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Abstract: In this paper, we propose a novel frequency domain state-space identification method for switching linear
discrete time-periodic (LDTP) systems with known scheduling signals. The state-space identification problem of linear
time-invariant (LTI) systems has been widely studied both in the time and frequency domains. Indeed, there have been
several studies that also concentrated on state-space identification of both continuous and discrete linear time-periodic
(LTP) systems. The focus in this study is the family of LDTP systems that switch among a finite set of subsystems
triggered by known periodic scheduling signals. We address the state-space identification of such systems in frequency
domain using input–output data. We also assume that full state measurements are available for the identification process.
The major difference of our study is that we explicitly model the known scheduling signals responsible for switching,
which greatly reduces the parametric complexity as well as potentially increases the estimation accuracy by avoiding
overfitting. In our identification framework, we gather the Fourier transformations of input–output data, known periodic
scheduling signals, and state-space system dimensions and fuse them in a linear regression framework. Later, we estimate
the Fourier series coefficients of the time-periodic system and input matrices using a least-squares solution. Finally, we
illustrate the effectiveness of our method using a switching LDTP system that is based on the damped Mathieu equation.
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1. Introduction
This paper focuses on frequency-domain state-space identification of “hybrid” linear discrete-time periodic
(LDTP) systems. The class of LDTP systems we are interested in here includes a finite number of switching
subsystems that are alternated based on a periodic scheduling signal. Usually in the literature, such scheduling
signals are assumed to be known or can be accurately measured in real-time [1–5]. We also stick to the same
assumption and assume full state measurement of the underlying dynamical system. However, on the contrary,
we use a more general subsystem formulation (to make it applicable for legged locomotion problems [6]), where
our subsystem dynamics can also be time-periodic, different than most of the recent studies on this topic, which
focused on time-invariant subsystem dynamics [2, 7].

The class of systems we consider appears in a wide range of dynamical phenomena from biology to
engineering, such as legged locomotion [6, 8], helicopter rotor dynamics [9], inverter locomotives [10], and wind
turbines [11]. Initial formulations of this type of systems are generally modeled as nonlinear hybrid dynamical
∗Correspondence: uyanik@jhu.edu
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systems that include some state-dependent scheduling functions [12–15]. However, a vast majority of the system
identification studies for such systems focus on their local behavior around a periodic orbit. Hence, linearization
of such nonlinear hybrid dynamics around a limit cycle yields a linear time-periodic (LTP) system, where the
state-dependent switching functions can also be approximated as time- or phase-dependent periodic scheduling
signals [12, 16, 17].

The fact that an LTP system can be lifted to a multiinput multioutput linear time-invariant (LTI)
system equivalent allows using LTI system identification tools (with some extensions) for LTP systems as well
[18–20]. However, the hybrid nature of the class of systems we are interested in introduces “instant jumps”
between different vector fields and is thus open to developing new tools that explicitly take the time-dependent
(and possibly nonsmooth) changes in system dynamics into account. In time domain analysis, such periodic
scheduling functions can be simply modeled as rectangular wave functions. However, in frequency domain
analysis, the effect of such signals (if not separated from the underlying system dynamics) may spread over all
frequencies and contaminate the frequency response functions [17]. Therefore, a careful characterization of such
periodic scheduling functions becomes important to identify underlying system dynamics.

In our previous work, we proposed a similar system identification method for a class of hybrid linear
continuous time-periodic systems [4]. Here, in this study our goal is to develop a similar methodology for hybrid
linear discrete time-periodic systems. Indeed, discrete-time formulation leads us to cover a much broader class
of systems due to the fact that discrete time instants associated with the system formulation does need to be
synchronized with actual “time” and they can be associated with special events triggered by state-dependent
threshold functions [12]. For example, in a hybrid dynamical system that operates around an isolated limit-cycle,
one can choose a set of selected discrete phase coordinates (i.e. set of Poincaré sections) as “time-instants”,
which can even include the hybrid-transition events.

In this context, we propose a new state-space identification method for LDTP systems with known
scheduling signals. In Section 2, we establish the problem formulation. Then, in Section 3, we present the
proposed system identification methodology. We provide an illustrative numerical example in Section 4 and
provide the concluding remarks in Section 5.

