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Abstract: Assessment of reliability in the early stages of software development from architectural models is one of
the major challenges that many studies have addressed in this field in the last decade. The main drawbacks of existing
methods are the following: 1) considering equal impact for all parts of the software architecture on system reliability,
and 2) inability to determine the contribution of each part of the software in the system failure. This paper introduces
the extended version of the colored petri net as an underlying verifiable model to evaluate the reliability of a software
system. The proposed model enhances reliability assessment of the software system by measuring the density of failure for
each part of the software system, predicting the reliability during execution of a scenario, and estimating the reliability
of every structural part of a program, such as loops and conditions. These innovations enable software architects to
cost-effectively identify and correct the vulnerable parts of a system in the early stages of software development. The
high-level model of the scenario is taken as a UML sequence diagram. Synthesis of the formal model is conducted using
an introduced graph called a fragments dependency graph. The practicality of the suggested approach is illustrated by
a case study.
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1. Introduction
Component-based (CB) software development is known as the main solution to overcome the major challenges
of software systems. CB systems are formed by the existing independent components, which are related to each
other to provide services for users. The evaluation of nonfunctional requirements such as the reliability of each
component is one of the research areas today. If we consider that every component of the system has sufficient
quality, combining the components together does not usually guarantee the quality of the CB system [1, 2].
Therefore, in addition to evaluating each component, it is also necessary to evaluate how they interact with
each other [3, 4]. Software reliability is defined as the probability of failure-free operation of the software under
stated conditions and environment for a specified period of time [1]. Many critical tasks are dependent on the
reliable execution of complex software systems. The development of reliable software systems with time and
budget constraints becomes a challenging objective. This purpose could be achieved to some extent through the
early estimation of software failures. This reduces the cost of development because it provides an opportunity
to make early corrections during the development process.

Reliability assessment in the design phase is useful when it helps system designers to identify and correct
the vulnerable and critical areas [5]. This goal is achieved by early determining of the contribution of all
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parts of the software in system failure. These parts could be components, the connection between components,
or structural design blocks like loops, conditions, etc. In previous works, only the determination of critical
components was taken into account [5–9]. Furthermore, the measuring of failure probability at each point of the
system execution was neglected, too. This could increase the accuracy of prediction of the statistical distribution
of failures between the parts of a system. Software architecture is usually expressed in a semiformal language
such as Unified Modeling Language (UML) or Architecture Definition Language (ADL), which are mastered
well by software engineers [1]. However, to prevent ambiguities and for precise verification, it is necessary to
convert semiformal models into formal models that have a strong mathematical foundation such as the Markov
chain (MC), petri net (PN), and Bayesian model [10–14]. Therefore, first we must introduce an appropriate
architectural model, and then we must present a formal model and a synthesis algorithm and finally calculate
the reliability of the system and determine the critical parts of it.

We propose an extended definition of CPN, which provides the ability to predict the statistical distribution
of failures between the elements of a system during the execution of each scenario early. The proposed model
enhances the capabilities of designers to exactly analyze the causes of CB software system failures. For this
purpose, in contrast to previous works [15–17], we distinguish the source of failures by assigning a different color
to each location where there is a possibility of failure. We can thus determine the contribution of each part of
the software in the system failure. As a result, this innovation allows more precise prediction of the reliability
of the system, determination the critical parts of the system, and identification and prioritization of test cases.

1.1. Paper outline
The remaining parts of this paper are organized as follows: in Section 2, first we introduce the petri net, and
then we review various software architecture description models and reliability evaluation models. In Section 3,
our proposed method, including the transformation algorithm of the UML diagram to CPN and the reliability
model, will be discussed. In Section 4, our proposed method will be applied in a case study. Finally, in Section
5, we present the conclusion and future work.

2. Background and related works
In this section, we first introduce petri nets. Then we review various software architecture description models
and reliability evaluation models. Comparing and evaluating these models, we will express our reasons for
choosing UML to describe software architecture at a highly abstract level and CPN to evaluate the reliability
of a software system from architecture.

