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Abstract: Hydrological working conditions are critical indicators for the maintenance of tractor mechanical systems.
This research presents a pseudospectrum approach to analyze the particle pollution level of the hydraulic filter in its
aging process and thus on-time prediction and diagnosis of weak or faulty conditions. The practical experiments of
pseudospectrum analysis are performed on oil filter sound records. For mobile application purposes, besides deployment
of advanced audio recording equipment, three popular brands of cell phones are used. The soundtracks are recorded
in different incremental stages of fluid contamination by pollutive particles until being choked based on the ISO4406
standard. The pseudospectrum of the oil filter acoustics leads to two numerical features: the low-band energy and 12.5
kHz relative peak energy (12.5RPE). This manuscript proposes these two features for efficient on-line monitoring of the
liquid cleanliness level as well as the prediction and diagnosis of choked condition of the tractor hydraulic system.

Key words: Preventive maintenance, hydraulic systems, acoustic measurements, spectral analysis

1. Introduction
Smartphones have an increasing impact on society in moving towards higher convenience with more and
more practical applications. The Internet of Things (IoT) also brings more efficiency for mobile applications.
Furthermore, in complex and uncertain operating conditions, the use of a smartphone with Internet technologies
could be helpful in the monitoring and detection of the operational conditions of a tractor, especially during
emergency circumstances in a field far away from possible workshops.

Although fruitful research has been performed on the prognostics of mechanical and rotational equipment
[1–8], there are few reports on the predictive maintenance of hydraulic system parts. In the case of a tractor,
the hydraulic system is commonly subjected to regular maintenance. Namely, the oil filter protects the system’s
components from malfunction resulting from fluid pollution due to particles. As Damen Technical Agencies
reported (https://dta.eu/hydraulics/hydraulic-filtration), on average, every minute, about one million particles
with size bigger than > 1µm enter a hydraulic system, which can severely damage the components of the
system and result in costly tribological failure of the system [9, 10]. The required cleanliness level (RCL) [11]
is the upper bound for the concentration of particles in a hydraulic system. When contamination surpasses the
RCL, costly cleaning operations are imposed on hydrological operators. Cleanliness monitoring provides timely
∗Correspondence: mahdi.khosravy@ufjf.edu.br
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warning of these problems for the timely maintenance of the oil filter, thus providing a considerable increase in
the lifetime of the hydraulic system.

Three modes of particle monitoring [12] are suggested in the literature as off-line, on-line, and in-line,
which are respectively from a fluid sample, flow line, and pressurized line [13]. Off-line monitoring suffers from
the need of expert operator skills for sampling and analysis. This is due to the need for extraction of fluid for
analysis in a laboratory. Furthermore, each monitoring results in time extension, and in the results of sampling
and analysis, additional pollution interferes with the results and leads to data errors. In both on-line and in-line
monitoring, either automatic particle counters (APCs) [14, 15] are installed in connection with the flow or filter
blockage monitors (FBMs) [16] are in use. APCs work based on the principle of light extinction, where a narrow
light beam illuminates the passage of fluid and the polluting particles obscure the light beam by blockage or
scattering. Corresponding electrical pulses are thus produced and their number and amplitude determine the
size and density of the particles. The disadvantage of deployment of APCs is their high sensitivity to optical
interfaces such as air bubbles, water droplets, additive silicone antifoam droplets, or emulsions, which result in
erroneous data and wrong conclusions and thus waste maintenance efforts [17].