2. Problem formulation
The stable, linear discrete time-periodic systems we are interested in have the state-space form

xk+1 = Akxk +Bkuk ,

yk = Cxk ,
(1)

where Ak ∈ Rm×m , Bk ∈ Rm×1 and C = Im×m such that I is the m ×m identity matrix. The system and
input matrices (Ak and Bk ) are time-periodic with a common system period N (yielding a periodic frequency
of ω0 = 2π/N ) where Ak = Ak+pN and Bk = Bk+pN for ∀p ∈ Z . We call the class of systems in the form of
Eq. (1) Υ(Ak, Bk) .

The class of the systems defined by Υ(Ak, Bk) that we are interested in has hybrid dynamics that
originate from the switching nature of the system and input matrices based on a known periodic scheduling
signal. Hence, the system and input matrices can be written as

Ak =

M∑
i=1

Ai
ks

i
k , Bk =

M∑
i=1

Bi
ks

i
k, (2)
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Figure 1. A sample illustration for a scalar switching system with time-periodic subsystem dynamics. Green line shows
the resulting dynamics, Ak , obtained by the combination of three subdynamics, A1

k , A2
k , and A3

k , which are activated
by s1k , s2k , and s3k , respectively.

where Ai
k and Bi

k correspond to ith time-periodic subsystem matrices that are activated by the corresponding
scheduling function, sik . Note that one of the key differences of our problem statement is that our modeling
considers all subsystem dynamics to be time-periodic as well rather than assuming time-invariant subsystem
dynamics as seen in a majority of the studies in the literature [2, 7, 21, 22].

Assumption 1 The “known” periodic scheduling signals, sik for i = 1, 2, · · · ,M , are rectangular wave functions
ensuring that only one of the subdynamics pair (Ai

k, B
i
k) is active for any time instant. Besides, active durations

of these signals span the entire system period ensuring that one subdynamics pair (Ai
k, B

i
k) is active at any time

instant (see Figure 1 for an illustration). □

Given the definitions above, the problem that we are interested in here can be stated as below.

Problem 1 Estimate a state-space model Υ(Âk, B̂k) for Eq. (1) to obtain an input–output equivalent system
model (see Remark 1) given

• input–output data pairs, where the inputs, ui
k , are different frequency single-sine signals and the outputs, xi

k ,
are the corresponding state measurements, and

• the periodic scheduling signals, sik , for i = 1, 2, · · · ,M and hence the system period, N. □

Remark 1 Note that in standard state-space identification methods, such as the subspace identification methods,
the estimated system can be found only up to a similarity transformation [23–25]. However, since we assume
full state measurement, we limit the output matrix to being an identity matrix. Hence, the proposed method
yields an approximate estimation for the original state-space model parameters, leaving no other possibility for
a similarity transformation. □
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3. Identification of state-space structure
Our analysis starts by taking the Fourier series expansion of the time-periodic system and input matrices in
Eq. (1) as

Ak =

N/2−1∑
n=−N/2

Ane
j2πnk/N , Bk =

N/2−1∑
n=−N/2

Bne
j2πnk/N , (3)

where An and Bn are discrete Fourier series coefficients for Ak and Bk , respectively. Note that DFT results
in a finite number of Fourier series coefficients, which are also periodic with N, meaning that

An = An+pN ,∀p ∈ Z, (4)

where the same expression is also valid for Bn .
Plugging Eq. (3) into the state equation of Eq. (1) yields

xk+1 =

N/2−1∑
n=−N/2

Ane
j2πnk/Nxk +

N/2−1∑
n=−N/2

Bne
j2πnk/Nuk . (5)

At steady state, discrete Fourier transform (DFT) of Eq. (5) yields

ej2πn/NXn =

N/2−1∑
l=−N/2

AlXn−l +

N/2−1∑
l=−N/2

BlUn−l , (6)

where Xn and Un are discrete Fourier series coefficients for the time-periodic state and input signals, xk and
uk , respectively.

