence, the algorithm starts with a coarse grid.
In the next iterations, the current partitioning scheme will be discarded and a finer partitioning scheme will be
applied to partition the input domain all over again. The proposed algorithm is elaborated for a 2-dimensional

square input domain with a size of M x M. Extension to input domains of higher dimensions is straightforward.
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The Boolean matrix GridCells is used to represent the partitioning grid. Each entry of the grid corresponds to
a grid cell. If a cell entry corresponds to an invalid subdomain, then it will be assigned a value of F; otherwise,
it corresponds to a valid subdomain cell and will be assigned a value of T. In the algorithm, k indicates the
number of subdomains in each iteration of the partitioning scheme. For example, k = 2 indicates a 2 x 2

partitioning grid.

Algorithm: IP-PRT

Input: x, y, PC, N, threshold
Output: ty, . . ., ty or ¢ (infeasible path)
T:=¢;
k:=1;
while k < threshold do
Discard (release) the Boolean matrix GridCells. Set k =k x 2.
Construct a k x k Boolean matrix, GridCells, and for each cell GridCells[i,j] in the previous
partition scheme with value F assign F to all its entries in the new partitioned scheme that
correspond to cells GridCells [(i—1) x 2 + 1,(j—1) x 2 + 1], GridCells [(i—1) x 2 + 1,(j—1) x
2 +2], GridCells [(i-1) x 2 +2,(j—1) x 2 +1], GridCells [(i-1) x 2 + 2,(j—1) X 2 + 2];
6. fori:=1tokdo
7. forj:=1tokdo
8
9

Lok W=

if GridCells [i,j] = T then
if D;;is inconsistent with respect to PC then

10. GridCells [i,j]: = F;

11. end if;

12. end if;

13. end for;

14. end for;

15. end while;

16. LetDI1’, ..., Dp’ be the relative subdomains of the GridCells for which its cells have value T;

17. ifp>1 then
18. while N > 0 do

19. Pick up uniformly D at random from D1’, ..., Dp’
20. Pick up uniformly t at random from D;
21. if PC is satisfied by t then
22. addtto T;
23. N:=N-1;
24, end if
25. end while
26. end if
return T;

Variable k is considered as a division parameter and determines the partitioning scheme in each iteration. First,
the algorithm partitions the hypercuboid into a 2 x 2 grid and then each relative subdomain in the grid cells
is checked for nonsatisfiability. In the next iteration the division parameter k is changed to 2 x k, the previous
partitioning scheme is discarded, the input domain is partitioned again using a 4 x 4 grid, and all the invalid
cells are mapped into the new partition scheme. This process can be repeated until the size of the subdomains
is small enough (the number of iterations exceeds the threshold value).

Secondly, a uniform random test data generator is built from the valid cells by first picking up a subdomain
and then picking up a tuple inside this subdomain. If the selected tuple does not satisfy the PC, then it is

simply rejected. This process is repeated until a sequence of N test data is generated.
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5. Experimental results and discussion

To assess the effectiveness of the IP-PRT algorithm, we have implemented a prototype and evaluated it on a set
of well-known benchmark examples, comparing RT and PRT in terms of the achieved generated test data and
CPU time consumption by regularly increasing the desired length of the random test data. For the implemented
prototype to solve the constraints, the open source constraint solver Choco' is exploited [33].

Our RT implementation iteratively generates new test data randomly, with a uniform distribution
probability, and accepts them provided that they satisfy the PC.

In PRT and IP-PRT implementation, after partitioning the input domain and refuting the invalid
subdomains, first a subdomain is picked from the remaining subdomains and then a tuple is selected inside these
subdomains. Selection of the subdomains and tuples within the subdomains is random with uniform distribution
probability. Furthermore, PRT and IP-PRT are evaluated with several distinct values of k. Considering that
the achieved subdomains in both methods are identical, they have the same conditions for generating test
data. Hence, as expected, the number of generated test data with these two methods is nearly the same value.
According to this, in the experimental results only the number of test data generated by the IP-PRT method

is shown.
To apply the methods over the benchmark, first a list containing of all the execution paths for each

benchmark is created. Then, in a loop, the paths are chosen one by one and given to the methods. Each
method performs 20 independent runs over the given path. For the benchmark, which has loops, we have
selected a path such that each loop iterates between 4 and 20 times. As a result, the average value of 20 runs
over all paths is considered.

All experiments were run on a 64-bit, 2.10 GHz Intel CoreTM i7 computer running Microsoft Windows
7 with 8 GB memory.