Spectrum analysis is a way to access the frequency components of the signal. There are also other
decomposition techniques, like blind source separation [18–22] and blind component pressing [23], which give
the independent components, and principal component analysis [24]. Here, the spectrum analysis of the
soundtrack records of the hydraulic system has been suggested for on-line monitoring and analysis. The oil
filters soundtracks are recorded by mobile phone sound recorder and their pseudospectrum is estimated and
transmitted via mobile phone networks for an advanced online web-based software. In either case, in order
to have an on-time spectrum analysis or spectrum transmission, an efficient estimation of the spectrum with
lower data length is required to avoid long length spectrum data. For this aim, the pseudospectrum of oil filter
soundtracks with lower load of data is studied and analyzed for the on-line monitoring and prognostics of the
hydraulic fluid pollution conditions. An approach for detection of particle pollution level as well as prediction
and diagnosis of hydraulic choking is introduced. By integrating the proposed smart diagnostic algorithm in a
maintenance diagnostic application for phones, even a nonexpert operator can monitor the tractor’s hydraulic
conditions by just locating the phone in a proper place adjacent to the oil filter and activating the application
along with the working tractor engine with a particular revolutions per minute (RPM) rate. It should be noted
that due to the expert system, at the back end of the developed app for mobile phones, this operation can be
easily done by putting the phone close to the noise-generating part without any requirement of the knowledge
of the mechanical technology of tractor operation for users. Since the proposed approach is applied to hydraulic
filter sound, it directly connects to its activity and is not susceptible to interfering error such as optical errors
in APCs. Besides, it does not need expensive optical equipment, and it does not require any installation or
related calibrations. It is an approach to realize a user-friendly smartphone diagnostic application.

The paper’s organization is as follows: Section 2 describes the process of data collection as implemented
in the John Deere laboratories. In Section 3 the pseudospectrum analysis and the multiple signal classification
(MUSIC) approach to it are briefly explained. Section 4 analyzes and discusses the results and finally Section
5 concludes the paper.

2. Data collection
The first and most important part of research work regarding tractor parts’ fault diagnosis is data collection.
Although analyzing noise-free datasets is easier and more efficient, data with noisy backgrounds better match the
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Figure 1. Schematics and laboratory setup for recording the sound of the oil filter.

practical field environment. In order to promote the user-friendly utility of the application, single-sensory sound
records are acquired. This is because while feature extraction from multisensory data requires a sophisticated
microphone arrangement, single-sensory records can be simply obtained by putting the smartphone in its
prearranged location adjacent to the oil filter, as shown in Figure 1.

The general methodology of single-sensory data collection deployed by the authors is as follows: First,
we have recorded the aging-related sound signals by manually increasing the particle pollution in the hydraulic
system, which directly affects the aging stage of the filter and then failure concerning the signals. Apart from
a possible defect problem with the generated vibration sound, aging and pollution produce their corresponding
vibration signals that can be categorized into classes of signals for different levels of aging. In order to avoid
interference of the other parts’ vibration fault signals and in order to have a clear view of the concerned failure,
the experiments are done on a new tractor hydraulic system in John Deere India headquarter’s laboratories
(https://www.deere.co.in). Here, in recording the soundtracks of the oil filter, just the normal condition of a
tractor with a normal engine RPM of 1000 has been implemented to have a clear observation of the defect effect
apart from the other possible harmonic interferences in the environment. The recorded data are related to the
different levels of particle pollution inside the hydraulic system. These pollution levels are arranged based on
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Figure 2. One second duration example of audio tracks recorded by one of the mobile phones. Top signal is the audio
record after starting the engine while oil filter is in normal condition, middle signal is related to the oil filter with almost
half of the dust required to be clogged, and bottom one is once the oil filter is clogged.

the ISO4406 standard [25] from zero, which means a new oil filter and clean fluid, to one level, two levels, and
so on until six levels of polluting particles. After that, the oil filter is choked and that is the last level for audio
recording.

In this research work, the experiment is performed on tractor oil filter fault diagnosis through audio
tracks recorded with three different popular brands of cellphone. Here, to avoid mentioning the names of the
brands to respect the mobile phone producers’ rights, we just call them the first, second, and third cellphones.

3. Pseudospectrum analysis

After collection of single-sensory vibration audio signal records by three different mobile phones, we process the
audio tracks in connection with the density level of polluting particles. Although preprocessing of the signal
[26–30] and noise cancellation are essential for the main purpose of processing, here we avoid preprocessing
so as not to lose noise information concerning the polluting particles. The level of the dust inside the pump
determines the age of the pump before being clogged. In order to detect the clogging stage and predict it being
choked with particles, a precise feature should be chosen. For this goal, here, a pseudospectrum analysis of the
audio tracks is proposed. The acquirement of a pseudospectrum is due to its lower data rate compared to a
DFT-based data spectrum. The low data rate of the pseudospectrum brings the fusibility of fast analysis via a
phone application or quick on-line transfer of the data through even a slow Internet connection. Here, a brief
review of the pseudospectrum is given.
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3.1. Pseudospectrum