Fact 1 [26] Let f1
k and f2

k be two time-periodic signals, which are both periodic with a common period, K. Let
fk be

fk = f1
kf

2
k . (7)

Then the discrete Fourier series coefficients, Fn , of fk can be obtained as

Fn =

K/2−1∑
q=−K/2

F1
qF2

n−q , (8)

where F1
n and F2

n are the discrete Fourier series coefficients of f1
k and f2

k , respectively. □

Corollary 1 By Fact 1, the discrete Fourier series coefficients, An and Bn , of the time-periodic system and
input matrices Ak and Bk can be written as

An =

M∑
i=1

N/2−1∑
q=−N/2

Ai
qS

i
n−q ,

Bn =

M∑
i=1

N/2−1∑
q=−N/2

Bi
qS

i
n−q ,

(9)
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where Ai
q and Bi

q are the discrete Fourier series coefficients of the i th subsystem system and input matrices
Ai

k and Bi
k , respectively. Also, Si

n corresponds to the discrete Fourier series coefficients of the i th periodic
scheduling signal. □

Now, substituting Eq. (9) into Eq. (6) yields

ej2πn/NXn =

N/2−1∑
l=−N/2

M∑
i=1

N/2−1∑
q=−N/2

Ai
qS

i
l−qXn−l +

N/2−1∑
l=−N/2

M∑
i=1

N/2−1∑
q=−N/2

Bi
qS

i
l−qUn−l . (10)

Note that Ai
q and Bi

q for i = 1, 2, . . . ,M and q = −N/2, . . . , N/2− 1 are the only unknown terms in Eq. (10).

For the sake of our analysis, we reorganize the terms in Eq. (10) such that the “known” terms can be
isolated from the unknowns as

ej2πn/NXn =

M∑
i=1

N/2−1∑
q=−N/2

Ai
q


N/2−1∑
l=−N/2

Si
l−qXn−l

+

M∑
i=1

N/2−1∑
q=−N/2

Bi
q


N/2−1∑
l=−N/2

Si
l−qUn−l

 . (11)

The terms inside the brackets of Eq. (11) are all “known” and measured components. Thus, we define two new
variables and perform some change of indices to represent these terms as

Xi
n−q :=

N/2−1∑
l=−N/2

Si
l−qXn−l =

N/2−1∑
r=−N/2

Si
rXn−q−r ,

Ui
n−q :=

N/2−1∑
l=−N/2

Si
l−qUn−l =

N/2−1∑
r=−N/2

Si
rUn−q−r ,

(12)

for i = 1, 2, . . . ,M . Hence, Eq. (11) can be simplified as

ej2πn/NXn =

M∑
i=1

N/2−1∑
q=−N/2

Ai
qXi

n−q +

M∑
i=1

N/2−1∑
q=−N/2

Bi
qUi

n−q . (13)

The goal of our analysis is to transform Eq. (13) into a linear regression form, such that we can solve
for the unknowns using basic least squares analysis. Note that Eq. (13) includes known and unknown terms
in both summations. To overcome this issue, we utilize a matrix multiplication formulation by combining the
known and unknown terms in matrices as follows (see Remark 2):

Āi := [Ai
−N/2 . . .A

i
0 . . .Ai

N/2−1],

B̄i := [Bi
−N/2 . . .B

i
0 . . .Bi

N/2−1],

�Xi
n := [Xi

n+N/2 . . .Xi
n . . .Xi

n−(N/2−1)]
T ,

�Ui
n := [Ui

n+N/2 . . .Ui
n . . .Ui

n−(N/2−1)]
T .

(14)

Remark 2 Different than continuous-time LTP system identification methods (as in [4]), the Fourier series
coefficients of the linear discrete time-periodic (LDTP) systems are finite. Hence, our solution methodology for
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LDTP systems does not require a truncation for the Fourier series coefficients that will be considered for system
identification at this step. □

Having the new variables defined in Eq. (14), we can now transform Eq. (13) to a simpler form as

ej2πn/NXn =

M∑
i=1

Āi �Xi
n +

M∑
i=1

B̄i �Ui
n . (15)

An important point that needs to be resolved at this step is that the estimated time-domain state-
space model, Υ(Âk, B̂k) , should be real-valued. This requires the estimated Fourier series coefficients to be in
complex conjugate form. To avoid any numerical issues regarding this problem, we aim to enforce our estimates
for the Fourier series coefficients to be in complex conjugate form at this step. Note that the matrices in
Eq. (14) contain complex conjugate numbers, except the 0th and (−N/2)th terms, which should already be
real-valued by the definition of discrete Fourier transform. We define a right-hand-side transformation matrix,
P(N,m) , which separates the real and imaginary parts of the complex conjugate numbers without changing the
dimension as