5.1. Programs to be tested

To evaluate IP-PRT we perform experiments over three widely used programs, remainder, trityp, and Middle,
in the research area of software testing. The remainder program takes as input two integers and returns the
remainder by dividing the input values using only subtractions and comparisons. The trityp program takes three
nonnegative integers as arguments that represent the relative lengths of the sides of a triangle and classifies the
triangle as scalene, isosceles, equilateral, or illegal. The Middle program takes 3 input variables and returns
the variable having a value between the other two. If two variables have the same value, then the third one is

reported as a middle. First of all, we show the results achieved with the motivating example.

5.2. Experiments based on the motivating example

Table 2 reports the obtained results for the predicate = x y < 4 of the motivating example while increasing the
requested length of the random test data sequence from 10 to 300. In this table, the first column shows that
the number of rejects of the RT method is 72 — 10 = 62 test data with CPU time 0.35 ms and the number of
rejects of the PRT and IP-PRT methods when k = 2 is 43 with CPU time 0.01 ms, and so on.

1. Experiments on the trityp, Middle, and remainder programs

For the trityp, Middle, and remainder programs, first we extract a list of the paths with their associated path

conditions that cover all the decisions of the program. For the program remainder, which has a loop, each path

1 Choco is an open source Java constraint programming library: http://www.emn.fr/z-info/choco-solver/uploads,/pdf/choco-
presentation.pdf
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Table 2. The required CPU time and length of the test data generated for predicate x xy < 4.

Requested 10 20 30 40 50 100 200 300

RT Test data 72 138 203 269 334 661 1321 1976
CPU time 0.35ms | 0.72ms | 1.07ms | 1.3ms | 1.7ms | 3.2 ms 7.5ms | 10.45 ms
Test data 53 103 152 203 251 497 989 1482

k=2 | CPU time (PRT) 0.01 ms | 0.0l ms | 0.02ms | 0.02ms | 0.03 ms | 0.07 ms | 0.11 ms | 0.28 ms
CPU time (IP-PRT) | 0.01 ms | 0.01 ms | 0.02 ms | 0.02 ms | 0.03 ms | 0.07 ms | 0.14 ms | 0.31 ms
Test data 31 60 88 117 146 290 577 864

k=4 | CPU time (PRT) 0.11ms | 0.14ms | 0.17ms | 0.19ms | 0.20 ms | 0.28 ms | 0.35 ms | 0.43 ms
CPU time (IP-PRT) | 0.08 ms | 0.08 ms | 0.09 ms | 0.09 ms | 0.10 ms | 0.13 ms | 0.19 ms | 0.27 ms

Test data 17 33 48 64 80 159 317 474
k=8 | CPU time (PRT) 0.45 ms | 0.49 ms | 0.54 ms | 0.58 ms | 0.65 ms | 0.84 ms | 0.88 ms | 0.93 ms
CPU time (IP-PRT) | 0.15 ms | 0.16 ms | 0.17 ms | 0.17 ms | 0.18 ms | 0.24 ms | 0.31 ms | 0.47 ms
Test data 10 20 30 40 50 100 200 300
k =16 | CPU time (PRT) 1.03ms | 1.09ms | 1.14ms | 1.19ms | 1.23ms | 1.79 ms | 2.04 ms | 2.29 ms

CPU time (IP-PRT) | 0.28 ms | 0.28 ms | 0.32 ms | 0.37 ms | 0.41 ms | 0. 95 ms | 1.35 ms | 1.65 ms

is selected in such a way that the loop iterates between 4 and 20 times. The domain of input variables is confined
in the range of [0..63] and we compare the methods while generating random test data of increasing lengths from
10,000 to 80,000. The experimental results are given in Table 3, Table 4, and Table 5 for the programs trityp,
Middle, and remainder, respectively. The PRT and IP-PRT methods are compared with the three distinct
values of the division parameter k. The results demonstrate that the proposed method outperformed RT to
minimize the amount of the rejected test data with less CPU usage. Furthermore, the results show that the

proposed method improves the PRT method in terms of CPU time consumption.

Table 3. Experimental results of the program trityp.