2.1. Petri net
The PN is suitable for quantitative analysis of quality attributes in complex and scenario-based dynamic behavior
of software [18]. Modeling of sequential and ordered interactions between objects in a PN is easy and flexible.
The mathematical base of a PN is highly powerful [19]. A PN model is closer to a designer’s intuition about
the software system description than a Markov model. In Markov models, the state space grows much faster
than the number of modules being modeled [15]. A PN’s graphical representation is simple and composed of
four basic elements: places, transitions, arcs, and tokens [18].

Formally, a petri net is a 5-tuple PN = {P, T, I, O,M} , where:

• P = {p1, · · · , pn} is a finite set of places;
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• T = {t1, · · · , tn} is a finite set of net transition such that

P ∩ T = ∅ and P ∪ T ̸= ∅ ;

• I : P × T → N is an input function that defines directed arcs from places to transitions, and N is the set of
nonnegative integers;

• O : T × P → N is an output function that defines directed arcs from transitions to places;

• M : P → N is the initial marking function assigning an initial number of tokens to places.

2.2. Related works
One of the solutions to evaluate software architecture is to create an executable model of the architecture. An
executable model of architecture is a formal description of it that can be used to observe and check the final
behavior of the software system before implementing the architecture. In other words, using the executable
model, the architecture can be evaluated. From this executable model, it can be analyzed to what extent
the proposed architecture meets the expected requirements, especially nonfunctional requirements. There are
several formal models to display an executable architecture. Some of these models are petri nets, Bayesian
models, process algebra, and Markov chains.

These scenarios can be used to improve reliability prediction in the early stages of software system
development. CB software reliability assessment based on scenarios is discussed in [6–8]. A UML sequence
diagram (SD) specifies scenarios of the processing of operations because of their clear graphical layout, but
the semantics presented in the OMG specification for SD only give a basic idea of how the SD should work
[11]. Indeed, the SD, as a semiformal model, is ambiguous and lacks precise semantics for its notations
[11, 20, 21]. As a result, this chart should be initially converted to an appropriate formal model to prevent
different understandings and decipher a unique meaning. Models such as finite state machines, state charts,
and Markov chains are completely state-based models rather than scenario-based. They are not able to exactly
represent the sequential behavior of software for realizing a scenario that can easily be shown by SD. When
a SD is converted to these models, some valuable and detailed information about the dynamic behavior of
software during execution of the scenario may be lost. Therefore, the reliability prediction of a scenario during
its execution will not be possible. Also, an accurate reliability calculation of structural parts of the program
such as loops, alt, and opt could be impossible. Determination of the critical parts of the software system may
be imprecise, too.

Yacoub et al. [6] proposed a technique for reliability analysis called scenario-based reliability estimation.
Scenarios are converted to proposed graphs, called component dependency graphs (CDGs), as a probabilistic
model to calculate the reliability of the entire system. New features of SD 2.x such as fragments opt, loop, and
alt are not considered. This approach is not capable of predicting the reliability of each scenario. Rodrigues
et al. [8] presented a method to predict software system reliability based on message sequence charts as the
architectural model of scenarios. The approach captures the probability of component failure and scenario
transition probabilities derived from an operational profile of the system. In this work, the importance of
implied scenarios detection is considered to enhance reliability calculation. Singh et al. in [4] proposed a
method to estimate the reliability of a software system as a function of its components reliability. They use
probabilistic-labeled transition systems as the formal model to specify a scenario.