A well-behaved function, f(x) , in an interval can be represented as expansion in a set of orthonormal functions,
Pn(x) , as follows:

f(x) =

∞∑
n=0

anPn(x), x ∈ [a, b], (1)

where Pn(x)s are orthonormal polynomials mathematically expressed as follows:∫ b

a

w(x)Pn(x)Pm(x)dx = δnm, (2)

where w(x) is an appropriate weight function for the orthonormal condition. δnm is the Kronecker delta,
defined as follows:

δnm =

{
1, m = n

0, m ̸= n.
(3)

Orthonormal polynomials as basis functions are classically well known; Bernard Shizgal has listed some of them
[31].

3.2. Eigenvalue problem approach to pseudospectra
One approach to pseudospectra is the eigenvector method. The pseudospectral method can be provided by
eigenvalues as follows: ∫ b

a

k(x, y)ψn(y)dy = λnψn(x), (4)

where k(x, y) is the kernel with the assumption of being well behaved on both sides of the equation. By using
the appropriate quadrature points {xi} , the integration is reduced to summation of a set of linear equations:

N∑
i=1

Wik(xj , xi)ψn(xi) = λnψn(xj). (5)

3.3. Pseudospectrum by multiple signal classification
We are looking for an estimation of a set of reliable constant features or parameters on which the audio records
are dependent. There have been some classical methods pursuing the same goal, such as maximum likelihood
(ML) [32, 33] and maximum entropy (ME) [34, 35]. However, the aforementioned classical methods suffer from
parameter estimation sensitivity and bias of the parameters. These problems were overcome by the deployment
of the covariance matrix of the signal for estimation of complex sinusoids by Pisarenko [36, 37]. Later, Schmidt,
by deriving a geometric solution, developed the multiple signal classification (MUSIC) algorithm [38]. MUSIC
estimates the pseudospectrum of the signal using the estimates of the eigenvectors of the correlation matrix of
the input data signal. MUSIC estimation of the signal frequency content is done by deployment of eigenspace.
Its assumption of the input signal is p complex exponentials together with background noise. The spanned
subspace of the signal is done by the p eigenvectors corresponding to the p largest eigenvalues of Rx , the
M ×M autocorrelation matrix of the input signal, while the sorting order of eigenvalues is in the decreasing
direction.
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Figure 3. Pseudospectrum of the acoustic measurements by the first cellphone. Top curve: the clean hydraulic system;
middle curves: increasing levels of polluting particles; lowest curve: the choked hydraulic system.

3.4. Oil pump fault diagnosis by MUSIC

Here, by application of the MUSIC algorithm to each signal record, its pseudospectrum is estimated. Thereafter,
the pseudospectrum curves are compared and evaluated over the frequency range of the signals. Although thr
MUSIC-estimated pseudospectrum is over normalized frequencies (in rad/sample), by having the sampling
frequency of the records, we can perform the evaluation on frequencies in hertz.
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Figure 4. Pseudospectrum of the acoustic measurements by the second cellphone. Top curve: the clean hydraulic
system; middle curves: increasing levels of polluting particles; lowest curve: the choked hydraulic system.

4. Results and discussion
Using MATLAB (2017b), the MUSIC algorithm has been implemented for the phones’ acoustic records of the
tractor oil filter sound. The MUSIC pseudospectrum of each mobile phone’s sound records corresponding to
eight different conditions is analyzed. The audio tracks are recorded in different conditions as follows:

Track 1: The sound of the oil pump just after starting the engine. The hydraulic system is clean and RPM is
1000.
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Figure 5. Pseudospectrum of the acoustic measurements by the third cellphone. Top curve: the clean hydraulic system;
middle curves: increasing levels of polluting particles; lowest curve: the choked hydraulic system.

Tracks 2–7: After adding one to six levels of polluting particles according to ISO4406 [25].

Track 8: The hydraulic system is choked.

Figures 3, 4, and 5 show the MUSIC estimation of the pseudospectrum of the sound records by the first, second,
and third cellphones, respectively.
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soundtracks recorded by cell phones 1, 2, and 3 in different stages of fluid pollution. Bottom: Same ratio by averaging
the results of the cell phones 1, 2, and 3.