P(N,m) :=


Im 0 0 0
0 I(N/2−1)m 0 jJ(N/2−1)m

0 0 Im 0
0 J(N/2−1)m 0 −jI(N/2−1)m

 , (16)

where Iq is a q × q identity matrix while Jq is a q × q antidiagonal identity matrix. By using Eq. (16), Āi

and B̄i in Eq. (15) can be rewritten as

Ãi := ĀiP(N,m) ,

B̃i := B̄iP(N,1) .
(17)

Now, by using the new variables defined in Eqs. (16) and (17), we obtain a simpler form for Eq. (15) as

ej2πn/NXn =

M∑
i=1

ÃiP−1
(N,m)

�Xi
n +

M∑
i=1

B̃iP−1
(N,1)

�Ui
n . (18)

At this step, we can transform Eq. (18) to matrix algebra by combining the known and unknown terms
in different matrices as

κT := [Ã1 . . . ÃM B̃1 . . . B̃M ] ,

γT
n := P−1[ �X1

n . . . �XM
n

�U1
n . . . �UM

n ]T ,
(19)

where P−1 is a matrix that includes M of P−1
(N,m) and M of P−1

(N,1) in its diagonals. Thus, Eq. (18) can be
simplified to

ỹn = γnκ, (20)

where ỹTn = ej2πn/NXn .
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As explained before, one of the key properties of LDTP systems is that when a sinusoidal input signal is
given to an LDTP system, the output will not be only at the input frequency (as in the case of LTI systems) but
also in the harmonics of the pumping frequency of the system. Therefore, one needs to evaluate Eq. (20) for all
of these harmonic responses in order to consider the effect of harmonics during the system identification process.
Therefore, our solution methodology includes evaluating Eq. (20) in all of the harmonic response frequencies
for a more accurate characterization of the LDTP system dynamics. Let the LTP system we are interested in
have a maximum of H harmonic responses across the frequency range that we are interested in for the system
identification. We can now evaluate Eq. (20) for each of these harmonic frequencies by performing a circular
shift operation. The resulting data matrices hence take the following form:

Γωi
=



γ−N/2

...
γ0
...

γN/2−1

 , Yωi
=



ỹ−N/2

...
ỹ0
...

ỹN/2−1

 , (21)

which yields the following equation:
Γωi

κ = Yωi
. (22)

Note that Eq. (22) considers data only from a single input frequency. One of the advantages of working
with frequency domain data is the ability to simply combine data from multiple experiments. Hence, we combine
frequency response data from multiple input frequencies as

...
Γωi

...


︸ ︷︷ ︸

Γ̄

κ =


...

Yωi

...


︸ ︷︷ ︸

Ȳ

, (23)

where K is the number of different frequency input signals. Finally, to achieve real-valued solutions for κ , we
separate the real and imaginary parts of Eq. (23) as[

Re{Γ̄}
Im{Γ̄}

]
︸ ︷︷ ︸

Γ

κ =

[
Re{Ȳ}
Im{Ȳ}

]
︸ ︷︷ ︸

Y

. (24)

The solution for κ of Eq. (24) can be simply found by using a least square solution when ΓHΓ is invertible
(see Remark 3).

Remark 3 The invertibility of ΓHΓ depends on many factors such as the number of switching subsystems, the
duty factor of each scheduling signal, and the frequency components of the switching subsystems. Thus, it is
not possible to provide a general invertibility criterion without constraining the problem definition at this step.
To avoid this, the theoretical investigation of invertibility requirements is left out of the scope of the current
paper. However, we utilize a computational method by reducing the number of harmonic responses that will be
considered for Eq. (14) to ensure analytical least squares solutions as described below.
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Note that the formulation for κ given in Eq. (19) includes N unknown Fourier series coefficients for
each system and input matrices. However, we assume that the internal switching subsystems are respectively
smooth time-periodic functions and the number of unknown Fourier series coefficients is limited. Note that this
assumption does not limit the number of harmonics N that can be observed in the resulting switching system
(Ak , Bk ) due to the rectangular wave-type scheduling signals. Our assumption only limits the number of
unknown Fourier series coefficients of each switching subsystem, (Ai

k , Bi
k ). This is a fair assumption when the

switching subsystems are smooth but the resultant system includes many harmonic components (such as in the
case of legged locomotion [27]). Thus, we limit the number of Fourier series coefficients for each subsystem, (Ai

k ,
Bi

k ), to the lowest H frequencies in Eq. (14). For example, the truncated unknown Fourier series coefficients
vectors, which will replace the ones in Eq. (19), for (Ai

k , Bi
k ) can now be written as

Ā†i := [Ai
−H . . .Ai

0 . . .Ai
H ],

B̄†i := [Bi
−H . . .Bi

0 . . .Bi
H ].