Yin et al. in [15] presented a method for early-stage system-level software reliability estimation based
on PNs. This work divided faults of the system into two categories: inherent faults and propagated faults. To
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distinguish between the two sets, different ‘colors’ are assigned to tokens. Reussner et al. in [22] measured the
particular component reliability relative to its execution time or the number of its calls by using the proposed
PN model. A PN-based framework of an intrusion detection system was introduced in [16]. Azgomi et al. in
[23] proposed an approach to reliability evaluation of grid services using the CPN. In their CPN model, tokens
carry some attributes, so one can model the transmission or execution time of a subtask as the colors of tokens
for each subtask. Mahato et al. in [17] proposed an approach to model the load balanced scheduling and
reliability of a grid transaction processing system based on a CPN. They used the CPN to combine a PN with
the functional programming language Standard Markup Language. Their model formally describes the process
of transaction distribution and execution within the on-demand computing environment.

Prediction reliability during the execution path of a scenario is neglected in previous works and it could
help the software engineer to analyze time-dependent failure behavior of the software system precisely. In some
approaches, the determination of critical parts is taken into account [6–8]. However, despite our work, where
it is possible to determine critical structural design blocks like loops, conditions, and critical components, they
only indicate the critical components.

3. Proposed approach

The proposed solution consists of the following steps:

• Present suitable formal model;

• Present conversion method;

• Obtain reliability of the scenario and its parts and determine critical sections.

The following section will explain each of these stages.

3.1. Proposed model

There are many extensions to PNs. Measuring the density of failure for each element of the system, predicting
the reliability during execution of the scenario, and estimating the reliability of every structural part of a
program such as loops and conditions are our goals in this research. To this end, the location of each failure
should be recorded. A PN lacks this ability, but a CPN [24] can be extended for this task. Therefore, a CPN
is considered as the base model. In a CPN, colors are added to the objects representing the system elements,
thus making it possible to “fold” the representation without losing information about which element executes
an action.

A CPN for our purpose is defined formally by a tuple
CPN = {P, T, I, O,M,Σ, C,W, λ} , where:

• P, I,O,M have the same meaning as those of a PN ;

• Σ = {c1, · · · , cn} is a finite set of colors and n = |T | ;

• C : T → Σ is a color function associating a color to a transition;

• T is a finite set of transitions partitioned into two subsets: Tλ , TW , where transitions t ∈ Tλ , t ∈ TW are
associated with functions λ and W respectively such that Tλ ∩ TW = ∅ and Tλ ∪ TW ̸= ∅ ;
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• λ : Tλ → {0, · · · , 1} is a function associating a real number r (0 ≤ r ≤ 1) to t ∈ Tλ to represent a probability of
selecting a path (in operators like opt, loop);

• W : TW → {0, · · · , 1} is a function associating a real number r (0 ≤ r ≤ 1) to t ∈ TW to represent a reliability
value of each component and path between two components.

In the proposed model, there are two types of transitions: TW and Tλ . TW represents the transitions
that mark the points where the failure is possible. This type of transition will help us to identify the critical area
of the system. It also can be used to measure the reliability during the execution of the scenario. The second
type of the transitions Tλ marks the points where a path is divided into more than one path, representing the
probability of selection of a path.

In the proposed model, first, each location with a probability of failure in the software is shown by
transition ti ∈ TW , where it has a unique color as a specific character of ti . Secondly, tokens are divided into
normal and failed groups, displayed with white and nonwhite colors, respectively. During the execution of the
scenario, when passing through transitions of TW , the tokens will take on the color commensurate with their
rate of failure. As a result, software failure density will finally be determined at each point of the scenario.
In other words, in the initial state of the system, all of the tokens are in the starting place and colored in
c0 = white , which indicates nonfailed. We want to be able to determine the exact place of each failure and
density of failure at any point of the path, so when tokens go along from the starting to the ending place, in
every transition ti ∈ TW , depending on its failure rate, nonfailed tokens will be colored with that transition
color.

s1

Failure rate =0.2 Failure rate =0.375

t1 t2s2 S3

Figure 1. To specify the failure location, a unique color is considered for each transition ti ∈ TW and failed tokens are
colored in the same color as where they failed.

For example, consider Figure 1, where the assumptions are as follows:
c0 = white;

t1.color = c1 = black; t2.color = c2 = red;

t1.failureRate = 0.2; t2.failureRate = 0.375;

|s1.tokens| = 10.