By observing the pseudospectrum curves of the three cellphones’ acoustic records of the oil filter, the
following points are concluded:

• The lower bands of the pseudospectrum curves for the clean stage of the hydraulic system and one level
and two levels of particle pollution have similar power with less than 5.5% difference.

• As pollution reaches the third level, the lower band energy (LBE) of the pseudospectrum decreases 3.5893

times as it drops from an average of 1 in the first three levels to an average of 0.2786 in the next four
levels.

• The LBE remains relatively steady with the addition of the pollutive particles after the third level ,
oscillating between 0.2352 and 0.3245 .

• By being choked, the LBE of the pseudospectrum increases almost twice by jumping from an average of
0.2786 to 0.5817 .

The top of Figure 6 shows the average energy of the lower band of the pseudospectrum of the acoustic records
by each phone, and the resultant average for all three phones is demonstrated in the bottom of Figure 6. As
is observed, the LBE remains the same as indicated by the ratio of 1 at the first two levels of pollution. For
higher pollution levels, the LBE drops to 27.86% on average. As the system is choked, the LBE increases to
58.17% of its value in the clean stage. In brief, the LBE drops to almost one-third due to pollution, and after
that, as the hydraulic system is choked it becomes twice the original value.

By observing the pseudospectrum curves of the second mobile phone’s records, in addition to the points
mentioned above, another point is clear: the pseudospectrum’s sharp peak at higher frequencies. This feature
is not observable in the records obtained by the two other phones due to possible phone-integrated antinoise
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filters or different qualities of the microphones. As pollutive particles increase, the peak starts to grow. As
the hydraulic system is choked, the peak disappears. We have measured the 12.5 kHz relative peak energy
(12.5RPE) in the range of 12–13 kHz with respect to the clean stage, as shown in Figure 7. The 12.5RPE
can be used as the second indicator of the clogging stages in the hydraulic system, where its continuous rise
indicates the relative increment of particle pollution. As 12.5RPE reaches values close to 2 , it predicts that the
system will soon be choked. Its drop to zero indicates that the hydraulic system has already choked. While the
12.5RPE feature is observable for one phone and is not observable for the two others, this does not mean that
it can be omitted as a feature. It can be used as a secondary feature, but it may not be a generally reliable
feature for a phone app.
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Figure 7. The averaged low-band pseudospectrum energy ratio with respect to the clean stage.

5. Conclusion
The fluid pollution monitoring of the tractor engine hydraulic system with the prediction and detection of
its choked stage by a user-friendly oil filter sound analyzer smartphone application is a crucial and economic
approach. For on-line data transfer, monitoring, and fast diagnosis, pseudospectrum data transfer and analysis
have been suggested instead of a bulky DFT-based spectrum. Here, tractor oil filter sound records by three
popular brands of cell phones are inspected by MUSIC-based pseudospectrum analysis. The records are related
to eight various conditions: (track 1) clean fluid and new oil filter, (tracks 2–7) one to six levels of particle
pollution according to the ISO4406 standard, and (track 8) choked condition of the hydraulic system. The
pseudospectrum analysis of the soundtracks leads to two practical features: lower band energy (LBE) of the
pseudospectrum as a generally reliable feature and 12.5 kHz relative peak energy (12.5RPE) to the clean stage,
as a secondary feature observable by some phones. The LBE feature is observable with all three phones. This
indicates that as pollution goes further than a certain level, the LBE drops to about one-third of the clean
stage’s value, and as the hydraulic system is choked, it increases to two-thirds. The 12.5RPE is just observed
by the second cellphone, which is a benefit of the wider bandpass of both the microphone and integrated filter.
It indicates that as the particle pollution gradually increases, the 12.5RPE shows its stepwise increment. As

it reaches close to twice the clean stage, the choked condition is predicted as the next early stage where the
12.5RPE drops to zero by choking occurrence.