(25)

Revising the associated equations, Eqs. (15)–(24), with the truncated form of Ā†i and B̄†i yields

Γ†κ† = Y , (26)

which can be solved by using a least square solution as

κ̂† = (Γ†HΓ†)−1Γ†HY. (27)

At this point, one can compute an estimate for the original time periodic system by back-substituting κ̂†

into Eqs. (25), (19), (17), (14), (9), and (3).

Remark 4 Note that continuous-time LTP systems can be transformed to discrete-time equivalents by bilinear
(Tustin) transformation (see [17] for a special derivation). Hence, the proposed technique can also be utilized for
continuous-time LTP systems by sampling the input–output data of the original unknown continuous-time LTP
system. Then the estimated discrete-time LTP system can be transformed back to the continuous-time version
via inverse bilinear (Tustin) transformation.

4. Numerical example: a switching piecewise smooth LDTP system
In this section, we present an example simulation study in order to evaluate the performance of the proposed
algorithm. To achieve this, we worked on a hybrid damped Mathieu equation form that has piecewise smooth
switching system dynamics. The Mathieu equation has been widely used in the literature to model various
phenomena such as stability analysis of floating bodies [28], vibrations in elliptic drums [29], and the analysis of
radio frequency quadruple [30]. Thus, Mathieu equations may serve as a model for many real-world applications
[31].

The piecewise smooth N-periodic LDTP system example we use in this section can be written as a
difference equation with time-varying coefficients as

xk+2 − β(ζ − sin(ω0k/N))︸ ︷︷ ︸
ξk

xk+1 − β(ζ + cos(ω0k/N))︸ ︷︷ ︸
µk

xk = uk, (28)
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where µk and ξk represent piecewise smooth compliance and damping coefficients, respectively. The piecewise
hybrid nature of these parameters originate from a known scheduling signal, which switches the parameters β

and ζ periodically. Equations of motion for the resulting switching LDTP system structure can be written as

xk+2 =

ξ1kxk+1 + µ1
kxk + uk , if zN ≤ k < zN +N/2 ,∀z ∈ Z

ξ2kxk+1 + µ2
kxk + uk , if zN +N/2 ≤ k < (z + 1)N.

(29)

This difference equation can also be transformed to the state-space form of Eq. (1) for a more intuitional
representation as

A1
k =

[
0 1

β1(ζ1 + cos(ω0k/N)) β1(ζ1 − sin(ω0k/N))

]
,

A2
k =

[
0 1

β2(ζ2 + cos(ω0k/N)) β2(ζ2 − sin(ω0k/N))

]
,

B =
[
0 1

]T
,

(30)

where Ak =
∑2

i=1 A
i
ks

i
k . Note that the input matrix is time-invariant for this example, which does not

necessarily have to be for the proposed solution methodology. The numerical values for the parameters used for
this example are listed in Table 1.

Table 1. Numerical values of the parameters for example 1.

N ω0 β1 β2 ζ1 ζ2

50 4π 0.1 0.2 0.3 0.1

Now, the true values of the Fourier series coefficients for A1
k and A2

k can be computed as

A1
0 =

[
0.0000 1.0000
0.0300 0.0300

]
,A1

1 =

[
0.0000 0.0000
0.0500 j0.0500

]
,B1

0 =

[
0.0000
1.0000

]
,

A2
0 =

[
0.0000 1.0000
0.0200 0.0200

]
,A2

1 =

[
0.0000 0.0000
0.1000 j0.1000

]
,B2

0 =

[
0.0000
1.0000

]
,

(31)

where A1
1 = (A1

−1)
∗ and A2

1 = (A2
−1)

∗ .
Having defined the example problem, we now simulate the system to collect the necessary input–output

data for the system identification process. To accomplish this, we simulated the difference equation given in
Eq. (28) with single frequency cosine and sine input signals in the forms uk = cos(αω0k) and uk = sin(αω0k) ,
respectively. In total, we performed 50 simulation tests (25 cosines and 25 sines) for α = 0, 1, . . . , 24 . Each
input signal was 1000 samples long corresponding to 10 s in terms of numerical system parameters.