Initially, in state s1 , we have 10 white tokens. In the passage through t1 , two of them change their color
to black and eight remain white since the failure rate of t1 is 0.2 and its color is black. Now, in s2 , we have 8
nonfailed tokens and 2 tokens failed in t1 . The color of t2 is red and its failure rate is 0.375. Passing through
t2 , three white tokens are also colored red because 8 × 0.375 = 3 . This means that 3 other nonfailed tokens
fail, too. Finally, at s3 we have:

|s3.tokens| = 10;

|s3.tokens.white| = 5; //nonfailed;

|s3.tokens.non− white| = 5; //failed;

|s3.tokens.black| = 2; //failed− in− t1;

|s3.tokens.red| = 3; //failed− in− t2.
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sd1

f1 f2

<sd1: SD>

<f1: Opt> 

      …..

</ f1>

      …..

<f2: Alt> 
         …..

</f2 >

</sd1>

Figure 2. A simple SD and its corresponding FDG (for simplicity, the fragment type is not shown).

There are 10 tokens in the final state (s3 ); 5 tokens are nonfailed (white color) and 5 tokens are failed.
Thus, the reliability is 0.5. Two tokens are black. This means the contribution of t1 in the system failure is
0.2. Similarly, the contribution of t2 is 0.3. By the proposed CPN model, we are not only able to estimate
the probability of failure, but we can also determine the contribution of each part of the software in the system
failure.

3.2. Conversion method

In the SD, design blocks such as loop and condition are demonstrated by related fragments like loop, opt,
and alt; therefore, to calculate the reliability of each design block, the reliability of each fragment should be
calculated. A fragment can be integrated into another one, and all fragments are integrated into the main
fragment. When fragment B is defined within fragment A, it is said that the latter depends on the former. The
dependence model of each scenario is modeled by a new graph, called a fragments dependency graph (FDG).
The CPN model of each fragment and eventually the scenario is obtained by performing a bottom-up traversal
of the graph. The fragments at the lowest level, i.e. leaves, do not depend on each other at all. On the other
hand, the main fragment of the specific scenario is located at the highest level, i.e. the root. In the following,
the FDG is formally defined, and then the rules required for the modeling of all fragments are expressed.

3.2.1. Fragment dependency graph

An FDG is a directed graph, where each node represents a fragment used in the UML SD, and an edge represents
the definition of a fragment in another one. For example, if fragment b is located within fragment a, an edge will
be drawn from a to b. This graph has no cycles. The root node is the main fragment (represents the behavior
of the scenario) and other fragments of the scenario are located within it. Thus, the graph is a connected graph.
The FDG is actually a tree. Each node contains the fragment ID and type. Formally:
FDG = (V,E),

V = (ID, Type),

Type = SD|Opt|Alt|Loop,

E = (V 1, V 2).

The vertex that starts the edge is called the parent, and the target vertex of the edge is called the child.
The order of child edges is important. Figure 2 depicts a SD and its corresponding FDG (fragment type is not
shown). The vertex sd1 is the parent and f1 and f2 are child 1 and child 2, respectively. The type of sd1 as root
is SD and the types of f1 and f2 are Opt and Alt, respectively.
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Rule 1: convert a message  to CPN

S1 S2 S3 S4

RCA RLAB RCB

A B

m1

Figure 3. Convert a message to CPN.

3.2.2. Conversion rules
This section presents the rules of conversion of SD operators, i.e. opt, alt, and loop, into the proposed CPN.
First we express the rule for conversion of a message between two components. It is assumed that all transitions
are synchronous. Note that the provided formulas only help to indicate the outcome attained from the execution
of the model and their reliabilities are directly obtained from the model.

1. Rule 1: Message

A message is composed of three parts: sender component CA , link between two components LAB , and
recipient component (CB) : MAB = (CA, LAB , CB) . Each part of the message may fail. Given that in the
proposed CPN the locations with the probability of failure are depicted by transitions, it is necessary to
have three transitions with unique colors and four states to model a message. Rule 1 is shown graphically
in Figure 3.