References

[1] Nunez DL, Borsato M. OntoProg. An ontology-based model for implementing Prognostics Health Management in
mechanical machines. Advanced Engineering Informatics 2018; 38: 746-759. doi: 10.1016/j.aei.2018.10.006

2727



GUPTA et al./Turk J Elec Eng & Comp Sci

[2] Deutsch J, He D. Using deep learning-based approach to predict remaining useful life of rotating components. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 2018; 48 (1): 11-20. doi: 10.1109/TSMC.2017.2697842

[3] Lei Y, Li N, Guo L, Li N, Yan T et al. Machinery health prognostics: a systematic review from data acquisition to
RUL prediction. Mechanical Systems and Signal Processing 2018; 104: 799-834. doi: 10.1016/j.ymssp.2017.11.016

[4] Ragab A, Yacout S, Ouali MS, Osman H. Prognostics of multiple failure modes in rotating machinery using a
pattern-based classifier and cumulative incidence functions. Journal of Intelligent Manufacturing 2019; 30 (1):
255-274. doi: 10.1007/s10845-016-1244-8

[5] Gebraeel N, Lawley M, Liu R, Parmeshwaran V. Residual life predictions from vibration-based degradation
signals: a neural network approach. IEEE Transactions on Industrial Electronics 2004; 51 (3): 694-700. doi:
10.1109/TIE.2004.824875

[6] Zhao F, Tian Z, Zeng Y. Uncertainty quantification in gear remaining useful life prediction through an integrated
prognostics method. IEEE Transactions on Reliability 2013; 62 (1): 146-159. doi: 10.1109/TR.2013.2241216

[7] Scanlon P, Kavanagh DF, Boland FM. Residual life prediction of rotating machines using acoustic noise signals.
IEEE Transactions on Instrumentation and Measurement 2013; 62 (1): 95-108. doi: 10.1109/TIM.2012.2212508

[8] Gao Z, Cecati C, Ding SX. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with
model-based and signal-based approaches. IEEE Transactions on Industrial Electronics 2015; 62 (6): 3757-3767.
doi: 10.1109/TIE.2015.2417501

[9] Schautzgy J, Ivanov Y, Kroger B, Wilde J. Durability studies on vibration-loaded electrical contact systems
subjected to tribological stress. Materials Testing 2019; 61 (2): 105-110.

[10] Day MJ. Condition Monitoring of Hydraulic System. Handbook of Condition Monitoring. Oxford, UK: Spectro
Scientific, 1996.

[11] Hong JH, Day M. Energy efficiency & sustainability the cleanliness management role of components and system in
automotive and hydraulics. Journal of Drive and Control 2012; 9 (4): 19-25. doi: 10.7839/ksfc.2012.9.4.019

[12] Kattelus J, Miettinen J, Lehtovaara A. Detection of gear pitting failure progression with on-line particle monitoring.
Tribology International 2018; 118: 458-464. doi: 10.1016/j.triboint.2017.02.045

[13] Hong JH, Day M. Monitoring of cleanliness level in hydraulic systems: obtaining reliable on-line data. Journal of
Drive and Control 2012; 9 (2): 28-38. doi: 10.7839/ksfc.2012.9.2.028

[14] Lu L, Wu X, Ji Z, Xiong Z, Wang M. Optimization of the optical particle counter for online particle measurement
in high-pressure gas. Applied Optics 2019; 58 (2): 308-316. doi: 10.1364/AO.58.000308

[15] Michael PW, Wanke TS, McCambridge MA. Additive and base oil effects in automatic particle counters. Journal
of ASTM International 2007; 4 (4): 1-7. doi: 10.1520/JAI100941

[16] Chenghu Z, Haiyan W, Dexing S. Design principle of hydraulic and continuous filter regeneration equipment. In:
2011 Third International Conference on Measuring Technology and Mechatronics Automation. pp. 1022-1025. doi:
10.1109/ICMTMA.2011.256

[17] ISO. ISO 11171: Hydraulic Fluid Power Calibration of Automatic Particle Counters for Liquids. Geneva,
Switzerland: International Standards Organization, 2010.

[18] Khosravy M, Asharif MR, Yamashita K. A PDF-matched short-term linear predictability approach to blind source
separation. International Journal of Innovative Computing, Information and Control 2009; 5 (11): 3677-3690.