Requested 10,000 | 20,000 | 30,000 | 40,000 50,000 60,000 70,000 80,000
RT Test data 293,372 | 591,298 | 874,846 | 1,163,378 | 1,451,149 | 1,745,932 | 2,039,450 | 2,329,345
CPU time 354 s 67.2 s 89.9 s 127.3 s 151.7 s 182.9 s 216.9 s 243.2 s
Test data 144,927 | 289,512 | 432,782 | 582,120 731,003 869,305 1,014,498 | 1,159,410
k=4 | CPU time (PRT) 29s 6.6 s 13.2 s 18.2's 23.1s 29.2 s 32.8 s 42.8 s
CPU time (IP-PRT) | 2.8 s 53 s 94 s 12.5's 15.8 s 19.9 s 25.2's 34.1s
Test data 78,125 156,195 | 234,405 | 312,530 390,604 468,850 546,775 625,010
k=38 CPU time (PRT) 10.73s | 252 s 48.6 s 67.9 s 84.9 s 109.1 s 128.6 s 158.8 s
CPU time (IP-PRT) | 10.3 s 18.1s 32.3s 41.6 s 56.9 s 714 s 95.5 s 116.8 s
Test data 39,835 79,581 119,621 | 159,303 199,265 239,143 278,784 318,715
k =16 | CPU time (PRT) 17.6 s 41.3 s 80.1s 111.9 s 139.2 s 180.4 s 2184 s 258.9 s
CPU time (IP-PRT) | 9.6 s 22.7s 45.8 s 62.7 s 87.4s 1125 s 151.2 s 194.3 s

The obtained results for the three programs trityp, Middle, and remainder are summarized and presented
in Table 6. In this table, the percentage of improvement with respect to CPU usage achieved by IP-PRT as
compared to PRT is presented. The results reveal that IP-PRT outperforms PRT significantly in all cases. In
particular, it is found that higher improvement is achieved when the division parameter, k, is increased. For

instance, in the case of the ¢rityp program, by using IP-PRT, up to 15.1% improvement may be obtained when
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Table 4. Experiments results of the program Middle.

Requested 10,000 | 20,000 | 30,000 | 40,000 | 50,000 | 60,000 70,000 | 80,000

RT Test data 31,706 | 62,831 | 94,086 | 125,067 | 157,154 | 188,811 | 220,063 | 252,188
CPU time 4.2 s 8.0s 11.6s | 15.7s 19.3 s 23.9s 28.1s 33.7s
Test data 21,525 | 43,071 | 64,486 | 86,052 107,577 | 129,002 | 150,638 | 172,103

k=4 | CPU time (PRT) 12s | 21s |41s |49s 5.6 s 6.3 s 7.2 7.9s
CPU time (IP-PRT) | 1.0s 2.1s 3.7s 4.5 528 6.1s 6.9s 7.1s
Test data 14,275 | 28,450 | 42,715 | 56,988 71,225 85,507 | 99,795 114,009

k=8 [ CPU time (PRT) 23s |45s |61s |79s |93s |10ls |119s | 128s
CPU time (IP-PRT) | 1.6 s 28s 485 6.7s 79 s 8.8s 10.1s 10.9 s
Test data 12,417 | 24,784 | 37,301 | 49,618 | 62,130 | 74,392 | 86,819 | 99,286
k =16 | CPU time (PRT) 35s [69s |11.1s |132s | 151s |16.8s | 179s | 19.1s
CPU time (IP-PRT) | 2.3 s 415 8.1s 10.8 s 11.9s 12.8 s 14.2's 15.6 s

Table 5. Experiments results of the program Remainder.

Requested 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000
RT Test data 3,135,816 | 6,293,698 | 9,385,870 | 12,555,939 | 15,868,593 | 18,817,339 | 22,064,590 | 25,108,365
CPU time 27.3s 58.9 s 75.8 s 98.0 s 114.8 s 154.6 s 181.3 s 213.7 s
Test data 135,107 | 261,817 | 409,109 491,200 612,908 721,522 895,463 972,101
k=4 | CPU time (PRT) 2.1s 59s 114s 13.1s 15.2 s 17.0 s 18.8 s 20.3 s
CPU time (IP-PRT) | 2.1s 5.7s 109 s 128 s 14.3 s 159 s 17.1s 189 s
Test data 65,340 110,234 189,320 278,901 312,009 391,023 442,981 569,012
k=38 | CPU time (PRT) 4.5s 8.1s 11.9s 153 s 18.0s 22.3s 24.5s 26.1s
CPU time (IP-PRT) | 3.1s 6.4s 9.7s 12.7 s 14.6 s 17.1s 19.5s 21.5s
Test data 34781 | 71,240 | 92,194 | 105,672 | 128,923 | 192,903 | 231,982 | 290,823
k =16 | CPU time (PRT) 83s 15.7 s 21.1s 29.6 s 37.2s 53.8 s 61.0 s 69.9 s
CPU time (IP-PRT) | 5.1 s 109 s 16.8 s 214 s 26.1s 36.5 s 424 s 51.7s

the value of k is 4 and the requested number of test data to be generated is 20,000. It is worth mentioning that
the amount of improvement increases to about 45% when the value of k is increased to 16. A similar observation
could be made in other cases. The main reason behind this improvement is that IR-PRT significantly reduces

the number of invocations of the constraint propagation algorithm.