If F is the probability of a component failure, its reliability will be equal to R = 1 − F . Thus, the
reliability of the message can be obtained as (Reliability of Message MAB ):

RMAB = RCA ∗ RLAB ∗ RCB , (1)

where:
RCA = 1 − FCA //FCA : Failure Rate of CA,

RLAB = 1 − FLAB //FLAB : Failure Rate of LAB ,

RCB = 1 − FCB //FCB : Failure Rate of CB .

2. Rule 2: Serial
If there are n consecutive messages or fragments, the CPN can be derived from the sequential connection
of them and overall reliability is obtained using the following equation:

R = Π
n
i=1Ri, (2)

where:
R :< R1, R2, · · · , Rn >,Ri ∈ M ∪ T, (1 ≤ i ≤ n),

M : set of messages = M1,M2, · · · ,Mm,

T : set of operators = T1, T2, · · · , Tm .
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3. Rule 3: Opt

The operator opt indicates optional behavior, which has an operand (Oopt ) executing with POpt probabil-
ity, including one or several messages or other operators. Rule 3 is shown visually in Figure 4a, where the
operand is a simple message. This operator is similar to the structure of if in the programming languages.
According to the CPN model, the reliability of the opt operator is obtained as follows:

R = (1 − Popt) + (Popt ∗ Ropt), (3)

where:
Ropt : Reliability of operand.

4. Rule 4: Alt
The operator alt indicates alternative behavior. This operator can have one or more operands with
different probabilities such that only one of them can be run. Rule 4 is shown visually in Figure 4b. This
operator is similar to the structures if / (else if)* / else and switch case in programming languages.

An alt operator includes n operands of O1, · · · , On . If execution probabilities of operands are respectively
P1, · · · , Pn with the reliability of R1, · · · , Rn, the alt operator reliability can be obtained as follows:

R = Σ
n
i=1Pi ∗ Ri. (4)

Figure 5 shows how the reliability is obtained when Pt1 = 0.8 and Pt1 = 0.2 and FRt1 = 0.25 and
FRt2 = 0.5 . In the final state, 7 tokens are white (nonfailed), so the reliability of the fragment is 0.7.
Also, 2 tokens are black and 1 token is red so the contributions of t1 and t2 in the system’s failure are
0.2 and 0.1, respectively. Note that regardless of the structure Alt , the failure rates of t1 and t2 are 0.25
and 0.75.

5. Rule 5: Loop

Computer programs rely heavily on repetition to perform any significant operations. The operator loop
indicates repetitive behavior. This operator has an operand and is applied in two ways. In the first case,
a loop operator consists of an operand Oloop that will be executed with the possibility of ploop , and the
behavior will be repeated. According to the CPN model shown in Figure 4c, if the reliability of Oloop is
Rloop , the reliability of the loop is finally obtained as follows:

R =
1 − Ploop

1 − (Ploop ∗ Rloop)
. (5)

6. Rule 6: Loop(n)

In the second type of loop, for which the conversion rule is shown in Figure 4d, a loop operator consists
of an operand (Oloop ) that will be executed n times. As a result, its simulation is done with n copies of
the operand. If the reliability of Oloop is Rloop , then the reliability of the loop operator is obtained as
follows:

R = R
n
Loop. (6)
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a) Rule 3: convert the opt  operator to CPN

b) Rule 4: convert the alt  operator to CPN

c) Rule 5: convert the loop operator to CPN

d) Rule 6: convert the loop(n) operator to CPN

A B

m1Opt

p1

A B

Alt

p1

p2 m2

m1

A B

m1Loop

p1

A B

m1Loop

n

p1 1M1

p1

1

M1

p2 M2

1 1M1

1-p1

p1 M1

1

M1 ...

n

RC A1 RLAB1 RC B1:M1

Figure 4. Conversion rules of operators opt, alt, and loop to the proposed CPN (the picture on the left shows the model
of a fragment in UML SD and the right image shows the related CPN).