We then apply the proposed system identification methodology to estimate the Fourier series coefficients.
At this step, we first need to choose H defined in Eq. (25) to constrain the number of Fourier series coefficients
to be estimated. Note that choosing an H value lower than the harmonics of the actual system will result in
an oversimplified system, which may not capture the harmonic responses of the original behavior. In contrast,
choosing an H value larger than the number of harmonics should result in insignificant magnitudes for higher
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Figure 2. Estimation results for compliance µk and damping ξk for a single period using H = 0 , H = 1 , and H = 2
harmonics.

order harmonics, which was not captured in the original system behavior. Hence, choosing a relatively larger H

value should not bring any major disadvantage except increasing the computational complexity of the solutions.
The estimated Fourier series coefficients of Eq. (28) for H = 1 are computed as

Â1
0 =

[
0.0000 1.0000
0.0300 0.0300

]
, Â1

1 =

[
0.0000 0.0000
0.0500 j0.0500

]
, B̂1

0 =

[
0.0000
1.0000

]
,

Â2
0 =

[
0.0000 1.0000
0.0200 0.0200

]
, Â2

1 =

[
0.0000 0.0000
0.1000 j0.1000

]
, B̂2

0 =

[
0.0000
1.0000

]
.

(32)

Note that the proposed method accurately estimates the original Fourier series coefficients as expected by the
derivation of the solution methodology. Ensuring that the necessary frequency range is covered by the input
signal (entire band is covered in our case) and a sufficient number of harmonics are included, the proposed
method should estimate the original parameters accurately. However, if the user considers a lower number of
harmonics during the system identification process, some key features of the system may not appear in the
output and hence system identification performance might be degraded drastically. To investigate this, we
choose H = 0 for the same example, where we only consider the responses at the given frequency (as an LTI
system). In this case, the estimated Fourier series coefficients become

Â1
0 =

[
0.0000 1.0000
0.0196 0.0027

]
, B̂1

0 =

[
0.0000
0.9765

]
,

Â2
0 =

[
0.0000 1.0000
−0.0676 0.2810

]
, B̂2

0 =

[
0.0000
0.8979

]
.

(33)

Note that the estimated Fourier series coefficients are very erroneous in this case. However, on the other hand,
choosing H = 2 yields the same estimates as Eq. (32) for Â1

0 , Â1
1 , Â2

0 , and Â2
1 . Â3

0 and Â3
1 have magnitudes

in the order of 10−16 and are considered to be 0 in our solutions.
In order to present a comparative result of different selections for H , we computed the estimates for µk

and ξk as illustrated in Figure 2. Note that the actual values for the compliance and damping terms have a
hybrid nature, where their values switch at the beginning and at half of the system period. It is also important
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to note that each switching component also has a time-periodic nature. The estimations with H = 1 yield
accurate predictions for both µk and ξk . However, when H = 0 , the proposed method only estimates the DC
terms without any harmonics with a very poor prediction performance. On the other hand, when H = 2 , the
estimation performance is still very accurate although the computational complexity of the solutions increases.
This result suggests that choosing a sufficiently large number of harmonics is crucial in order to obtain accurate
system identification results.

A simple approach therefore would be starting the identification process with a sufficiently large number.
One can utilize the frequency response characteristics of the LTP system to single frequency sinusoidal inputs to
make this choice. As noted earlier, a sinusoidal input at ωc results in harmonic responses at ωc±kω0 for k ∈ Z .
One can perform a frequency sweep across the range of interest for system identification and find the maximum
number of harmonics observed as potential candidates for H . Next, if parsimonious models are required, one
might reduce H to test for reduced order solutions by comparing the estimation performance with the initial
estimation of H . One may also prefer to use statistical analysis techniques, such as the Akaike information
criterion (AIC) [32], to decide on the number of harmonics that will be used during the system identification
process. This type of analysis deserves and requires an in-depth investigation and is left out of the scope of the
current paper.