5.3. Discussion

In this section, we provide a discussion on the negative effects of eliminating input subdomains and the ability
of IP-PRT in dealing with PUTs having large input domain spaces. Determining the validity of a subdomain
with respect to a PC is dependent on the constraint propagation algorithm. Thus, similar to other related
works [9,14,26], a valid (or invalid) subdomain may be considered as invalid (or valid) and refuted (or kept) by
the proposed method. Elimination of a whole input subdomain because it consists of negative and positive test
results may cause the test runner to miss some false positive errors, especially corner cases, in the proposed
method. Please note that other related methods, like PRT, employing a constraint propagation algorithm also
suffer from this issue, which may increase the number of invalid generated test data. Similar to PRT, our

proposed algorithm is semicorrect, meaning that when it terminates, it is guaranteed to provide the correct
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Table 6. The summarized results.

Requested

10,000 | 20,000 | 30,000 | 40,000 | 50,000 | 60,000 | 70,000 | 80,000
k=4 |34% | 151% | 28.7% | 31.2% | 31.6% | 31.8% | 23.1% | 20.3%
trityp k=8 | 40% |281% | 33.5% | 38.7% | 32.9% | 34.5% | 25.7% | 26.4%
k=16 | 45.4% | 45% 42.8% | 43.9% | 37.2% | 37.6% | 30.7% | 24.9%
k=4 | 16.6% | 0% 9.7% | 81% | 71% |31% | 41% | 10.1%
Middle k= 30.4% | 37.7% | 21.3% | 15.1% | 15.0% | 12.8% | 15.1% | 14.8%
k=16 | 34.2% | 40.5% | 27.0% | 18.1% | 21.1% | 23.8% | 20.6% | 18.3%
k=4 | 0% 3.3% | 43% |22% | 59% |64% | 9.0% | 6.8%
remainder | k =8 | 31.1% | 20.9% | 18.4% | 16.9% | 18.8% | 23.3% | 20.4% | 17.6%
k=16 | 38.5% | 30.5% | 20.3% | 27.7% | 29.8% | 32.1% | 30.4% | 26%

Programs

expected result, but it is not guaranteed to terminate. Note that similar problems arise with random testing or
path testing as nothing prevents an unsatisfiable goal PC from being selected. In that case, all the test cases
will be rejected. In practice, a time-out mechanism is necessary to enforce termination. This mechanism is not
detailed here but it is mandatory for actual implementations. Note that any testing tools that execute programs
should be equipped with such a time-out mechanism as nothing prevents a tested program from activating an
endless path.

It is worth mentioning that the input domain of a program is restricted to the Cartesian product of
the bounded intervals of the program input variable boundaries. Thus, the Cartesian product of the bounded
intervals of n variables can be represented as an n-dimensional hypercube, which is the n-dimensional extension
of the 2-dimensional cuboid. Therefore, our proposed method can handle large domain spaces containing many

input variables by iteratively partitioning the hypercube to subhypercubes.

6. Threats to validity

In this section, the potential threats to the validity of our studies, including external and internal validity, are
explained. We use Java language to implement our tool for test data generation. Threats to internal validity
concern possible errors in our implementations that could affect our results. In this regard, we carefully checked
most of our results for decreasing these threats considerably. The main threat to external validity is that our
experiments are restricted to only small or medium-sized programs. More experiments on larger programs may
further strengthen the external validity of our findings. Further investigations of other programs in different

programming languages would also help generalize the obtained results.

7. Concluding remarks

In this paper, we propose a path-oriented automatic random testing method through the use of constraint
propagation. In the proposed method a simple divide-and-conquer algorithm is introduced that permits us to
efficiently build a uniform sequence of test data exercising a selected path. After obtaining the constraint set
along with a selected path by the symbolic execution techniques, the reduced input subdomain can be computed
by dividing the initial input domain iteratively and refuting such subdomains that cannot satisfy the constraint.
As a result, the random testing effectiveness can be remarkably enhanced by the generated test data from the

reduced input domain. We showed that the proposed method outperforms traditional RT and PRT.
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