0.8

0.2

Failure rate= 0.5

t2

1

1

Failure rate = 0.25

t1

Figure 5. An example of CPN modeling of an operator Alt .
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Table 1. Failure rates of components.

Component C1 C2 C3 C4 C5
Reliability 0.007 0.101 0.007 0.011 0.003

Table 2. Failure rates of links.

C1 C2 C3 C4 C5
C1 0 0.019 0.006 0.008 0.002
C2 0.019 0 0.004 0.004 0.006
C3 0.011 0.011 0 0.003 0.005
C4 0.008 0.019 0.009 0 0.001
C5 0.002 0.022 0.011 0.001 0

3.3. Extracting the CPN of the scenario

The CPN of a scenario is obtained by postorder traversal of the FDG of the scenario. Every time a node is
visited, its CPN is extracted using rules 1 to 6. If the node is a leaf, it means that no other fragment is defined
in the node. If the node is not a leaf, other fragments are certainly defined inside it. Since the algorithm is
a depth-first approach, when visiting a parent node, the child node CPN models are already extracted. By
combining children models with the parent CPN model, the full parent CPN model can be achieved. The last
node that will be visited is the root node that represents the full model of the scenario.

3.4. Obtaining the reliability of the scenario and its parts

The reliability of the scenario and its parts can be obtained directly from the extracted CPN model of the
scenario. In this model, any location where there is a probability of failure is modeled by a specific transition
ti ∈ TW , which has a unique feature (or color). Also, tokens are divided into normal (white) and failed
(nonwhite). In the initial state of the system, all of the tokens are white, but during the execution of the
scenario, when passing through transition ti , some normal tokens will take on the color of ti depending on its
rate of failure. The ratio of white tokens (or nonfailed tokens) to the overall tokens in the final state of the
CPN indicates the reliability of the scenario. In addition, the frequency of each color shows the probability of
failure in each part during the execution of the scenario. Sorting, based on the frequency of each color, can be
used to measure the critical parts of the system.

4. Case study

In this section, we consider the scenario presented by sequence diagram sd1 according to Figure 6. Based on the
given information about the system, first we extract the CPN of the scenario, and then we analyze the results.

4.1. Problem hypotheses

It is assumed that the prerequisite data are available based on historical data from past experience or predicted
by analyzers. Failure rates of components and links between the components are according to Tables 1 and 2.
The probabilities considered for the necessary operators are given in Table 3.

2690



HOSSEINZADEH-MOKARRAM et al./Turk J Elec Eng & Comp Sci

 C1

m1

Op

Loo

Loo

Op

Op

Alt

m2

m3

m4

m5

m7

m6

m8

m9

Al

C2  C3 C4 C5

Figure 6. UML SD of the scenario.

Table 3. Assumptions for the scenario.

Operator Opt1 Loop1 Alt1 Opt2 Opt3 Loop2 Alt2
Value 0.5 0.4 0.5,

0.5
0.2 0.6 (n=2) 0.3,

0.7

4.2. Synthesizing of CPN

The CPN of an sd1 can be derived from its FDG traversal in the bottom-up approach. Figure 7 represents
the extracted FDG, which consists of alt1, opt2, opt3, loop2, opt1, loop1, alt2, and sd1 fragments. The CPN
obtained for the scenario is represented in Figure 8; for simplicity, tokens and the unique color assigned for each
transition are not shown.