Finally, we contaminated the system identification data by adding zero-mean white Gaussian noise to
our output measurements following the technique used in [9]. This will allow us to test the efficiency of the
proposed algorithm in a more realistic simulation setting. Figure 3 illustrates the estimation of performance of
the proposed algorithm under different noise contamination levels. Note that the addition of noise deteriorates
the prediction performance. The prediction performance of the algorithm is robust to noise up to a signal-
to-noise (SNR) ratio of 30 with minimal effect. The prediction error goes up to 6%–7% for some k values
when SNR is 20 (note the scale difference between the vertical axes). We also quantified the overall percentage
prediction error for the system matrices given in Eq. (31). To achieve this, we concatenated the actual system
matrices in Eq. (31) in a single matrix, Aact . Similarly, we concatenated the estimated system matrices of Eq.
(32) in a single matrix, Aest . The percentage prediction error is defined as

Ep =: 100
|Aact −Aest|2

|Aact|2
. (34)

The percentage prediction errors for different SNR values are given in Table 2. Our results show that the overall
prediction performance of the proposed algorithm remains robust to noise contamination.

Table 2. Percentage prediction error under different noise realizations.

SNR ∞ 40 30 20

Ep 10−11 0.234 0.940 2.50

5. Conclusions
A substantial amount of dynamical systems in nature and engineering exhibit rhythmic and quasiperiodic
behaviors and hybrid characteristics [6, 10, 33–36]. Analysis and identification of such systems is very critical for
scientific and engineering communities. There exist some recent studies that addressed the system identification
of rhythmic and periodic dynamical systems [19, 37–39]. Ankarali and Cowan [12] showed that rhythmic hybrid

2765



UYANIK et al./Turk J Elec Eng & Comp Sci

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25 30 35 40 45 50

k

Actual SNR = SNR = 40 SNR = 30 SNR = 20

-0.02

0

0.02

0 5 10 15 20 25 30 35 40 45 50

k

µ k

ξ k − ξ̄ kµ k − µ̄ k

ξ k

Figure 3. Estimation results for compliance µk and damping ξk for a single period using H = 1 harmonics under
different noise realizations.

dynamical systems that have an isolated stable limit cycle can be locally approximated as a (switching) LDTP
system by choosing a set of appropriate Poincaré sections. They later proposed a nonparametric frequency-
domain system identification approach to LDTP systems. Technically, this study illustrated that switching-
based LDTP formulation has very wide application in the dynamical systems community.

In this context, our focus is on developing a parametric frequency-domain system identification method
for “hybrid” or switching LDTP systems. The LDTP systems that we focus on in this paper comprise some
periodic scheduling signals, which triggers the switching between the individual LDTP subsystems. In our
approach, we first collect input–output data from the systems, where inputs are chosen to be sinusoidal signals
due to the frequency domain nature of the method. We later put the identification problem in a linear regression
framework by considering the Fourier series coefficients of time-periodic input–output data (at steady-state),
periodic scheduling signals, and time-periodic system and input matrices. We later estimate the Fourier series
coefficients of the time-periodic system and input matrices (which are the unknowns in our formulation) using
a least-squares solution. One should also note the fact that in some problems we may already “know” some of
the parameters prior from the identification. For example, it is possible that the state-space structure of some
of the subsystems can be accurately computed or measured using white-box or gray modeling techniques. Due
to the linear regression framework, it would be rather easy to incorporate known parameters and coefficients,
which also strengthens the feasibility of our approach.

Finally, we performed a simulation experiment in order to test the feasibility and accuracy of our method
using a simulated switching piecewise smooth LDTP system. We successfully showed that if the assumed
number of harmonics is larger than or equal to the maximum number of harmonics that the sub-systems cover,
we can estimate system parameters and coefficients accurately in a deterministic scenario. We also showed that
in a scenario where the number of harmonics is underestimated, the identification results may suffer greatly
from underfitting. It is surely possible that in a stochastic setting overfitting may be inevitable if the number of
harmonics is overestimated. In the future, we are planning to investigate the performance of our method under
noisy conditions (measurement and process), as well as develop a method for choosing the number of harmonics
by adopting a statistical model selection framework, e.g., AIC, BIC, or cross-validation.
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