[19] Khosravy M, Alsharif MR, Yamashita K. A PDF-matched modification to Stone’s measure of predictability
for blind source separation. In: International Symposium on Neural Networks; 2009. pp. 219-228. doi:
10.1007/978-3-642-01507-6_26

[20] Khosravy M, Asharif MR, Yamashita K. A theoretical discussion on the foundation of Stone’s blind source
separation. Signal, Image and Video Processing 2011; 5 (3): 379-388. doi: 10.1007/s11760-010-0161-0

2728



GUPTA et al./Turk J Elec Eng & Comp Sci

[21] Khosravy M, Asharif M, Yamashita K. A probabilistic short-length linear predictability approach to blind source
separation. In: 23rd International Technical Conference on Circuits/Systems, Computers and Communications;
Yamaguchi, Japan; 2008. pp. 381-384.

[22] Khosravy M, Alsharif MR, Yamashita K. An efficient ICA based approach to multiuser detection in MIMO OFDM
systems. Multi-Carrier Systems & Solutions 2009; 41: 47-56. doi: 10.1007/978-90-481-2530-2_5

[23] Khosravy M, Gupta N, Marina N, Asharif MR, Asharif F et al. Blind components processing a novel approach to
array signal processing: a research orientation. In: 2015 International Conference on Intelligent Informatics and
Biomedical Sciences; Okinawa, Japan; 2015. pp. 20-26. doi: 10.1109/ICIIBMS.2015.7439482

[24] Gutierrez CE, Alsharif MR, Cuiwei H, Khosravy M, Villa R et al. Uncover news dynamic by principal component
analysis. ICIC Express Letters 2013; 7 (4): 1245-1250.

[25] ISO. ISO 4406: Hydraulic Fluid Power - Fluids - Method for Coding Level of Contamination by Solid Particles.
Geneva, Switzerland: International Standards Organization, 1999.

[26] Sedaaghi MH, Khosravi M. Morphological ECG signal preprocessing with more efficient baseline drift removal. In
Proceedings of the 7th IASTED International Conference; Calgary, Canada; 2003. pp. 205-209.

[27] Khosravy M, Asharif MR, Sedaaghi MH. Morphological adult and fetal ECG preprocessing: employing mediated
morphology. IEICE Technical Reports 2008; 107 (461): 363-369.

[28] Khosravi M, Sedaaghi MH. Impulsive noise suppression of electrocardiogram signals with mediated morphological
filters. In: 11th Iranian Conference on Biomedical Engineering; Tehran, Iran; 2004. pp. 207-212.

[29] Sedaaghi MH, Daj R, Khosravi M. Mediated morphological filters. In: Proceedings of the 2001 International
Conference on Image Processing; Thessaloniki, Greece; 2001. pp.692-695. doi: 10.1109/ICIP.2001.958213

[30] Khosravy M, Asharif MR, Sedaaghi MH. Medical image noise suppression: using mediated morphology. IEICE
Technical Reports 2008; 107 (461): 265-270.

[31] Shizgal B. Spectral Methods in Chemistry and Physics: Applications to Kinetic Theory. Dordrecht, the Netherlands:
Springer, 2015.

[32] Efron B. Curvature and inference for maximum likelihood estimates. Annals of Statistics 2018; 46 (4): 1664-1692.

[33] Capon J. Maximum-likelihood spectral estimation. In: Hayking S (editor). Nonlinear Methods of Spectral Analysis.
Berlin, Germany: Springer, 1979, pp. 155-179.

[34] Cesari A, Reiber S, Bussi G. Using the maximum entropy principle to combine simulations and solution experiments.
Computation 2018; 6 (1): 15. doi: 10.3390/computation6010015

[35] Burg JP. The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics 1972;
37 (2): 375-376. doi: 10.1190/1.1440265

[36] Kagalenko M. Modified Pisarenko spectrum for frequency analysis. In: 2018 7th Mediterranean Conference on
Embedded Computing; Budva, Montenegro; 2018. pp. 1-4. doi: 10.1109/MECO.2018.8406086

[37] Pisarenko VF. The retrieval of harmonics from a covariance function. Geophysical Journal International 1973; 33
(3): 347-366. doi: 10.1111/j.1365-246X.1973.tb03424.x

[38] Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and
Propagation 1986; 34 (3): 276-280. doi: 10.1109/TAP.1986.1143830

2729


	Introduction
	Data collection
	Pseudospectrum analysis
	Pseudospectrum
	Eigenvalue problem approach to pseudospectra
	Pseudospectrum by multiple signal classification 
	Oil pump fault diagnosis by MUSIC

	Results and discussion
	Conclusion