4.3. Analysis of extracted model

In the provided model, the latest state, called the final state, includes tokens with different colors, which
indicate the share of each part (including components and links) in the system failures. Predicted failure
rates of components and links between them in the scenario are represented in Table 4. Sorting, based on the
frequency of each color, can be used to measure the critical sections. As shown in Figure 9, while initial failure
rates of C4 and L43 (link from C4 to C3) are highest, the contributions of components C1, C3, and C4 and link
L13 (link from C1 to C3) in the scenario failure are greater than the other parts. The ratio of white tokens (or
nonfailed tokens) to the overall tokens in the final state of the CPN indicates the reliability of the scenario. The
predicted reliability of sd1 is 0.903. Figure 10 represents the statistical distribution of failures between the parts
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opt1

opt3opt2alt1

sd1

alt2loop1

loop2

Figure 7. FDG of the scenario.

Figure 8. Extracted model of the scenario and predicted reliability at each point of execution of the scenario.

Table 4. Failure rates of links.

C1 C2 C3 C4 C5
0.0214 0 0.0222 0.0146 0.0035

L11 L12 L13 L14 L15
0 0 0.0190 0 0

L21 L22 L23 L24 L25
0 0 0 0 0

L31 L32 L33 L34 L35
0 0 0 0.0060 0

L41 L42 L43 L44 L45
0.0026 0 0.0026 0 0.0022

L51 L52 L53 L54 L55
0 0 0 0.0024 0
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of scenario sd1. The predicted reliability of the fragments is obtained based on their CPN models, as shown in
Figure 11. The results help to identify critical structural sections of the program such as loops and conditions.
Using the CPN obtained for a scenario, the decline of the reliability of the scenario during its execution can
be calculated. Figure 8 represents the result for sd1. For simplicity, the different colors of error areas are not
shown.

 

 

 

 

 

 

 

          

          

          

           

           

           

           

           

           

           

           

  C1 C3 C4 C5 L13 L34 L41 L43 L45 L54 

Failure Rate 

(In the Scenario) 
0.0214 0.0222 0.0146 0.0035 0.019 0.006 0.0026 0.0026 0.0022 0.0024 

Initial Failure Rate 0.007 0.007 0.011 0.003 0.006 0.003 0.008 0.009 0.001 0.001 
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0.015
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Figure 9. Comparison of initial failure rates of components and links and predicted contribution of them in the failure
of the scenario sd1.
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Figure 11. The reliability of the fragments.
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5. Conclusions
Assessing the reliability in the early stages of the software development process based on architectural models
plays a major role in the success of component-based software systems. In the literature, early determination
of the contribution of all parts of the software in the system failure and measuring of failure probability at each
point of the system execution are neglected. We presented a method to improve the reliability of component-
based software systems using proposed colored petri nets. Initially, the complete internal behavior of a scenario
is taken in the form of a UML SD and then a CPN is synthesized as a verifiable formal model. Conversion into
a CPN is conducted by traversing an introduced new graph called a FDG. Also, the necessary rules to model
the data control operators including serial, opt, loop, and alt are presented.

Unlike related works, in the offered model, a unique color is given to any location where there is a
risk of failure (represented by special transitions in the suggested CPN). If a failure occurs, depending on the
probability of failure, one or more tokens are colored in its color and thus it becomes possible to calculate the
density of failure for each component or link between components. Thus, in addition to assessing the reliability
of the system, our method is also capable of assessing the reliability of any structural part of the program such
as loops and conditions, which are depicted by segments. The results enable software engineers to identify
and correct the vulnerable and critical areas with low cost. The proposed method is suitable for applications
whose analysis is based on valid scenarios with sequence diagrams and the failure rates of components and link
between them are available.

The following topics can be considered as future works based on this research:

1. We only considered synchronous messages, while asynchronous messages also have an important role in
describing the behavior of distributed systems [5, 25]. In addition, we only provided rules to convert opt,
loop, and alt operators of sequence diagrams to the proposed CPN model. In the future, we intend to
cover other operators such as par. Also, in this paper, the theoretical aspects of the proposed model are
presented. We intend to provide the appropriate tools for the proposed model.

2. In the presented method for reliability evaluation, we did not consider some important and effective
parameters for system reliability such as error propagation and fault tolerance [26–30]. By considering
these parameters in the proposed approach, the system reliability can be assessed more accurately.
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